Abstract

We present a new type of wavelength demultiplexers based on a Bragg reflector waveguide, which provides a large angular dispersion of 1~2°/nm. Benefiting from its large steering bandwidth and sharp divergence angles, we record a number of resolution-points (possible channel-count in demultiplexing) over 200 and 1,000 for active-type and passive-type devices, respectively. It is the highest number in various multiplexing elements ever reported. The device size is as small as a few millimeters.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Comm.8(6), 948–964 (1990).
    [CrossRef]
  2. S. Tibuleac and M. Filer, “Transmission impairments in DWDM networks with reconfigurable optical add-drop multiplexers,” J. Lightwave Technol.28(4), 557–598 (2010).
    [CrossRef]
  3. J. Tsai and M. C. Wu, “A high port-count wavelength-selective switch using a large scan-angle, high fill-factor, two-axis mems scanner array,” IEEE Photon. Technol. Lett.18(13), 1439–1441 (2006).
    [CrossRef]
  4. M. Shirasaki, “Chromatic-dispersion compensator using virtually imaged phased array,” IEEE Photon. Technol. Lett.9(12), 1598–1600 (1997).
    [CrossRef]
  5. G. H. Lee, S. Xiao, and A. M. Weiner, “Optical dispersion compensator with >4000-ps/nm tuning range using a virtually imaged phased array (VIPA) and spatial light modulator (SLM),” IEEE Photon. Technol. Lett.18(17), 1819–1821 (2006).
    [CrossRef]
  6. D. R. Wisely, “32 channel WDM multiplexer with 1-nm channel spacing and 0.7-nm bandwidth,” Electron. Lett.27(6), 520–521 (1991).
    [CrossRef]
  7. M. Shirasaki, “Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer,” Opt. Lett.21(5), 366–368 (1996).
    [CrossRef] [PubMed]
  8. M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett.24(7), 385–386 (1988).
    [CrossRef]
  9. H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett.26(2), 87–88 (1990).
    [CrossRef]
  10. K. Takada, M. Abe, T. Shibata, and K. Okamoto, “1-GHz-spaced 16-channel Arrayed-Waveguide grating for a wavelength reference standard in DWDM Network Systems,” J. Lightwave Technol.20(5), 850–853 (2002).
    [CrossRef]
  11. K. Seno, K. Suzuki, N. Ooba, K. Watanabe, M. Ishii, H. Ono, and S. Mino, “Demonstration of channelized tunable optical dispersion compensator based on arrayed-waveguide grating and liquid crystal on silicon,” Opt. Express18(18), 18565–18579 (2010).
    [CrossRef] [PubMed]
  12. D. Sinefeld, C. R. Doerr, and D. M. Marom, “A photonic spectral processor employing two-dimensional WDM channel separation and a phase LCoS modulator,” Opt. Express19(15), 14532–14541 (2011).
    [CrossRef] [PubMed]
  13. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg Fiber,” J. Opt. Soc. Am.68(9), 1196–1201 (1978).
    [CrossRef]
  14. X. Gu, T. Shimada, and F. Koyama, “Giant and high-resolution beam steering using slow-light waveguide amplifier,” Opt. Express19(23), 22675–22683 (2011).
    [CrossRef] [PubMed]
  15. X. Gu, T. Shimada, A. Fuchida, A. Matsutani, A. Imamura, and F. Koyama, “Beam steering in GalnAs/GaAs slow-light Bragg reflector waveguide amplifier,” Appl. Phys. Lett.99(21), 211107 (2011).
    [CrossRef]
  16. F. Koyama, “Recent advances of VCSEL photonics,” J. Lightwave Technol.24(12), 4502–4513 (2006).
    [CrossRef]
  17. X. Gu, T. Shimada, A. Matsutani, and F. Koyama, “Miniature nonmechanical beam deflector based on Bragg reflector waveguide with a number of resolution points larger than 1000,” IEEE Photonics J.4(5), 1712–1719 (2012).
    [CrossRef]
  18. G. Hirano and F. Koyama, “Slowing light in Bragg reflector waveguide with tilt coupling scheme,” presented at 20th Annual Meeting of The IEEE Laser and Electro-Optical Society, LEOS2007, MK1, Florida, U.S.A., 21–25 Oct. 2007.
  19. G. Lenz, E. Baruch, and J. Salzman, “Polarization discrimination properties of Bragg-reflection waveguides,” Opt. Lett.15(22), 1288–1290 (1990).
    [CrossRef] [PubMed]

2012 (1)

