Abstract

We demonstrate a 25 GHz-channel-spaced DWDM-PON based on ASE injection seeding. A 60 km transmission at 1.25 Gb/s per channel is available with a 2nd generation FEC. The major limiting factor is the optical back reflection induced penalty. Thus a high gain reflective modulator and/or relocation of the seed light increase the transmission length. We demonstrated 90 km transmission with relocated seed light to remote node.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Kipouridis, C. M. Machuca, A. Autenrieth, and K. Grobe, “Cost assessment of next-generation passive optical networks on real-street scenario,” in Proceedings of the Optical Fiber Communication Conference (Los Angeles, CA, 2012), Paper NTu2F.4.
  2. W. R. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.17(11), 2460–2462 (2005).
    [CrossRef]
  3. F. Payox, P. Chanclou, and N. Genay, “WDM-PON with colorless ONUs,” in Proceedings of the Optical Fiber Communication Conference (Anaheim, CA, 2007), Paper OTuG5.
  4. H. D. Kim, S. G. Kang, and C. H. Lee, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett.12(8), 1067–1069 (2000).
    [CrossRef]
  5. ITU-T Recommendation G.698.3, Multichannel seeded DWDM applications with single-channel optical interfaces.
  6. J.-Y. Kim, H.-K. Lee, S.-R. Moon, and C.-H. Lee, “25-GHz-channel-spaced DWDM-PON based on ASE injection with reduced filtering effect,” in Proceedings of the Conference on Lasers and Electro-Optics (Baltimore, MD, 2011), Paper JWA1.
  7. D. M. Baney and W. V. Sorin, “Broadband frequency characterization of optical receivers using intensity noise,” Hewlett-Packard journal46(1), 6–12 (1995).
  8. H.-K. Lee, J.-H. Moon, S.-G. Mun, K.-M. Choi, and C.-H. Lee, “Decision Threshold Control Method for the Optical Receiver of a WDM-PON,” J. Opt. Comm. Netw.2(6), 381–388 (2010).
    [CrossRef]
  9. H.-K. Lee, H.-S. Cho, J.-Y. Kim, and C.-H. Lee, “A WDM-PON with an 80 Gb/s capacity based on wavelength-locked Fabry-Perot laser diode,” Opt. Express18(17), 18077–18085 (2010).
    [CrossRef] [PubMed]
  10. ITU-T Recommendation G.975.1., Forward error correction for high bit rate DWDM submarine systems.
  11. J.-Y. Kim, H.-S. Cho, S.-G. Mun, H.-K. Lee, and C.-H. Lee, “High-Capacity DWDM-PON using Triple-Contact F-P LDs,” IEEE Photon. Technol. Lett.23(2), 127–129 (2011).
    [CrossRef]
  12. J.-Y. Kim, H.-K. Lee, S.-H. Yoo, S.-R. Moon, H.-Y. Rhy, B. S. Kim, H.-K. Lee, and C.-H. Lee, “Impairments and design of WDM-PON based on injection seeding,” in Proceedings of FTTH conference and Expo (Orlando, FL, 2011), Page 2 of 12.
  13. S.-M. Lee, M.-H. Kim, and C.-H. Lee, “Demonstration of a bidirectional 80-km-reach DWDM-PON with 8-Gb/s capacity,” IEEE Photon. Technol. Lett.19(6), 405–407 (2007).
    [CrossRef]

2011 (1)

J.-Y. Kim, H.-S. Cho, S.-G. Mun, H.-K. Lee, and C.-H. Lee, “High-Capacity DWDM-PON using Triple-Contact F-P LDs,” IEEE Photon. Technol. Lett.23(2), 127–129 (2011).
[CrossRef]

2010 (2)

H.-K. Lee, J.-H. Moon, S.-G. Mun, K.-M. Choi, and C.-H. Lee, “Decision Threshold Control Method for the Optical Receiver of a WDM-PON,” J. Opt. Comm. Netw.2(6), 381–388 (2010).
[CrossRef]

H.-K. Lee, H.-S. Cho, J.-Y. Kim, and C.-H. Lee, “A WDM-PON with an 80 Gb/s capacity based on wavelength-locked Fabry-Perot laser diode,” Opt. Express18(17), 18077–18085 (2010).
[CrossRef] [PubMed]

2007 (1)

S.-M. Lee, M.-H. Kim, and C.-H. Lee, “Demonstration of a bidirectional 80-km-reach DWDM-PON with 8-Gb/s capacity,” IEEE Photon. Technol. Lett.19(6), 405–407 (2007).
[CrossRef]

2005 (1)

W. R. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.17(11), 2460–2462 (2005).
[CrossRef]

2000 (1)

H. D. Kim, S. G. Kang, and C. H. Lee, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett.12(8), 1067–1069 (2000).
[CrossRef]

1995 (1)

D. M. Baney and W. V. Sorin, “Broadband frequency characterization of optical receivers using intensity noise,” Hewlett-Packard journal46(1), 6–12 (1995).

Baney, D. M.

D. M. Baney and W. V. Sorin, “Broadband frequency characterization of optical receivers using intensity noise,” Hewlett-Packard journal46(1), 6–12 (1995).

