Abstract

The property of a thin silicon membrane with periodic air slits of definite depth and width to exhibit under normal incidence a close to 100% ultra-narrow band reflection peak is demonstrated experimentally in the terahertz frequency range on a single-crystal silicon grid fabricated by submillimeter microsystem technology. An analysis based on the true modes supported by the grid reveals the nature of such resonances and permits to sort out those exhibiting ultra-narrow band.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. F. Krauss and R. M. De La Rue, “Photonic crystals in the optical regime - past, present, future,” Prog. Quantum Electron.23(2), 51–96 (1999).
    [CrossRef]
  2. T. C. Kleckner, D. Modotto, A. Locatelli, J. P. Mondia, S. Linden, R. Morandotti, C. De Angelis, C. R. Stanley, H. M. van Driel, and J. S. Aitchison, “Design, fabrication, and characterization of deep-etched waveguide gratings,” J. Lightwave Technol.23(11), 3832–3842 (2005).
    [CrossRef]
  3. P. Viktorovitch, B. Ben Bakir, S. Boutami, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, C. Seassal, M. Zussy, L. Di Cioccio, and J. M. Fedeli, “3D harnessing of light with 2.5D photonic crystals,” Laser Photon. Rev.4(3), 401–413 (2010).
    [CrossRef]
  4. T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. (Berl.)14(3), 235–254 (1977).
    [CrossRef]
  5. I. A. Avrutsky, A. S. Svakhin, V. A. Sychugov, and O. Parriaux, “High-efficiency single-order waveguide grating coupler,” Opt. Lett.15(24), 1446–1448 (1990).
    [CrossRef] [PubMed]
  6. G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron.15(7), 886–887 (1985).
    [CrossRef]
  7. S. Tibuleac and R. Magnusson, “Reflection and transmission guided-mode resonance filters,” J. Opt. Soc. Am. A14(7), 1617–1626 (1997).
    [CrossRef]
  8. D. K. Jacob, S. C. Dunn, and M. G. Moharam, “Normally incident resonant grating reflection filters for efficient narrow-band spectral filtering of finite beams,” J. Opt. Soc. Am. A18(9), 2109–2120 (2001).
    [CrossRef] [PubMed]
  9. E. Bonnet, X. Letartre, A. Cachard, A. V. Tishchenko, and O. Parriaux, “High resonant reflection of a confined free space beam by a high contrast segmented waveguide,” Opt. Quantum Electron.35(11), 1025–1036 (2003).
    [CrossRef]
  10. C. Chang-Hasnain, “High-contrast gratings as a new platform for integrated optoelectronics,” Semicond. Sci. Technol.26(1), 014043 (2011).
    [CrossRef]
  11. P. Lalanne, J. Hugonin, and P. Chavel, “Optical properties of deep lamellar gratings: a coupled Bloch-mode insight,” J. Lightwave Technol.24(6), 2442–2449 (2006).
    [CrossRef]
  12. E. Bonnet, A. Cachard, A. V. Tishchenko, and O. Parriaux, “Scaling rules for the design of a narrow grating filter at the focus of a free space beam,” Proc. SPIE5450, 217–222 (2004).
    [CrossRef]
  13. E. Bonnet, A. Cachard, A. V. Tishchenko, O. Parriaux, F. Garet, J.-L. Coutaz, and G. A. Racine, “Resonant grating effects at terahertz frequencies,” Proc. SPIE5466, 80–89 (2004).
    [CrossRef]
  14. V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Matrix Fabry-Perot resonance mechanism in high-contrast gratings,” Opt. Lett.36(9), 1704–1706 (2011).
    [CrossRef] [PubMed]
  15. L. C. Botten, T. P. White, A. A. Asatryan, T. N. Langtry, C. M. de Sterke, and R. C. McPhedran, “Bloch mode scattering matrix methods for modeling extended photonic crystal structures. I. Theory,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(5), 056606 (2004).
    [CrossRef] [PubMed]
  16. T. Kämpfe, A. Tishchenko, and O. Parriaux, “Modal representation and normalized scaling rules for ultra narrow-band reflection from a 1D binary corrugation,” 8th EOS Topical Meeting on Diffractive Optics, paper 4861, (2012).
  17. D. Gallagher, Photon Design, private communication.
  18. J. Inoue, T. Majima, K. Hatanaka, K. Kintaka, K. Nishio, Y. Awatsuji, and S. Ura, “Aperture miniaturization of guided-mode resonance filter by cavity resonator integration,” Appl. Phys. Express5(2), 022201 (2012).
    [CrossRef]
  19. MCGrating by Nikolay Lyndin, http://www.mcgrating.com
  20. C. Chang, Y.-F. Wang, Y. Kanamori, J.-J. Shih, Y. Kawai, C.-K. Lee, K.-C. Wu, and M. Esashi, “Etching submicrometer trenches by using the Bosch process and its application to the fabrication of antireflection structures,” J. Micromech. Microeng.15(3), 580–585 (2005).
    [CrossRef]
  21. L. Duvillaret, F. Garet, and J. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron.2(3), 739–746 (1996).
    [CrossRef]
  22. J.-F. Roux, F. Aquistapace, F. Garet, L. Duvillaret, and J.-L. Coutaz, “Grating-assisted coupling of terahertz waves into a dielectric waveguide studied by terahertz time-domain spectroscopy,” Appl. Opt.41(30), 6507–6513 (2002).
    [CrossRef] [PubMed]
  23. S. Wang, F. Garet, K. Blary, C. Croenne, E. Lheurette, J.-L. Coutaz, and D. Lippens, “Composite left/right-handed stacked hole arrays at sub-millimeter wavelengths,” J. Appl. Phys.107, 0745101–0745106 (2010).
  24. A. V. Tishchenko, “Phenomenological representation of deep and high contrast lamellar gratings by means of the modal method,” Opt. Quantum Electron.37(1-3), 309–330 (2005).
    [CrossRef]