X. Gu, T. Shimada, A. Matsutani, and F. Koyama, “Miniature nonmechanical beam deflector based on Bragg reflector waveguide with a number of resolution points larger than 1000,” IEEE Photonics J.4(5), 1712–1719 (2012).
[CrossRef]

2011 (3)

2010 (2)

2006 (3)

J. Tsai and M. C. Wu, “A high port-count wavelength-selective switch using a large scan-angle, high fill-factor, two-axis mems scanner array,” IEEE Photon. Technol. Lett.18(13), 1439–1441 (2006).
[CrossRef]

G. H. Lee, S. Xiao, and A. M. Weiner, “Optical dispersion compensator with >4000-ps/nm tuning range using a virtually imaged phased array (VIPA) and spatial light modulator (SLM),” IEEE Photon. Technol. Lett.18(17), 1819–1821 (2006).
[CrossRef]

F. Koyama, “Recent advances of VCSEL photonics,” J. Lightwave Technol.24(12), 4502–4513 (2006).
[CrossRef]

2002 (1)

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “1-GHz-spaced 16-channel Arrayed-Waveguide grating for a wavelength reference standard in DWDM Network Systems,” J. Lightwave Technol.20(5), 850–853 (2002).
[CrossRef]

1997 (1)

M. Shirasaki, “Chromatic-dispersion compensator using virtually imaged phased array,” IEEE Photon. Technol. Lett.9(12), 1598–1600 (1997).
[CrossRef]

1996 (1)

1991 (1)

D. R. Wisely, “32 channel WDM multiplexer with 1-nm channel spacing and 0.7-nm bandwidth,” Electron. Lett.27(6), 520–521 (1991).
[CrossRef]

1990 (3)

C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Comm.8(6), 948–964 (1990).
[CrossRef]

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett.26(2), 87–88 (1990).
[CrossRef]

G. Lenz, E. Baruch, and J. Salzman, “Polarization discrimination properties of Bragg-reflection waveguides,” Opt. Lett.15(22), 1288–1290 (1990).
[CrossRef] [PubMed]

1988 (1)

M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett.24(7), 385–386 (1988).
[CrossRef]

1978 (1)

Abe, M.

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “1-GHz-spaced 16-channel Arrayed-Waveguide grating for a wavelength reference standard in DWDM Network Systems,” J. Lightwave Technol.20(5), 850–853 (2002).
[CrossRef]

Baruch, E.

Brackett, C. A.

C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Comm.8(6), 948–964 (1990).
[CrossRef]

Doerr, C. R.

Filer, M.

Fuchida, A.

X. Gu, T. Shimada, A. Fuchida, A. Matsutani, A. Imamura, and F. Koyama, “Beam steering in GalnAs/GaAs slow-light Bragg reflector waveguide amplifier,” Appl. Phys. Lett.99(21), 211107 (2011).
[CrossRef]

Gu, X.

X. Gu, T. Shimada, A. Matsutani, and F. Koyama, “Miniature nonmechanical beam deflector based on Bragg reflector waveguide with a number of resolution points larger than 1000,” IEEE Photonics J.4(5), 1712–1719 (2012).
[CrossRef]

X. Gu, T. Shimada, A. Fuchida, A. Matsutani, A. Imamura, and F. Koyama, “Beam steering in GalnAs/GaAs slow-light Bragg reflector waveguide amplifier,” Appl. Phys. Lett.99(21), 211107 (2011).
[CrossRef]

X. Gu, T. Shimada, and F. Koyama, “Giant and high-resolution beam steering using slow-light waveguide amplifier,” Opt. Express19(23), 22675–22683 (2011).
[CrossRef] [PubMed]

Imamura, A.

X. Gu, T. Shimada, A. Fuchida, A. Matsutani, A. Imamura, and F. Koyama, “Beam steering in GalnAs/GaAs slow-light Bragg reflector waveguide amplifier,” Appl. Phys. Lett.99(21), 211107 (2011).
[CrossRef]

Ishii, M.

Kato, K.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett.26(2), 87–88 (1990).
[CrossRef]

Koyama, F.

X. Gu, T. Shimada, A. Matsutani, and F. Koyama, “Miniature nonmechanical beam deflector based on Bragg reflector waveguide with a number of resolution points larger than 1000,” IEEE Photonics J.4(5), 1712–1719 (2012).
[CrossRef]

X. Gu, T. Shimada, A. Fuchida, A. Matsutani, A. Imamura, and F. Koyama, “Beam steering in GalnAs/GaAs slow-light Bragg reflector waveguide amplifier,” Appl. Phys. Lett.99(21), 211107 (2011).
[CrossRef]

X. Gu, T. Shimada, and F. Koyama, “Giant and high-resolution beam steering using slow-light waveguide amplifier,” Opt. Express19(23), 22675–22683 (2011).
[CrossRef] [PubMed]

F. Koyama, “Recent advances of VCSEL photonics,” J. Lightwave Technol.24(12), 4502–4513 (2006).
[CrossRef]

Lee, G. H.

