Abstract

Fast reconstruction of the whole Brillouin gain spectrum is experimentally demonstrated using sweep-free Brillouin optical time-domain analysis (SF-BOTDA). Strain variations with the frequencies up to 400Hz are spectrally analyzed, achieving strain sensitivity of 1 microstrain per root Hz at a sampling rate of 5.5kHz and a spatial resolution of 4m. The results favorably compare with fiber Bragg grating sensing.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel)11(4), 4152–4187 (2011).
    [CrossRef] [PubMed]
  2. S. Diaz, S. Mafang, M. Lopez-Amo, and L. Thevenaz, “A high performance optical time-domain Brillouin distributed fiber sensor,” IEEE Sens. J.8(7), 1268–1272 (2008).
    [CrossRef]
  3. S. M. Foaleng, M. Tur, J. C. Beugnot, and L. Thevenaz, “High spatial and spectral resolution long-range sensing using Brillouin echoes,” J. Lightwave Technol.28(20), 2993–3003 (2010).
    [CrossRef]
  4. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express16(26), 21616–21625 (2008).
    [CrossRef] [PubMed]
  5. T. Sperber, A. Eyal, M. Tur, and L. Thévenaz, “High spatial resolution distributed sensing in optical fibers by Brillouin gain-profile tracing,” Opt. Express18(8), 8671–8679 (2010).
    [CrossRef] [PubMed]
  6. A. W. Brown, B. G. Colpitts, and K. Brown, “Dark-pulse Brillouin optical time-domain sensor with 20-mm spatial resolution,” J. Lightwave Technol.25(1), 381–386 (2007).
    [CrossRef]
  7. Y. Antman, N. Primerov, J. Sancho, L. Thevenaz, and A. Zadok, “Localized and stationary dynamic gratings via stimulated Brillouin scattering with phase modulated pumps,” Opt. Express20(7), 7807–7821 (2012).
    [CrossRef] [PubMed]
  8. R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Opt. Lett.34(17), 2613–2615 (2009).
    [CrossRef] [PubMed]
  9. K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett.36(11), 2062–2064 (2011).
    [CrossRef] [PubMed]
  10. J. Urricelqui, A. Zornoza, M. Sagues, and A. Loayssa, “Dynamic BOTDA measurements based on Brillouin phase-shift and RF demodulation,” Opt. Express20(24), 26942–26949 (2012).
    [CrossRef] [PubMed]
  11. Y. Peled, A. Motil, L. Yaron, and M. Tur, “Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile,” Opt. Express19(21), 19845–19854 (2011).
    [CrossRef] [PubMed]
  12. Y. Peled, A. Motil, and M. Tur, “Fast Brillouin optical time-domain analysis for dynamic sensing,” Opt. Express20(8), 8584–8591 (2012).
    [CrossRef] [PubMed]
  13. A. Voskoboinik, J. Wang, B. Shamee, S. Nuccio, L. Zhang, M. Chitgarha, A. Willner, and M. Tur, “SBS-based fiber optical sensing using frequency-domain simultaneous tone interrogation,” J. Lightwave Technol.29(11), 1729–1735 (2011).
    [CrossRef]
  14. A. Voskoboinik, O. F. Yilmaz, A. W. Willner, and M. Tur, “Sweep-free distributed Brillouin time-domain analyzer (SF-BOTDA),” Opt. Express19(26), B842–B847 (2011).
    [CrossRef] [PubMed]
  15. A. Voskoboinik, A. Bozovich, A. E. Willner, and M. Tur, “Sweep-free Brillouin optical time-domain analyzer with extended dynamic range,” CLEO-2012, San Jose, USA, May 2012.
  16. A. Voskoboinik, H. Huang, Y. Peled, A. E. Willner, and M. Tur, “Frequency-domain analysis of dynamically applied strain using sweep-free Brillouin time-domain analyzer,” ECOC-2012, Amsterdam, Netherlands, September 2012.
  17. J. Proakis and D. Manolakis, Digital Signal Processing, (Pearson Prentice Hall, 2007).

2012

2011

2010

2009

2008

W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express16(26), 21616–21625 (2008).
[CrossRef] [PubMed]

S. Diaz, S. Mafang, M. Lopez-Amo, and L. Thevenaz, “A high performance optical time-domain Brillouin distributed fiber sensor,” IEEE Sens. J.8(7), 1268–1272 (2008).
[CrossRef]

2007

Antman, Y.

Bao, X.

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel)11(4), 4152–4187 (2011).
[CrossRef] [PubMed]

W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express16(26), 21616–21625 (2008).
[CrossRef] [PubMed]

Bernini, R.