2012

J. Inoue, T. Majima, K. Hatanaka, K. Kintaka, K. Nishio, Y. Awatsuji, and S. Ura, “Aperture miniaturization of guided-mode resonance filter by cavity resonator integration,” Appl. Phys. Express5(2), 022201 (2012).
[CrossRef]

2011

V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Matrix Fabry-Perot resonance mechanism in high-contrast gratings,” Opt. Lett.36(9), 1704–1706 (2011).
[CrossRef] [PubMed]

C. Chang-Hasnain, “High-contrast gratings as a new platform for integrated optoelectronics,” Semicond. Sci. Technol.26(1), 014043 (2011).
[CrossRef]

2010

P. Viktorovitch, B. Ben Bakir, S. Boutami, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, C. Seassal, M. Zussy, L. Di Cioccio, and J. M. Fedeli, “3D harnessing of light with 2.5D photonic crystals,” Laser Photon. Rev.4(3), 401–413 (2010).
[CrossRef]

S. Wang, F. Garet, K. Blary, C. Croenne, E. Lheurette, J.-L. Coutaz, and D. Lippens, “Composite left/right-handed stacked hole arrays at sub-millimeter wavelengths,” J. Appl. Phys.107, 0745101–0745106 (2010).

2006

2005

C. Chang, Y.-F. Wang, Y. Kanamori, J.-J. Shih, Y. Kawai, C.-K. Lee, K.-C. Wu, and M. Esashi, “Etching submicrometer trenches by using the Bosch process and its application to the fabrication of antireflection structures,” J. Micromech. Microeng.15(3), 580–585 (2005).
[CrossRef]

T. C. Kleckner, D. Modotto, A. Locatelli, J. P. Mondia, S. Linden, R. Morandotti, C. De Angelis, C. R. Stanley, H. M. van Driel, and J. S. Aitchison, “Design, fabrication, and characterization of deep-etched waveguide gratings,” J. Lightwave Technol.23(11), 3832–3842 (2005).
[CrossRef]

A. V. Tishchenko, “Phenomenological representation of deep and high contrast lamellar gratings by means of the modal method,” Opt. Quantum Electron.37(1-3), 309–330 (2005).
[CrossRef]

2004

L. C. Botten, T. P. White, A. A. Asatryan, T. N. Langtry, C. M. de Sterke, and R. C. McPhedran, “Bloch mode scattering matrix methods for modeling extended photonic crystal structures. I. Theory,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(5), 056606 (2004).
[CrossRef] [PubMed]

E. Bonnet, A. Cachard, A. V. Tishchenko, and O. Parriaux, “Scaling rules for the design of a narrow grating filter at the focus of a free space beam,” Proc. SPIE5450, 217–222 (2004).
[CrossRef]

E. Bonnet, A. Cachard, A. V. Tishchenko, O. Parriaux, F. Garet, J.-L. Coutaz, and G. A. Racine, “Resonant grating effects at terahertz frequencies,” Proc. SPIE5466, 80–89 (2004).
[CrossRef]

