Abstract

A novel method using optical fiber parametric amplification and phase modulation is proposed in order to generate Nyquist pulses. Using parabolic pulses as a pump, we show theoretically that it is possible to generate Nyquist pulses. Furthermore, we show that by using a sinusoidal pump (pump intensity modulated by an RF tone), it is possible to obtain pulses with characteristics that are close to Nyquist limited pulses. We demonstrate experimentally the generation of bandwidth limited pulses with full width half maximum of 14 ps at 10 GHz repetition rate. We also discuss limitations of this method and means to overcome these limitations.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Essiambre, G. Kramer, P. Winzer, G. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol.28(4), 662–701 (2010).
    [CrossRef]
  2. G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
    [CrossRef]
  3. R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM,” Opt. Express20(1), 317–337 (2012).
    [CrossRef] [PubMed]
  4. A. Wiberg, L. Liu, Z. Tong, E. Myslivets, V. Ataie, N. Alic, and S. Radic, “Cavity-less pulse source based optical sampled ADC,” in European Conference and Exhibition on Optical Communication ECOC 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper Mo.2.A.3.
  5. M. Nakazawa, T. Hirooka, P. Ruan, and P. Guan, “Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train,” Opt. Express20(2), 1129–1140 (2012).
    [CrossRef] [PubMed]
  6. A. Vedadi, A. Ariaei, M. Jadidi, and J. Salehi, “Theoretical study of high repetition rate short pulse generation with fiber optical parametric amplification,” J. Lightwave Technol.30(9), 1263–1268 (2012).
    [CrossRef]
  7. A. A. Vedadi, M. A. Shoaie, and C.-S. Brès, “Experimental investigation of pulse generation with one-pump fiber optical parametric amplification,” Opt. Express20(24), 27344–27354 (2012).
    [CrossRef] [PubMed]
  8. A. Vedadi, M. Shoaie, and C. Bres, “Near Nyquist sinc optical pulse generation with fiber optical parametric amplification,” in European Conference and Exhibition on Optical Communication ECOC 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper P1.02.
  9. C. Finot, L. Provost, P. Petropoulos, and D. J. Richardson, “Parabolic pulse generation through passive nonlinear pulse reshaping in a normally dispersive two segment fiber device,” Opt. Express15(3), 852–864 (2007).
    [CrossRef] [PubMed]

2012

2010

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
[CrossRef]

R. Essiambre, G. Kramer, P. Winzer, G. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol.28(4), 662–701 (2010).
[CrossRef]

2007

Ariaei, A.

Baeuerle, B.

Becker, J.

Ben-Ezra, S.

Bosco, G.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
[CrossRef]

Brès, C.-S.

Carena, A.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
[CrossRef]

Curri, V.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
[CrossRef]

Dreschmann, M.

Essiambre, R.

Finot, C.

Forghieri, F.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
[CrossRef]

Foschini, G.

Freude, W.

Goebel, B.

Guan, P.

Hillerkuss, D.

Hirooka, T.

Huebner, M.

Jadidi, M.

Koos, C.

Kramer, G.

Leuthold, J.

Ludwig, A.

Meyer, J.

Meyer, M.

Nakazawa, M.

Nebendahl, B.

Petropoulos, P.

Poggiolini, P.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
[CrossRef]

Provost, L.

Richardson, D. J.

Ruan, P.

Salehi, J.

Schmogrow, R.

Shoaie, M. A.

Vedadi, A.

Vedadi, A. A.

Winter, M.

Winzer, P.

Wolf, S.

IEEE Photon. Technol. Lett.

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett.22(15), 1129–1131 (2010).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

A. Wiberg, L. Liu, Z. Tong, E. Myslivets, V. Ataie, N. Alic, and S. Radic, “Cavity-less pulse source based optical sampled ADC,” in European Conference and Exhibition on Optical Communication ECOC 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper Mo.2.A.3.

A. Vedadi, M. Shoaie, and C. Bres, “Near Nyquist sinc optical pulse generation with fiber optical parametric amplification,” in European Conference and Exhibition on Optical Communication ECOC 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper P1.02.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Principle of near-Nyquist pulse generation with fiber optical parametric amplification and a subsequent phase modulator for dechirping. WDMux: Wavelength Division Multiplexer.

Fig. 2
Fig. 2

(a) Sinusoidal pump (solid line) and parabolic pump (dashed line). (b) Idler generated by a sinusoidal pump (solid line), by a parabolic pump (dashed line) and sinc shaped pulse (dotted line). (c) Maximum idler amplitude at the Nyquist pulse zeroes. T B corresponds to one bit duration ( T B =1/ f R ).

Fig. 3
Fig. 3

Spectrum of (a) idler generated by a sinusoidal pump (b) idler generated by a parabolic pump and (c) sinc pulse for γ P 0 L = 4.

Fig. 4
Fig. 4

Experimental Setup. PC: Polarization Controller. EDFA: Erbium Doped Fiber Amplifier. BPF: Bandpass Filter, PM: Phase Modulator, IM: Intensity Modulator, OSA: Optical Spectrum Analyzer.

Fig. 5
Fig. 5

Spectrum of the idler (a) before phase modulation, (b) after phase modulation, (c) before phase modulation (dB scale), (d) after phase modulation (dB scale). Traces of an idler pulse (e) before phase modulation and (f) after phase modulation. γ P 0 L = 4.

Fig. 6
Fig. 6

Spectrum of the idler (a) before phase modulation, (c) after phase modulation. Traces of the idler pulse: (b) before phase modulation and (d) after phase modulation. In all figures: γ P 0 L = 3.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ β L β 2 Δ ω S 2 + β 4 12 Δ ω S 4 =4γ P 0
A i (τ)j( P s γ P 0 L )sinc(2πγ P 0 L f R τ)× e j( γ P 0 cos 2 ( π f R t )+ β 3 6 Δ ω S )L
P P ( 0,t )={ P 0 { 1 [ π f R ( tN ) ] 2 }t[ 1/( π f R ),1/( π f R ) ]+N/( π f R ) 0t[ 1/( π f R ),1/( π f R ) ]+N/( π f R ) ( N )
A i (τ)={ j P s γ P 0 L( 1 ( π f R t ) 2 )sinc(2πγ P 0 L f R τ)× e j( γ P 0 ( 1 ( π f R t ) 2 )+ β 3 6 Δ ω S )L t[ 1/( π f R ),1/( π f R ) ] 0t[ 1/( π f R ),1/( π f R ) ]

Metrics