Beugnot, J. C.

Brown, A. W.

Brown, K.

Chen, L.

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel)11(4), 4152–4187 (2011).
[CrossRef] [PubMed]

W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express16(26), 21616–21625 (2008).
[CrossRef] [PubMed]

Chitgarha, M.

Colpitts, B. G.

Diaz, S.

S. Diaz, S. Mafang, M. Lopez-Amo, and L. Thevenaz, “A high performance optical time-domain Brillouin distributed fiber sensor,” IEEE Sens. J.8(7), 1268–1272 (2008).
[CrossRef]

Eyal, A.

Foaleng, S. M.

He, Z.

Hotate, K.

Kishi, M.

Li, W.

Li, Y.

Loayssa, A.

Lopez-Amo, M.

S. Diaz, S. Mafang, M. Lopez-Amo, and L. Thevenaz, “A high performance optical time-domain Brillouin distributed fiber sensor,” IEEE Sens. J.8(7), 1268–1272 (2008).
[CrossRef]

Mafang, S.

S. Diaz, S. Mafang, M. Lopez-Amo, and L. Thevenaz, “A high performance optical time-domain Brillouin distributed fiber sensor,” IEEE Sens. J.8(7), 1268–1272 (2008).
[CrossRef]

Minardo, A.

Motil, A.

Nuccio, S.

Peled, Y.

Primerov, N.

Sagues, M.

Sancho, J.

Shamee, B.

Song, K. Y.

Sperber, T.

Thevenaz, L.

Thévenaz, L.

Tur, M.

Urricelqui, J.

Voskoboinik, A.

Wang, J.

Willner, A.

Willner, A. W.

Yaron, L.

Yilmaz, O. F.

Zadok, A.

Zeni, L.

Zhang, L.

Zornoza, A.

IEEE Sens. J.

S. Diaz, S. Mafang, M. Lopez-Amo, and L. Thevenaz, “A high performance optical time-domain Brillouin distributed fiber sensor,” IEEE Sens. J.8(7), 1268–1272 (2008).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Sensors (Basel)

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel)11(4), 4152–4187 (2011).
[CrossRef] [PubMed]

Other

A. Voskoboinik, A. Bozovich, A. E. Willner, and M. Tur, “Sweep-free Brillouin optical time-domain analyzer with extended dynamic range,” CLEO-2012, San Jose, USA, May 2012.

A. Voskoboinik, H. Huang, Y. Peled, A. E. Willner, and M. Tur, “Frequency-domain analysis of dynamically applied strain using sweep-free Brillouin time-domain analyzer,” ECOC-2012, Amsterdam, Netherlands, September 2012.

J. Proakis and D. Manolakis, Digital Signal Processing, (Pearson Prentice Hall, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

BGS reconstruction using SF-BOTDA in a single multiple pump multiple probe measurement.

Fig. 2
Fig. 2

Experimental setups: (a) MZM: Mach-Zehnder EO modulator; EDFA: Erbium-doped fiber amplifier; PC: Polarization controller; SC: Polarization scrambler; ISO: Optical isolator; DET1: detector; FBG1: Fiber Bragg grating filter; RF AMP: radio-frequency amplifier; MW AMP: Microwave frequency amplifier; AWG: Arbitrary waveform generator; SCOPE: Real-time acquisition system; OSA: Optical spectrum analyser; FUT: fiber-under-test; SP: Speaker, ST2: Translation stage. (b) BBS: Broadband source; TOF: Tunable optical filter; C1: capacitor.

Fig. 3
Fig. 3

Transmission characteristics of TOF2 showing a 3dB bandwidth of ~160GHz.

Fig. 4
Fig. 4

The detector voltage when the speaker membrane is driven by a 100Hz signal before (a) and after (b) RC filtering.

Fig. 5
Fig. 5

The time-domain results of single tone input as measured at 80 and 120Hz (a,d) before speaker (b,e) using FBG, (c,f) using SF-BOTDA after 200Hz low-pass digital filtering. The time-domain results of FM modulated 120Hz signal with 40Hz span as measured (g) before speaker, (h) using FBG, (h) using SF-BOTDA and digitally processed.

Fig. 6
Fig. 6

The frequency-domain results for 80Hz, 120Hz and multitone excitations (a,d,g) before speaker (b,e,f) using FBG, (c,f,i) using SF-BOTDA after 200Hz low-pass digital filtering. (j) The results of measuring 400Hz single tone using SF-BOTDA and output of speaker with calibrated microphone.

Metrics