2003

E. Bonnet, X. Letartre, A. Cachard, A. V. Tishchenko, and O. Parriaux, “High resonant reflection of a confined free space beam by a high contrast segmented waveguide,” Opt. Quantum Electron.35(11), 1025–1036 (2003).
[CrossRef]

2002

2001

1999

T. F. Krauss and R. M. De La Rue, “Photonic crystals in the optical regime - past, present, future,” Prog. Quantum Electron.23(2), 51–96 (1999).
[CrossRef]

1997

1996

L. Duvillaret, F. Garet, and J. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron.2(3), 739–746 (1996).
[CrossRef]

1990

1985

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron.15(7), 886–887 (1985).
[CrossRef]

1977

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. (Berl.)14(3), 235–254 (1977).
[CrossRef]

Aitchison, J. S.

Aquistapace, F.

Asatryan, A. A.

L. C. Botten, T. P. White, A. A. Asatryan, T. N. Langtry, C. M. de Sterke, and R. C. McPhedran, “Bloch mode scattering matrix methods for modeling extended photonic crystal structures. I. Theory,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(5), 056606 (2004).
[CrossRef] [PubMed]

Avrutsky, I. A.

Awatsuji, Y.

J. Inoue, T. Majima, K. Hatanaka, K. Kintaka, K. Nishio, Y. Awatsuji, and S. Ura, “Aperture miniaturization of guided-mode resonance filter by cavity resonator integration,” Appl. Phys. Express5(2), 022201 (2012).
[CrossRef]

Ben Bakir, B.

P. Viktorovitch, B. Ben Bakir, S. Boutami, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, C. Seassal, M. Zussy, L. Di Cioccio, and J. M. Fedeli, “3D harnessing of light with 2.5D photonic crystals,” Laser Photon. Rev.4(3), 401–413 (2010).
[CrossRef]

Blary, K.

S. Wang, F. Garet, K. Blary, C. Croenne, E. Lheurette, J.-L. Coutaz, and D. Lippens, “Composite left/right-handed stacked hole arrays at sub-millimeter wavelengths,” J. Appl. Phys.107, 0745101–0745106 (2010).

Bonnet, E.

E. Bonnet, A. Cachard, A. V. Tishchenko, and O. Parriaux, “Scaling rules for the design of a narrow grating filter at the focus of a free space beam,” Proc. SPIE5450, 217–222 (2004).
[CrossRef]

E. Bonnet, A. Cachard, A. V. Tishchenko, O. Parriaux, F. Garet, J.-L. Coutaz, and G. A. Racine, “Resonant grating effects at terahertz frequencies,” Proc. SPIE5466, 80–89 (2004).
[CrossRef]

E. Bonnet, X. Letartre, A. Cachard, A. V. Tishchenko, and O. Parriaux, “High resonant reflection of a confined free space beam by a high contrast segmented waveguide,” Opt. Quantum Electron.35(11), 1025–1036 (2003).
[CrossRef]

Botten, L. C.

L. C. Botten, T. P. White, A. A. Asatryan, T. N. Langtry, C. M. de Sterke, and R. C. McPhedran, “Bloch mode scattering matrix methods for modeling extended photonic crystal structures. I. Theory,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(5), 056606 (2004).
[CrossRef] [PubMed]

Boutami, S.

P. Viktorovitch, B. Ben Bakir, S. Boutami, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, C. Seassal, M. Zussy, L. Di Cioccio, and J. M. Fedeli, “3D harnessing of light with 2.5D photonic crystals,” Laser Photon. Rev.4(3), 401–413 (2010).
[CrossRef]

Cachard, A.

E. Bonnet, A. Cachard, A. V. Tishchenko, O. Parriaux, F. Garet, J.-L. Coutaz, and G. A. Racine, “Resonant grating effects at terahertz frequencies,” Proc. SPIE5466, 80–89 (2004).
[CrossRef]

E. Bonnet, A. Cachard, A. V. Tishchenko, and O. Parriaux, “Scaling rules for the design of a narrow grating filter at the focus of a free space beam,” Proc. SPIE5450, 217–222 (2004).
[CrossRef]

E. Bonnet, X. Letartre, A. Cachard, A. V. Tishchenko, and O. Parriaux, “High resonant reflection of a confined free space beam by a high contrast segmented waveguide,” Opt. Quantum Electron.35(11), 1025–1036 (2003).
[CrossRef]

Chang, C.

C. Chang, Y.-F. Wang, Y. Kanamori, J.-J. Shih, Y. Kawai, C.-K. Lee, K.-C. Wu, and M. Esashi, “Etching submicrometer trenches by using the Bosch process and its application to the fabrication of antireflection structures,” J. Micromech. Microeng.15(3), 580–585 (2005).
[CrossRef]

Chang-Hasnain, C.