Cho, H.-S.

J.-Y. Kim, H.-S. Cho, S.-G. Mun, H.-K. Lee, and C.-H. Lee, “High-Capacity DWDM-PON using Triple-Contact F-P LDs,” IEEE Photon. Technol. Lett.23(2), 127–129 (2011).
[CrossRef]

H.-K. Lee, H.-S. Cho, J.-Y. Kim, and C.-H. Lee, “A WDM-PON with an 80 Gb/s capacity based on wavelength-locked Fabry-Perot laser diode,” Opt. Express18(17), 18077–18085 (2010).
[CrossRef] [PubMed]

Cho, S. H.

W. R. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.17(11), 2460–2462 (2005).
[CrossRef]

Choi, K.-M.

H.-K. Lee, J.-H. Moon, S.-G. Mun, K.-M. Choi, and C.-H. Lee, “Decision Threshold Control Method for the Optical Receiver of a WDM-PON,” J. Opt. Comm. Netw.2(6), 381–388 (2010).
[CrossRef]

Jeong, G.

W. R. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.17(11), 2460–2462 (2005).
[CrossRef]

Kang, S. G.

H. D. Kim, S. G. Kang, and C. H. Lee, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett.12(8), 1067–1069 (2000).
[CrossRef]

Kim, B. W.

W. R. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.17(11), 2460–2462 (2005).
[CrossRef]

Kim, C.

W. R. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.17(11), 2460–2462 (2005).
[CrossRef]

Kim, H. D.

H. D. Kim, S. G. Kang, and C. H. Lee, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett.12(8), 1067–1069 (2000).
[CrossRef]

Kim, J.-Y.

J.-Y. Kim, H.-S. Cho, S.-G. Mun, H.-K. Lee, and C.-H. Lee, “High-Capacity DWDM-PON using Triple-Contact F-P LDs,” IEEE Photon. Technol. Lett.23(2), 127–129 (2011).
[CrossRef]

H.-K. Lee, H.-S. Cho, J.-Y. Kim, and C.-H. Lee, “A WDM-PON with an 80 Gb/s capacity based on wavelength-locked Fabry-Perot laser diode,” Opt. Express18(17), 18077–18085 (2010).
[CrossRef] [PubMed]

Kim, M.-H.

S.-M. Lee, M.-H. Kim, and C.-H. Lee, “Demonstration of a bidirectional 80-km-reach DWDM-PON with 8-Gb/s capacity,” IEEE Photon. Technol. Lett.19(6), 405–407 (2007).
[CrossRef]

Lee, C. H.

H. D. Kim, S. G. Kang, and C. H. Lee, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett.12(8), 1067–1069 (2000).
[CrossRef]

Lee, C.-H.

J.-Y. Kim, H.-S. Cho, S.-G. Mun, H.-K. Lee, and C.-H. Lee, “High-Capacity DWDM-PON using Triple-Contact F-P LDs,” IEEE Photon. Technol. Lett.23(2), 127–129 (2011).
[CrossRef]

H.-K. Lee, H.-S. Cho, J.-Y. Kim, and C.-H. Lee, “A WDM-PON with an 80 Gb/s capacity based on wavelength-locked Fabry-Perot laser diode,” Opt. Express18(17), 18077–18085 (2010).
[CrossRef] [PubMed]

H.-K. Lee, J.-H. Moon, S.-G. Mun, K.-M. Choi, and C.-H. Lee, “Decision Threshold Control Method for the Optical Receiver of a WDM-PON,” J. Opt. Comm. Netw.2(6), 381–388 (2010).
[CrossRef]

S.-M. Lee, M.-H. Kim, and C.-H. Lee, “Demonstration of a bidirectional 80-km-reach DWDM-PON with 8-Gb/s capacity,” IEEE Photon. Technol. Lett.19(6), 405–407 (2007).
[CrossRef]

Lee, H.-K.

J.-Y. Kim, H.-S. Cho, S.-G. Mun, H.-K. Lee, and C.-H. Lee, “High-Capacity DWDM-PON using Triple-Contact F-P LDs,” IEEE Photon. Technol. Lett.23(2), 127–129 (2011).
[CrossRef]

H.-K. Lee, H.-S. Cho, J.-Y. Kim, and C.-H. Lee, “A WDM-PON with an 80 Gb/s capacity based on wavelength-locked Fabry-Perot laser diode,” Opt. Express18(17), 18077–18085 (2010).
[CrossRef] [PubMed]

H.-K. Lee, J.-H. Moon, S.-G. Mun, K.-M. Choi, and C.-H. Lee, “Decision Threshold Control Method for the Optical Receiver of a WDM-PON,” J. Opt. Comm. Netw.2(6), 381–388 (2010).
[CrossRef]

Lee, J.

W. R. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.17(11), 2460–2462 (2005).
[CrossRef]

Lee, S.-M.

S.-M. Lee, M.-H. Kim, and C.-H. Lee, “Demonstration of a bidirectional 80-km-reach DWDM-PON with 8-Gb/s capacity,” IEEE Photon. Technol. Lett.19(6), 405–407 (2007).
[CrossRef]

Lee, W. R.

