Abstract

We transmit a mix of 260-Gb/s polarization-division-multiplexed 16-ary quadrature-amplitude modulation (PDM-16QAM) and 130-Gb/s polarization-division-multiplexed quadrature-phase-shift-keying (PDM-QPSK) channels at a 50-GHz channel spacing in a dispersion-managed (DM) system with standard single-mode-fiber (SSMF) spans. We study the impact of pulse shaping, time interleaving of polarizations and maximum likelihood (ML) detection techniques on the performance of the system. We show that the pulse shaping and ML detection can increase the transmission distances of the PDM-16QAM channels and PDM-QPSK channels by 50% and 10%, respectively. With 20% overhead hard-decision forward-error-correction (FEC) coding, we successfully transmit the 260-Gb/s PDM-16QAM and 130-Gb/s PDM-QPSK channels over 960-km and 4,160-km, respectively, in the DM system.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, and D. W. Peckham, “10 x 224-Gb/s WDM transmission of 28-Gbaud PDM 16-QAM on a 50-GHz grid over 1,200 km of fiber,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper PDPB8.
  2. K. Schuh, F. Buchali, D. Roesener, E. Lach, O. Bertran-Pardo, J. Renaudier, G. Charlet, H. Mardoyan, and P. Tran, “15.4 Tb/s transmission over 2400 km using polarization multiplexed 32-Gbaud 16-QAM modulation and coherent detection comprising digital signal processing,” in Proc. European Conference on Optical Communication, (Geneva, Switzerland, 2011), paper We.8.B.4.
  3. S. Makovejs, E. Torrengo, D. S. Millar, R. I. Killey, S. J. Savory, and P. Bayvel, “Comparison of pulse shapes in a 224Gbit/s (28Gbaud) PDM-QAM16 long-haul transmission experiment,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2011), paper OMR5.
  4. B. Châtelain, C. Laperle, K. Roberts, X. Xu, M. Chagnon, A. Borowiec, F. Gagnon, J. C. Cartledge, and D. V. Plant, “Optimized pulse shaping for intra-channel nonlinearities mitigation in a 10 Gbaud dual-polarization 16-QAM system,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2011), paper OWO5.
  5. C. Xie, “Fiber nonlinearities in 16QAM transmission systems,” in Proc. European Conference on Optical Communication, (Geneva, Switzerland, 2011), paper We.7.B.6.
  6. C. Xie and G. Raybon, “Transmission of mixed 260-Gb/s PDM-16QAM and 130-Gb/s PDM-QPSK over 960-km and 4160-km dispersion-managed SSMF spans,” in Proc. European Conference on Optical Communication, (Amsterdam, the Netherlands, 2012), paper Mo.2.C.4.
  7. C. Xie, G. Raybon, and P. J. Winzer, “Hybrid 224-Gb/s and 112-Gb/s PDM-QPSK transmission at 50-GHz channel spacing over 1200-km dispersion-managed LEAF® spans and 3 ROADMs,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2011), paper PDP D2.
  8. G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
    [CrossRef]
  9. J. Wang and C. Xie, “Generation of spectrally efficient Nyquist WDM QPSK signals using DSP techniques at transmitter,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2012), paper OM3H.5.
  10. J. G. Proakis, Digital Communications (McGraw-Hill, 2001), Chap. 5.
  11. Y. Cai, D. G. Foursa, C. R. Davidson, J.-X. Cai, O. Sinkin, M. Nissov, and A. Pilipetskii, “Experimental demonstration of coherent MAP detection for nonlinearity mitigation in long-haul transmissions,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper OTuE1.
  12. D. A. Fishman, W. A. Thompson, and L. Vallone, “LambdaXtreme® transport system: R&D of a high capacity system for low cost, ultra long haul DWDM transport,” Bell Labs Tech. J.11(2), 27–53 (2006).
    [CrossRef]
  13. C. Xie, “WDM coherent PDM-QPSK systems with and without inline optical dispersion compensation,” Opt. Express17(6), 4815–4823 (2009).
    [CrossRef] [PubMed]
  14. N. K. Jablon, “Joint blind equalization, carrier recovery, and timing recovery for high-order QAM signal constellations,” IEEE Trans. Signal Process.40(6), 1383–1398 (1992).
    [CrossRef]
  15. C. Xie and G. Raybon, “Digital PLL based frequency offset compensation and carrier phase estimation for 16-QAM coherent optical communication systems,” in Proc. European Conference on Optical Communication, (Amsterdam, the Netherlands, 2012), paper Mo.1.A.2.
  16. F. Yu, C. Xie, and L. Zeng, “Application aspects of enhanced FEC for 40/100G systems,” in European Conference on Optical Communication, (Turino, Italy, 2010), workshop 11, 2011.