C. Chang-Hasnain, “High-contrast gratings as a new platform for integrated optoelectronics,” Semicond. Sci. Technol.26(1), 014043 (2011).
[CrossRef]

Chang-Hasnain, C. J.

Chase, C.

Chavel, P.

Coutaz, J.

L. Duvillaret, F. Garet, and J. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron.2(3), 739–746 (1996).
[CrossRef]

Coutaz, J.-L.

S. Wang, F. Garet, K. Blary, C. Croenne, E. Lheurette, J.-L. Coutaz, and D. Lippens, “Composite left/right-handed stacked hole arrays at sub-millimeter wavelengths,” J. Appl. Phys.107, 0745101–0745106 (2010).

E. Bonnet, A. Cachard, A. V. Tishchenko, O. Parriaux, F. Garet, J.-L. Coutaz, and G. A. Racine, “Resonant grating effects at terahertz frequencies,” Proc. SPIE5466, 80–89 (2004).
[CrossRef]

J.-F. Roux, F. Aquistapace, F. Garet, L. Duvillaret, and J.-L. Coutaz, “Grating-assisted coupling of terahertz waves into a dielectric waveguide studied by terahertz time-domain spectroscopy,” Appl. Opt.41(30), 6507–6513 (2002).
[CrossRef] [PubMed]

Croenne, C.

S. Wang, F. Garet, K. Blary, C. Croenne, E. Lheurette, J.-L. Coutaz, and D. Lippens, “Composite left/right-handed stacked hole arrays at sub-millimeter wavelengths,” J. Appl. Phys.107, 0745101–0745106 (2010).

De Angelis, C.

De La Rue, R. M.

T. F. Krauss and R. M. De La Rue, “Photonic crystals in the optical regime - past, present, future,” Prog. Quantum Electron.23(2), 51–96 (1999).
[CrossRef]

de Sterke, C. M.

L. C. Botten, T. P. White, A. A. Asatryan, T. N. Langtry, C. M. de Sterke, and R. C. McPhedran, “Bloch mode scattering matrix methods for modeling extended photonic crystal structures. I. Theory,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(5), 056606 (2004).
[CrossRef] [PubMed]

Di Cioccio, L.

P. Viktorovitch, B. Ben Bakir, S. Boutami, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, C. Seassal, M. Zussy, L. Di Cioccio, and J. M. Fedeli, “3D harnessing of light with 2.5D photonic crystals,” Laser Photon. Rev.4(3), 401–413 (2010).
[CrossRef]

Dunn, S. C.

Duvillaret, L.

J.-F. Roux, F. Aquistapace, F. Garet, L. Duvillaret, and J.-L. Coutaz, “Grating-assisted coupling of terahertz waves into a dielectric waveguide studied by terahertz time-domain spectroscopy,” Appl. Opt.41(30), 6507–6513 (2002).
[CrossRef] [PubMed]

L. Duvillaret, F. Garet, and J. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron.2(3), 739–746 (1996).
[CrossRef]

Esashi, M.

C. Chang, Y.-F. Wang, Y. Kanamori, J.-J. Shih, Y. Kawai, C.-K. Lee, K.-C. Wu, and M. Esashi, “Etching submicrometer trenches by using the Bosch process and its application to the fabrication of antireflection structures,” J. Micromech. Microeng.15(3), 580–585 (2005).
[CrossRef]

Fedeli, J. M.

P. Viktorovitch, B. Ben Bakir, S. Boutami, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, C. Seassal, M. Zussy, L. Di Cioccio, and J. M. Fedeli, “3D harnessing of light with 2.5D photonic crystals,” Laser Photon. Rev.4(3), 401–413 (2010).
[CrossRef]

Garet, F.

S. Wang, F. Garet, K. Blary, C. Croenne, E. Lheurette, J.-L. Coutaz, and D. Lippens, “Composite left/right-handed stacked hole arrays at sub-millimeter wavelengths,” J. Appl. Phys.107, 0745101–0745106 (2010).

E. Bonnet, A. Cachard, A. V. Tishchenko, O. Parriaux, F. Garet, J.-L. Coutaz, and G. A. Racine, “Resonant grating effects at terahertz frequencies,” Proc. SPIE5466, 80–89 (2004).
[CrossRef]

J.-F. Roux, F. Aquistapace, F. Garet, L. Duvillaret, and J.-L. Coutaz, “Grating-assisted coupling of terahertz waves into a dielectric waveguide studied by terahertz time-domain spectroscopy,” Appl. Opt.41(30), 6507–6513 (2002).
[CrossRef] [PubMed]

L. Duvillaret, F. Garet, and J. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron.2(3), 739–746 (1996).
[CrossRef]

Golubenko, G. A.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron.15(7), 886–887 (1985).
[CrossRef]

Hatanaka, K.