G. H. Lee, S. Xiao, and A. M. Weiner, “Optical dispersion compensator with >4000-ps/nm tuning range using a virtually imaged phased array (VIPA) and spatial light modulator (SLM),” IEEE Photon. Technol. Lett.18(17), 1819–1821 (2006).
[CrossRef]

Lenz, G.

Marom, D. M.

Marom, E.

Matsutani, A.

X. Gu, T. Shimada, A. Matsutani, and F. Koyama, “Miniature nonmechanical beam deflector based on Bragg reflector waveguide with a number of resolution points larger than 1000,” IEEE Photonics J.4(5), 1712–1719 (2012).
[CrossRef]

X. Gu, T. Shimada, A. Fuchida, A. Matsutani, A. Imamura, and F. Koyama, “Beam steering in GalnAs/GaAs slow-light Bragg reflector waveguide amplifier,” Appl. Phys. Lett.99(21), 211107 (2011).
[CrossRef]

Mino, S.

Nishi, I.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett.26(2), 87–88 (1990).
[CrossRef]

Okamoto, K.

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “1-GHz-spaced 16-channel Arrayed-Waveguide grating for a wavelength reference standard in DWDM Network Systems,” J. Lightwave Technol.20(5), 850–853 (2002).
[CrossRef]

Ono, H.

Ooba, N.

Salzman, J.

Seno, K.

Shibata, T.

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “1-GHz-spaced 16-channel Arrayed-Waveguide grating for a wavelength reference standard in DWDM Network Systems,” J. Lightwave Technol.20(5), 850–853 (2002).
[CrossRef]

Shimada, T.

X. Gu, T. Shimada, A. Matsutani, and F. Koyama, “Miniature nonmechanical beam deflector based on Bragg reflector waveguide with a number of resolution points larger than 1000,” IEEE Photonics J.4(5), 1712–1719 (2012).
[CrossRef]

X. Gu, T. Shimada, A. Fuchida, A. Matsutani, A. Imamura, and F. Koyama, “Beam steering in GalnAs/GaAs slow-light Bragg reflector waveguide amplifier,” Appl. Phys. Lett.99(21), 211107 (2011).
[CrossRef]

X. Gu, T. Shimada, and F. Koyama, “Giant and high-resolution beam steering using slow-light waveguide amplifier,” Opt. Express19(23), 22675–22683 (2011).
[CrossRef] [PubMed]

Shirasaki, M.

M. Shirasaki, “Chromatic-dispersion compensator using virtually imaged phased array,” IEEE Photon. Technol. Lett.9(12), 1598–1600 (1997).
[CrossRef]

M. Shirasaki, “Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer,” Opt. Lett.21(5), 366–368 (1996).
[CrossRef] [PubMed]

Sinefeld, D.

Smit, M. K.

M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett.24(7), 385–386 (1988).
[CrossRef]

Suzuki, K.

Suzuki, S.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett.26(2), 87–88 (1990).
[CrossRef]

Takada, K.

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “1-GHz-spaced 16-channel Arrayed-Waveguide grating for a wavelength reference standard in DWDM Network Systems,” J. Lightwave Technol.20(5), 850–853 (2002).
[CrossRef]

Takahashi, H.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett.26(2), 87–88 (1990).
[CrossRef]

Tibuleac, S.

Tsai, J.

J. Tsai and M. C. Wu, “A high port-count wavelength-selective switch using a large scan-angle, high fill-factor, two-axis mems scanner array,” IEEE Photon. Technol. Lett.18(13), 1439–1441 (2006).
[CrossRef]

Watanabe, K.

Weiner, A. M.

G. H. Lee, S. Xiao, and A. M. Weiner, “Optical dispersion compensator with >4000-ps/nm tuning range using a virtually imaged phased array (VIPA) and spatial light modulator (SLM),” IEEE Photon. Technol. Lett.18(17), 1819–1821 (2006).
[CrossRef]

Wisely, D. R.

D. R. Wisely, “32 channel WDM multiplexer with 1-nm channel spacing and 0.7-nm bandwidth,” Electron. Lett.27(6), 520–521 (1991).
[CrossRef]

Wu, M. C.

J. Tsai and M. C. Wu, “A high port-count wavelength-selective switch using a large scan-angle, high fill-factor, two-axis mems scanner array,” IEEE Photon. Technol. Lett.18(13), 1439–1441 (2006).
[CrossRef]

Xiao, S.