2010

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
[CrossRef]

2009

2006

D. A. Fishman, W. A. Thompson, and L. Vallone, “LambdaXtreme® transport system: R&D of a high capacity system for low cost, ultra long haul DWDM transport,” Bell Labs Tech. J.11(2), 27–53 (2006).
[CrossRef]

1992

N. K. Jablon, “Joint blind equalization, carrier recovery, and timing recovery for high-order QAM signal constellations,” IEEE Trans. Signal Process.40(6), 1383–1398 (1992).
[CrossRef]

Bosco, G.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
[CrossRef]

Carena, A.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
[CrossRef]

Curri, V.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
[CrossRef]

Fishman, D. A.

D. A. Fishman, W. A. Thompson, and L. Vallone, “LambdaXtreme® transport system: R&D of a high capacity system for low cost, ultra long haul DWDM transport,” Bell Labs Tech. J.11(2), 27–53 (2006).
[CrossRef]

Forghieri, F.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
[CrossRef]

Jablon, N. K.

N. K. Jablon, “Joint blind equalization, carrier recovery, and timing recovery for high-order QAM signal constellations,” IEEE Trans. Signal Process.40(6), 1383–1398 (1992).
[CrossRef]

Poggiolini, P.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
[CrossRef]

Thompson, W. A.

D. A. Fishman, W. A. Thompson, and L. Vallone, “LambdaXtreme® transport system: R&D of a high capacity system for low cost, ultra long haul DWDM transport,” Bell Labs Tech. J.11(2), 27–53 (2006).
[CrossRef]

Vallone, L.

D. A. Fishman, W. A. Thompson, and L. Vallone, “LambdaXtreme® transport system: R&D of a high capacity system for low cost, ultra long haul DWDM transport,” Bell Labs Tech. J.11(2), 27–53 (2006).
[CrossRef]

Xie, C.

Bell Labs Tech. J.

D. A. Fishman, W. A. Thompson, and L. Vallone, “LambdaXtreme® transport system: R&D of a high capacity system for low cost, ultra long haul DWDM transport,” Bell Labs Tech. J.11(2), 27–53 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
[CrossRef]

IEEE Trans. Signal Process.

N. K. Jablon, “Joint blind equalization, carrier recovery, and timing recovery for high-order QAM signal constellations,” IEEE Trans. Signal Process.40(6), 1383–1398 (1992).
[CrossRef]

Opt. Express

Other

C. Xie and G. Raybon, “Digital PLL based frequency offset compensation and carrier phase estimation for 16-QAM coherent optical communication systems,” in Proc. European Conference on Optical Communication, (Amsterdam, the Netherlands, 2012), paper Mo.1.A.2.

F. Yu, C. Xie, and L. Zeng, “Application aspects of enhanced FEC for 40/100G systems,” in European Conference on Optical Communication, (Turino, Italy, 2010), workshop 11, 2011.

J. Wang and C. Xie, “Generation of spectrally efficient Nyquist WDM QPSK signals using DSP techniques at transmitter,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2012), paper OM3H.5.

J. G. Proakis, Digital Communications (McGraw-Hill, 2001), Chap. 5.

Y. Cai, D. G. Foursa, C. R. Davidson, J.-X. Cai, O. Sinkin, M. Nissov, and A. Pilipetskii, “Experimental demonstration of coherent MAP detection for nonlinearity mitigation in long-haul transmissions,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper OTuE1.