J. Inoue, T. Majima, K. Hatanaka, K. Kintaka, K. Nishio, Y. Awatsuji, and S. Ura, “Aperture miniaturization of guided-mode resonance filter by cavity resonator integration,” Appl. Phys. Express5(2), 022201 (2012).
[CrossRef]

Hugonin, J.

Inoue, J.

J. Inoue, T. Majima, K. Hatanaka, K. Kintaka, K. Nishio, Y. Awatsuji, and S. Ura, “Aperture miniaturization of guided-mode resonance filter by cavity resonator integration,” Appl. Phys. Express5(2), 022201 (2012).
[CrossRef]

Jacob, D. K.

Kanamori, Y.

C. Chang, Y.-F. Wang, Y. Kanamori, J.-J. Shih, Y. Kawai, C.-K. Lee, K.-C. Wu, and M. Esashi, “Etching submicrometer trenches by using the Bosch process and its application to the fabrication of antireflection structures,” J. Micromech. Microeng.15(3), 580–585 (2005).
[CrossRef]

Karagodsky, V.

Kawai, Y.

C. Chang, Y.-F. Wang, Y. Kanamori, J.-J. Shih, Y. Kawai, C.-K. Lee, K.-C. Wu, and M. Esashi, “Etching submicrometer trenches by using the Bosch process and its application to the fabrication of antireflection structures,” J. Micromech. Microeng.15(3), 580–585 (2005).
[CrossRef]

Kintaka, K.

J. Inoue, T. Majima, K. Hatanaka, K. Kintaka, K. Nishio, Y. Awatsuji, and S. Ura, “Aperture miniaturization of guided-mode resonance filter by cavity resonator integration,” Appl. Phys. Express5(2), 022201 (2012).
[CrossRef]

Kleckner, T. C.

Krauss, T. F.

T. F. Krauss and R. M. De La Rue, “Photonic crystals in the optical regime - past, present, future,” Prog. Quantum Electron.23(2), 51–96 (1999).
[CrossRef]

Lalanne, P.

Langtry, T. N.

L. C. Botten, T. P. White, A. A. Asatryan, T. N. Langtry, C. M. de Sterke, and R. C. McPhedran, “Bloch mode scattering matrix methods for modeling extended photonic crystal structures. I. Theory,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(5), 056606 (2004).
[CrossRef] [PubMed]

Leclercq, J. L.

P. Viktorovitch, B. Ben Bakir, S. Boutami, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, C. Seassal, M. Zussy, L. Di Cioccio, and J. M. Fedeli, “3D harnessing of light with 2.5D photonic crystals,” Laser Photon. Rev.4(3), 401–413 (2010).
[CrossRef]

Lee, C.-K.

C. Chang, Y.-F. Wang, Y. Kanamori, J.-J. Shih, Y. Kawai, C.-K. Lee, K.-C. Wu, and M. Esashi, “Etching submicrometer trenches by using the Bosch process and its application to the fabrication of antireflection structures,” J. Micromech. Microeng.15(3), 580–585 (2005).
[CrossRef]

Letartre, X.

P. Viktorovitch, B. Ben Bakir, S. Boutami, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, C. Seassal, M. Zussy, L. Di Cioccio, and J. M. Fedeli, “3D harnessing of light with 2.5D photonic crystals,” Laser Photon. Rev.4(3), 401–413 (2010).
[CrossRef]

E. Bonnet, X. Letartre, A. Cachard, A. V. Tishchenko, and O. Parriaux, “High resonant reflection of a confined free space beam by a high contrast segmented waveguide,” Opt. Quantum Electron.35(11), 1025–1036 (2003).
[CrossRef]

Lheurette, E.

S. Wang, F. Garet, K. Blary, C. Croenne, E. Lheurette, J.-L. Coutaz, and D. Lippens, “Composite left/right-handed stacked hole arrays at sub-millimeter wavelengths,” J. Appl. Phys.107, 0745101–0745106 (2010).

Linden, S.

Lippens, D.

S. Wang, F. Garet, K. Blary, C. Croenne, E. Lheurette, J.-L. Coutaz, and D. Lippens, “Composite left/right-handed stacked hole arrays at sub-millimeter wavelengths,” J. Appl. Phys.107, 0745101–0745106 (2010).