G. H. Lee, S. Xiao, and A. M. Weiner, “Optical dispersion compensator with >4000-ps/nm tuning range using a virtually imaged phased array (VIPA) and spatial light modulator (SLM),” IEEE Photon. Technol. Lett.18(17), 1819–1821 (2006).
[CrossRef]

Yariv, A.

Yeh, P.

Appl. Phys. Lett. (1)

X. Gu, T. Shimada, A. Fuchida, A. Matsutani, A. Imamura, and F. Koyama, “Beam steering in GalnAs/GaAs slow-light Bragg reflector waveguide amplifier,” Appl. Phys. Lett.99(21), 211107 (2011).
[CrossRef]

Electron. Lett. (3)

D. R. Wisely, “32 channel WDM multiplexer with 1-nm channel spacing and 0.7-nm bandwidth,” Electron. Lett.27(6), 520–521 (1991).
[CrossRef]

M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett.24(7), 385–386 (1988).
[CrossRef]

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett.26(2), 87–88 (1990).
[CrossRef]

IEEE J. Sel. Areas Comm. (1)

C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Comm.8(6), 948–964 (1990).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

J. Tsai and M. C. Wu, “A high port-count wavelength-selective switch using a large scan-angle, high fill-factor, two-axis mems scanner array,” IEEE Photon. Technol. Lett.18(13), 1439–1441 (2006).
[CrossRef]

M. Shirasaki, “Chromatic-dispersion compensator using virtually imaged phased array,” IEEE Photon. Technol. Lett.9(12), 1598–1600 (1997).
[CrossRef]

G. H. Lee, S. Xiao, and A. M. Weiner, “Optical dispersion compensator with >4000-ps/nm tuning range using a virtually imaged phased array (VIPA) and spatial light modulator (SLM),” IEEE Photon. Technol. Lett.18(17), 1819–1821 (2006).
[CrossRef]

IEEE Photonics J. (1)

X. Gu, T. Shimada, A. Matsutani, and F. Koyama, “Miniature nonmechanical beam deflector based on Bragg reflector waveguide with a number of resolution points larger than 1000,” IEEE Photonics J.4(5), 1712–1719 (2012).
[CrossRef]

J. Lightwave Technol. (3)

F. Koyama, “Recent advances of VCSEL photonics,” J. Lightwave Technol.24(12), 4502–4513 (2006).
[CrossRef]

S. Tibuleac and M. Filer, “Transmission impairments in DWDM networks with reconfigurable optical add-drop multiplexers,” J. Lightwave Technol.28(4), 557–598 (2010).
[CrossRef]

K. Takada, M. Abe, T. Shibata, and K. Okamoto, “1-GHz-spaced 16-channel Arrayed-Waveguide grating for a wavelength reference standard in DWDM Network Systems,” J. Lightwave Technol.20(5), 850–853 (2002).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Express (3)

Opt. Lett. (2)

Other (1)

G. Hirano and F. Koyama, “Slowing light in Bragg reflector waveguide with tilt coupling scheme,” presented at 20th Annual Meeting of The IEEE Laser and Electro-Optical Society, LEOS2007, MK1, Florida, U.S.A., 21–25 Oct. 2007.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic view of a Bragg reflector waveguide diffraction element and a top-view photo of one fabricated device with a length of 1 mm.

Fig. 2
Fig. 2

Schematic view of a large channel-number demultiplexer based on the Bragg reflector waveguide.

Fig. 3
Fig. 3

(a) Far-field patterns and (b) intensity profiles on the receiver plane of the output. Input wavelength is from 961 to 976 nm, 50mA current is injected into the waveguide for compensating radiation loss. Cutoff wavelength is ~982 nm here.

Fig. 4
Fig. 4

Simulation and measurement results of the deflection angle and angular dispersion ∆θ/dλ as a function of input wavelength λ.

Fig. 5
Fig. 5

Intensity profiles of FFP patterns for a passive-type device captured by a high-resolution measurement setup. Input wavelengths are from 965 to 975 nm. λcutoff is 990 nm here.

Fig. 6
Fig. 6

Intensity profile of FFP pattern for a single-spectral line at 969 nm.

Fig. 7
Fig. 7

Deflection angle difference between two polarization states at different wavelengths. Simulations and experiment results for various core thicknesses are compared.

Fig. 8
Fig. 8

Divergence angle versus wavelength for different current injections in the active-type devices and 5 mm long passive-type device.

Fig. 9
Fig. 9

A summary of different dispersion elements.

Metrics