W. R. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.17(11), 2460–2462 (2005).
[CrossRef]

Moon, J.-H.

H.-K. Lee, J.-H. Moon, S.-G. Mun, K.-M. Choi, and C.-H. Lee, “Decision Threshold Control Method for the Optical Receiver of a WDM-PON,” J. Opt. Comm. Netw.2(6), 381–388 (2010).
[CrossRef]

Mun, S.-G.

J.-Y. Kim, H.-S. Cho, S.-G. Mun, H.-K. Lee, and C.-H. Lee, “High-Capacity DWDM-PON using Triple-Contact F-P LDs,” IEEE Photon. Technol. Lett.23(2), 127–129 (2011).
[CrossRef]

H.-K. Lee, J.-H. Moon, S.-G. Mun, K.-M. Choi, and C.-H. Lee, “Decision Threshold Control Method for the Optical Receiver of a WDM-PON,” J. Opt. Comm. Netw.2(6), 381–388 (2010).
[CrossRef]

Park, M. Y.

W. R. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.17(11), 2460–2462 (2005).
[CrossRef]

Sorin, W. V.

D. M. Baney and W. V. Sorin, “Broadband frequency characterization of optical receivers using intensity noise,” Hewlett-Packard journal46(1), 6–12 (1995).

Hewlett-Packard journal (1)

D. M. Baney and W. V. Sorin, “Broadband frequency characterization of optical receivers using intensity noise,” Hewlett-Packard journal46(1), 6–12 (1995).

IEEE Photon. Technol. Lett. (4)

J.-Y. Kim, H.-S. Cho, S.-G. Mun, H.-K. Lee, and C.-H. Lee, “High-Capacity DWDM-PON using Triple-Contact F-P LDs,” IEEE Photon. Technol. Lett.23(2), 127–129 (2011).
[CrossRef]

W. R. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett.17(11), 2460–2462 (2005).
[CrossRef]

H. D. Kim, S. G. Kang, and C. H. Lee, “A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett.12(8), 1067–1069 (2000).
[CrossRef]

S.-M. Lee, M.-H. Kim, and C.-H. Lee, “Demonstration of a bidirectional 80-km-reach DWDM-PON with 8-Gb/s capacity,” IEEE Photon. Technol. Lett.19(6), 405–407 (2007).
[CrossRef]

J. Opt. Comm. Netw. (1)

H.-K. Lee, J.-H. Moon, S.-G. Mun, K.-M. Choi, and C.-H. Lee, “Decision Threshold Control Method for the Optical Receiver of a WDM-PON,” J. Opt. Comm. Netw.2(6), 381–388 (2010).
[CrossRef]

Opt. Express (1)

Other (6)

O. Kipouridis, C. M. Machuca, A. Autenrieth, and K. Grobe, “Cost assessment of next-generation passive optical networks on real-street scenario,” in Proceedings of the Optical Fiber Communication Conference (Los Angeles, CA, 2012), Paper NTu2F.4.

ITU-T Recommendation G.975.1., Forward error correction for high bit rate DWDM submarine systems.

J.-Y. Kim, H.-K. Lee, S.-H. Yoo, S.-R. Moon, H.-Y. Rhy, B. S. Kim, H.-K. Lee, and C.-H. Lee, “Impairments and design of WDM-PON based on injection seeding,” in Proceedings of FTTH conference and Expo (Orlando, FL, 2011), Page 2 of 12.

ITU-T Recommendation G.698.3, Multichannel seeded DWDM applications with single-channel optical interfaces.

J.-Y. Kim, H.-K. Lee, S.-R. Moon, and C.-H. Lee, “25-GHz-channel-spaced DWDM-PON based on ASE injection with reduced filtering effect,” in Proceedings of the Conference on Lasers and Electro-Optics (Baltimore, MD, 2011), Paper JWA1.

F. Payox, P. Chanclou, and N. Genay, “WDM-PON with colorless ONUs,” in Proceedings of the Optical Fiber Communication Conference (Anaheim, CA, 2007), Paper OTuG5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Simulation and experiment results of (a) RIN as a function of the optical bandwidth and (b) BER penalty by RIN with and without FEC.

Fig. 2
Fig. 2

Experimental configuration of 25 GHz-spaced seeded DWDM-PON.

Fig. 3
Fig. 3

Measured fiber-to-fiber gain of reflective modulators as a function of injection power.

Fig. 4
Fig. 4

Measured RIN of received signal and required seed power (Pseed) as a function of injection power (under B-t-B condition).

Fig. 5
Fig. 5

(a) Measured BER curves in B-t-B condition and (b) calculated extinction ratio penalty.

Fig. 6
Fig. 6

(a) Measured received power and (b) BER curves as a function of transmission length.

Fig. 7
Fig. 7

(a) Back-reflection induced crosstalk as a function of fiber length and (b) measured power penalties as a function of the crosstalk.

Fig. 8
Fig. 8

(a) Measured received power and (b) BER curves as a function of transmission length after relocating the BLS to RN.

Metrics