Locatelli, A.

Magnusson, R.

Majima, T.

J. Inoue, T. Majima, K. Hatanaka, K. Kintaka, K. Nishio, Y. Awatsuji, and S. Ura, “Aperture miniaturization of guided-mode resonance filter by cavity resonator integration,” Appl. Phys. Express5(2), 022201 (2012).
[CrossRef]

McPhedran, R. C.

L. C. Botten, T. P. White, A. A. Asatryan, T. N. Langtry, C. M. de Sterke, and R. C. McPhedran, “Bloch mode scattering matrix methods for modeling extended photonic crystal structures. I. Theory,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(5), 056606 (2004).
[CrossRef] [PubMed]

Modotto, D.

Moharam, M. G.

Mondia, J. P.

Morandotti, R.

Nishio, K.

J. Inoue, T. Majima, K. Hatanaka, K. Kintaka, K. Nishio, Y. Awatsuji, and S. Ura, “Aperture miniaturization of guided-mode resonance filter by cavity resonator integration,” Appl. Phys. Express5(2), 022201 (2012).
[CrossRef]

Parriaux, O.

E. Bonnet, A. Cachard, A. V. Tishchenko, O. Parriaux, F. Garet, J.-L. Coutaz, and G. A. Racine, “Resonant grating effects at terahertz frequencies,” Proc. SPIE5466, 80–89 (2004).
[CrossRef]

E. Bonnet, A. Cachard, A. V. Tishchenko, and O. Parriaux, “Scaling rules for the design of a narrow grating filter at the focus of a free space beam,” Proc. SPIE5450, 217–222 (2004).
[CrossRef]

E. Bonnet, X. Letartre, A. Cachard, A. V. Tishchenko, and O. Parriaux, “High resonant reflection of a confined free space beam by a high contrast segmented waveguide,” Opt. Quantum Electron.35(11), 1025–1036 (2003).
[CrossRef]

I. A. Avrutsky, A. S. Svakhin, V. A. Sychugov, and O. Parriaux, “High-efficiency single-order waveguide grating coupler,” Opt. Lett.15(24), 1446–1448 (1990).
[CrossRef] [PubMed]

Peng, S. T.

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. (Berl.)14(3), 235–254 (1977).
[CrossRef]

Racine, G. A.

E. Bonnet, A. Cachard, A. V. Tishchenko, O. Parriaux, F. Garet, J.-L. Coutaz, and G. A. Racine, “Resonant grating effects at terahertz frequencies,” Proc. SPIE5466, 80–89 (2004).
[CrossRef]

Rojo-Romeo, P.

P. Viktorovitch, B. Ben Bakir, S. Boutami, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, C. Seassal, M. Zussy, L. Di Cioccio, and J. M. Fedeli, “3D harnessing of light with 2.5D photonic crystals,” Laser Photon. Rev.4(3), 401–413 (2010).
[CrossRef]

Roux, J.-F.

Seassal, C.

P. Viktorovitch, B. Ben Bakir, S. Boutami, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, C. Seassal, M. Zussy, L. Di Cioccio, and J. M. Fedeli, “3D harnessing of light with 2.5D photonic crystals,” Laser Photon. Rev.4(3), 401–413 (2010).
[CrossRef]

Shih, J.-J.

C. Chang, Y.-F. Wang, Y. Kanamori, J.-J. Shih, Y. Kawai, C.-K. Lee, K.-C. Wu, and M. Esashi, “Etching submicrometer trenches by using the Bosch process and its application to the fabrication of antireflection structures,” J. Micromech. Microeng.15(3), 580–585 (2005).
[CrossRef]

Stanley, C. R.

Svakhin, A. S.

I. A. Avrutsky, A. S. Svakhin, V. A. Sychugov, and O. Parriaux, “High-efficiency single-order waveguide grating coupler,” Opt. Lett.15(24), 1446–1448 (1990).
[CrossRef] [PubMed]

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron.15(7), 886–887 (1985).
[CrossRef]

Sychugov, V. A.

I. A. Avrutsky, A. S. Svakhin, V. A. Sychugov, and O. Parriaux, “High-efficiency single-order waveguide grating coupler,” Opt. Lett.15(24), 1446–1448 (1990).
[CrossRef] [PubMed]

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron.15(7), 886–887 (1985).
[CrossRef]

Tamir, T.

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. (Berl.)14(3), 235–254 (1977).
[CrossRef]

Tibuleac, S.