A. H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, and D. W. Peckham, “10 x 224-Gb/s WDM transmission of 28-Gbaud PDM 16-QAM on a 50-GHz grid over 1,200 km of fiber,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper PDPB8.

K. Schuh, F. Buchali, D. Roesener, E. Lach, O. Bertran-Pardo, J. Renaudier, G. Charlet, H. Mardoyan, and P. Tran, “15.4 Tb/s transmission over 2400 km using polarization multiplexed 32-Gbaud 16-QAM modulation and coherent detection comprising digital signal processing,” in Proc. European Conference on Optical Communication, (Geneva, Switzerland, 2011), paper We.8.B.4.

S. Makovejs, E. Torrengo, D. S. Millar, R. I. Killey, S. J. Savory, and P. Bayvel, “Comparison of pulse shapes in a 224Gbit/s (28Gbaud) PDM-QAM16 long-haul transmission experiment,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2011), paper OMR5.

B. Châtelain, C. Laperle, K. Roberts, X. Xu, M. Chagnon, A. Borowiec, F. Gagnon, J. C. Cartledge, and D. V. Plant, “Optimized pulse shaping for intra-channel nonlinearities mitigation in a 10 Gbaud dual-polarization 16-QAM system,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2011), paper OWO5.

C. Xie, “Fiber nonlinearities in 16QAM transmission systems,” in Proc. European Conference on Optical Communication, (Geneva, Switzerland, 2011), paper We.7.B.6.

C. Xie and G. Raybon, “Transmission of mixed 260-Gb/s PDM-16QAM and 130-Gb/s PDM-QPSK over 960-km and 4160-km dispersion-managed SSMF spans,” in Proc. European Conference on Optical Communication, (Amsterdam, the Netherlands, 2012), paper Mo.2.C.4.

C. Xie, G. Raybon, and P. J. Winzer, “Hybrid 224-Gb/s and 112-Gb/s PDM-QPSK transmission at 50-GHz channel spacing over 1200-km dispersion-managed LEAF® spans and 3 ROADMs,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2011), paper PDP D2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Simulated spectra and eye-diagrams of 32.5-Gaud QPSK with and without pulse shaping. (a) Signal spectra, (b) eye-diagram without pulse shaping, (c) eye-diagram with pulse shaping. PS: pulse shaping, Ts: symbol period. Spectrum after PS is a raised cosine shape with 0.05 roll-off factor.

Fig. 2
Fig. 2

Experimental setup. WS: waveshaper, PC: polarization controller, ITL: interleaver, PolMux: polarization multiplexer, DGEF: dynamic gain equalizing filter, TOA: tunable optical attenuator. The insets are the measured electrical 4-level inphase eye-diagram of 16QAM, optical eye-diagrams of 16QAM and QPSK before the waveshaper, and the recovered constellation of one polarization of PDM-16QAM in back-to-back operation.

Fig. 3
Fig. 3

Spectra of PDM-16QAM (a) and PDM-QPSK (b) before and after the waveshaper.

Fig. 4
Fig. 4

Optical eye-diagrams of 16QAM (a) and QPSK after the waveshaper.

Fig. 5
Fig. 5

Back-to-back performance of 260-Gb/s PDM-16QAM (a) and 130-Gb/s PDM-QPSK (b). The solid lines and dashed lines with symbols are with the conventional square boundary detection and ML detection, respectively.

Fig. 6
Fig. 6

Q2-factor versus launch power per channel for 260-Gb/s PDM-16QAM after 960-km transmission. (a) without waveshaper, (b) with waveshaper. Solid and open symbols are with the conventional square boundary detection and ML detection, respectively.

Fig. 7
Fig. 7

Q2-factor versus distance for a central 260-Gb/s PDM-16QAM channel (a) and for a central 130-Gb/s PDM-QPSK channel (b). The dashed line in (b) is the result when all channels carry 130-Gb/s PDM-QPSK.

Fig. 8
Fig. 8

Q2-factor of all 16 channels at −7-dBm per channel launch power.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

s ^ i = argmax s i P( s i | r i )
s ^ i = argmax s i P( r i | s i )
s ^ i = argmin s i ( r i s i ) 2

Metrics