Tishchenko, A. V.

A. V. Tishchenko, “Phenomenological representation of deep and high contrast lamellar gratings by means of the modal method,” Opt. Quantum Electron.37(1-3), 309–330 (2005).
[CrossRef]

E. Bonnet, A. Cachard, A. V. Tishchenko, O. Parriaux, F. Garet, J.-L. Coutaz, and G. A. Racine, “Resonant grating effects at terahertz frequencies,” Proc. SPIE5466, 80–89 (2004).
[CrossRef]

E. Bonnet, A. Cachard, A. V. Tishchenko, and O. Parriaux, “Scaling rules for the design of a narrow grating filter at the focus of a free space beam,” Proc. SPIE5450, 217–222 (2004).
[CrossRef]

E. Bonnet, X. Letartre, A. Cachard, A. V. Tishchenko, and O. Parriaux, “High resonant reflection of a confined free space beam by a high contrast segmented waveguide,” Opt. Quantum Electron.35(11), 1025–1036 (2003).
[CrossRef]

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron.15(7), 886–887 (1985).
[CrossRef]

Ura, S.

J. Inoue, T. Majima, K. Hatanaka, K. Kintaka, K. Nishio, Y. Awatsuji, and S. Ura, “Aperture miniaturization of guided-mode resonance filter by cavity resonator integration,” Appl. Phys. Express5(2), 022201 (2012).
[CrossRef]

van Driel, H. M.

Viktorovitch, P.

P. Viktorovitch, B. Ben Bakir, S. Boutami, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, C. Seassal, M. Zussy, L. Di Cioccio, and J. M. Fedeli, “3D harnessing of light with 2.5D photonic crystals,” Laser Photon. Rev.4(3), 401–413 (2010).
[CrossRef]

Wang, S.

S. Wang, F. Garet, K. Blary, C. Croenne, E. Lheurette, J.-L. Coutaz, and D. Lippens, “Composite left/right-handed stacked hole arrays at sub-millimeter wavelengths,” J. Appl. Phys.107, 0745101–0745106 (2010).

Wang, Y.-F.

C. Chang, Y.-F. Wang, Y. Kanamori, J.-J. Shih, Y. Kawai, C.-K. Lee, K.-C. Wu, and M. Esashi, “Etching submicrometer trenches by using the Bosch process and its application to the fabrication of antireflection structures,” J. Micromech. Microeng.15(3), 580–585 (2005).
[CrossRef]

White, T. P.

L. C. Botten, T. P. White, A. A. Asatryan, T. N. Langtry, C. M. de Sterke, and R. C. McPhedran, “Bloch mode scattering matrix methods for modeling extended photonic crystal structures. I. Theory,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(5), 056606 (2004).
[CrossRef] [PubMed]

Wu, K.-C.

C. Chang, Y.-F. Wang, Y. Kanamori, J.-J. Shih, Y. Kawai, C.-K. Lee, K.-C. Wu, and M. Esashi, “Etching submicrometer trenches by using the Bosch process and its application to the fabrication of antireflection structures,” J. Micromech. Microeng.15(3), 580–585 (2005).
[CrossRef]

Zussy, M.

P. Viktorovitch, B. Ben Bakir, S. Boutami, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, C. Seassal, M. Zussy, L. Di Cioccio, and J. M. Fedeli, “3D harnessing of light with 2.5D photonic crystals,” Laser Photon. Rev.4(3), 401–413 (2010).
[CrossRef]

Appl. Opt.

Appl. Phys. (Berl.)

T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. (Berl.)14(3), 235–254 (1977).
[CrossRef]

Appl. Phys. Express

J. Inoue, T. Majima, K. Hatanaka, K. Kintaka, K. Nishio, Y. Awatsuji, and S. Ura, “Aperture miniaturization of guided-mode resonance filter by cavity resonator integration,” Appl. Phys. Express5(2), 022201 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

L. Duvillaret, F. Garet, and J. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Sel. Top. Quantum Electron.2(3), 739–746 (1996).
[CrossRef]

J. Appl. Phys.

S. Wang, F. Garet, K. Blary, C. Croenne, E. Lheurette, J.-L. Coutaz, and D. Lippens, “Composite left/right-handed stacked hole arrays at sub-millimeter wavelengths,” J. Appl. Phys.107, 0745101–0745106 (2010).

J. Lightwave Technol.

J. Micromech. Microeng.

C. Chang, Y.-F. Wang, Y. Kanamori, J.-J. Shih, Y. Kawai, C.-K. Lee, K.-C. Wu, and M. Esashi, “Etching submicrometer trenches by using the Bosch process and its application to the fabrication of antireflection structures,” J. Micromech. Microeng.15(3), 580–585 (2005).
[CrossRef]

J. Opt. Soc. Am. A

Laser Photon. Rev.

P. Viktorovitch, B. Ben Bakir, S. Boutami, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, C. Seassal, M. Zussy, L. Di Cioccio, and J. M. Fedeli, “3D harnessing of light with 2.5D photonic crystals,” Laser Photon. Rev.4(3), 401–413 (2010).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

E. Bonnet, X. Letartre, A. Cachard, A. V. Tishchenko, and O. Parriaux, “High resonant reflection of a confined free space beam by a high contrast segmented waveguide,” Opt. Quantum Electron.35(11), 1025–1036 (2003).
[CrossRef]

A. V. Tishchenko, “Phenomenological representation of deep and high contrast lamellar gratings by means of the modal method,” Opt. Quantum Electron.37(1-3), 309–330 (2005).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

L. C. Botten, T. P. White, A. A. Asatryan, T. N. Langtry, C. M. de Sterke, and R. C. McPhedran, “Bloch mode scattering matrix methods for modeling extended photonic crystal structures. I. Theory,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(5), 056606 (2004).
[CrossRef] [PubMed]

Proc. SPIE

E. Bonnet, A. Cachard, A. V. Tishchenko, and O. Parriaux, “Scaling rules for the design of a narrow grating filter at the focus of a free space beam,” Proc. SPIE5450, 217–222 (2004).
[CrossRef]

E. Bonnet, A. Cachard, A. V. Tishchenko, O. Parriaux, F. Garet, J.-L. Coutaz, and G. A. Racine, “Resonant grating effects at terahertz frequencies,” Proc. SPIE5466, 80–89 (2004).
[CrossRef]

Prog. Quantum Electron.

T. F. Krauss and R. M. De La Rue, “Photonic crystals in the optical regime - past, present, future,” Prog. Quantum Electron.23(2), 51–96 (1999).
[CrossRef]

Semicond. Sci. Technol.

C. Chang-Hasnain, “High-contrast gratings as a new platform for integrated optoelectronics,” Semicond. Sci. Technol.26(1), 014043 (2011).
[CrossRef]

Sov. J. Quantum Electron.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron.15(7), 886–887 (1985).
[CrossRef]

Other

MCGrating by Nikolay Lyndin, http://www.mcgrating.com

T. Kämpfe, A. Tishchenko, and O. Parriaux, “Modal representation and normalized scaling rules for ultra narrow-band reflection from a 1D binary corrugation,” 8th EOS Topical Meeting on Diffractive Optics, paper 4861, (2012).

D. Gallagher, Photon Design, private communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Cross-section of the silicon/air grid showing the dimensions of the experimental element and the transverse electric field of the TE0 guided mode.

Fig. 2
Fig. 2

Symbolic representation of the integrated ± 1st order free space wave coupling and ± 2nd order intraguide coupling for lateral field confinement.

Fig. 3
Fig. 3

TE reflection spectra from the grating of Fig. 1. (a) Ultra-narrow-band reflection; (b) Effect of silicon ridge narrowing; (c) Effect of thicker silicon membrane; (d) Effect of silicon refractive index increase.

Fig. 4
Fig. 4

Fabrication process stages of a 1D silicon grating.

Fig. 5
Fig. 5

Top view of the silicon gratings: (a) overall wafer with three grating patches; (b) optical microscope top-view.

Fig. 6
Fig. 6

THz-TDS measurement set up. PM stands for parabolic metal mirrors, the dashed element is the grating sample. (a) transmission measurement; (b) reflection measurement.

Fig. 7
Fig. 7

Measured relative transmission and reflection spectra (solid lines) of the fabricated silicon grating, illuminated by a 2x8° focused THz beam. The dashed line is the calculated complement to 1 of the measured transmission spectrum.

Fig. 8
Fig. 8

Transmission spectrum of the silicon grating under collimated normal incidence. Blue solid line: modeling of the fabricated structure; red dots: measured points.

Fig. 9
Fig. 9

Reflection coefficient mapping at 445 µm wavelength with 0.45 duty cycle. The underlined TE0 and TE2 Fabry-Perot resonance conditions of order 4 and 2 respectively cross at 360 µm period and 210 µm height.

Fig. 10
Fig. 10

Reflection coefficient mapping versus grating height and wavelength with 385 µm period and 0.45 duty cycle, and identification of the two resonances observed experimentally.

Metrics