Abstract

We experimentally demonstrated the transmission of 40 × 433.6-Gb/s Nyquist wavelength-division-multiplexing (N-WDM) optical time-division-multiplexing (OTDM) over 2800-km single-mode fiber (SMF)-28 with Erbium-doped fiber amplifier (EDFA)-only amplification, adopting polarization-division-multiplexing carrier-suppressed return-to-zero quadrature-phase-shift-keying (PDM-CSRZ-QPSK) modulation as well as post filter and 1-bit maximum likelihood sequence estimation (MLSE). Each channel occupies 100GHz, yielding a spectral efficiency of 4.05b/s/Hz. The bit-error ratio (BER) of all channels is less than the pre-forward-error-correction (pre-FEC) limit of 3.8 × 10−3 after 2800-km SMF-28 transmission.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y.-K. Huang, E. Ip, M. Huang, B. Zhu, P. N. Ji, Y. Shao, D. W. Peckham, R. Lingle, Y. Aono, T. Tajima, and T. Wang, “10×456-Gb/s DP-16QAM transmission over 8×100 km of ULAF using coherent detection with a 30-GHz analog-to-digital converter,” in Proc. OECC, Sapporo, PDP2 (2010).
  2. P. J. Winzer, A. H. Gnauck, S. Chandrasekhar, S. Draving, J. Evangelista, and B. Zhu, “Generation and 1,200-km transmission of 448-Gb/s ETDM 56-Gbaud PDM 16-QAM using a single I/Q modulator,” in Proc. ECOC, Torino, PD2.2 (2010).
  3. X. Zhou, L. Nelson, P. Magill, R. Isaac, B. Zhu, D. W. Peckham, P. Borel, and K. Carlson, “8x450-Gb/s, 50-GHz-spaced, PDM-32QAM transmission over 400km and one 50GHz-grid ROADM,” in Proc. OFC, Los Angeles, CA, PDPB3 (2011).
  4. P. J. Winzer, G. Raybon, C. R. Doerr, M. Duelk, and C. Dorrer, “107-Gb/s optical signal generation using electronic time-division multiplexing,” J. Lightwave Technol.24(8), 3107–3113 (2006).
    [CrossRef]
  5. A. Sano, T. Kobayashi, A. Matsuura, S. Yamamoto, S. Yamanaka, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, and T. Mizuno, “100x120-Gb/s PDM 64-QAM transmission over 160 km using linewidth-tolerant pilotless digital coherent detection,” in Proc. ECOC, Torino, Italy, PD2.4 (2010).
  6. A. H. Gnauck, P. J. Winzer, A. Konczykowska, F. Jorge, J. Dupuy, M. Riet, G. Charlet, B. Zhu, and D. W. Peckham, “Generation and transmission of 21.4-Gbaud PDM 64-QAM using a high-power DAC driving a single I/Q modulator,” in Proc. OFC, Los Angeles, CA, PDPB2 (2011).
  7. J. Li, E. Tipsuwannakul, M. Karlsson, and P. A. Andrekson, “Low-complexity duobinary signaling and detection for sensitivity improvement in Nyquist-WDM coherent system,” in Proc. OFC, Los Angeles, CA, OM3H.2 (2012).
  8. J. G. Proakis, Digital Communications, 4th ed. (McGraw-Hill, New York, 2000).
  9. J.-X. Cai, C. R. Davidson, A. Lucero, H. Zhang, D. G. Foursa, O. V. Sinkin, W. W. Patterson, A. N. Pilipetskii, G. Mohs, and N. S. Bergano, “20 Tbit/s transmission over 6860 km with sub-Nyquist channel spacing,” J. Lightwave Technol.30(4), 651–657 (2012).
    [CrossRef]
  10. J. Li, E. Tipsuwannakul, M. Karlsson, and P. A. Andrekson, “Low complexity duobinary signaling and detection for sensitivity improvement in Nyquist-WDM coherent system,” in Proc. OFC, Los Angeles, CA, OW3H.2 (2012).
  11. I. Lyubomirsky, “Quadrature duobinary for high-spectral efficiency 100G transmission,” J. Lightwave Technol.28(1), 91–96 (2010).
    [CrossRef]
  12. Z. Dong, J. Yu, Z. Jia, H. C. Chien, X. Li, and G. K. Chang, “7x224 Gb/s/ch Nyquist-WDM transmission over 1600-km SMF-28 using PDM-CSRZ-QPSK modulation,” IEEE Photon. Technol. Lett.24(13), 1157–1159 (2012).
    [CrossRef]
  13. H. C. Chien, J. Yu, Z. Jia, Z. Dong, and X. Xiao, “Performance assessment of noise-suppressed Nyquist-WDM for Terabit superchannel transmission,” J. Lightwave Technol.30(23), 10.1109 (2012).

2012 (3)

Z. Dong, J. Yu, Z. Jia, H. C. Chien, X. Li, and G. K. Chang, “7x224 Gb/s/ch Nyquist-WDM transmission over 1600-km SMF-28 using PDM-CSRZ-QPSK modulation,” IEEE Photon. Technol. Lett.24(13), 1157–1159 (2012).
[CrossRef]

H. C. Chien, J. Yu, Z. Jia, Z. Dong, and X. Xiao, “Performance assessment of noise-suppressed Nyquist-WDM for Terabit superchannel transmission,” J. Lightwave Technol.30(23), 10.1109 (2012).

J.-X. Cai, C. R. Davidson, A. Lucero, H. Zhang, D. G. Foursa, O. V. Sinkin, W. W. Patterson, A. N. Pilipetskii, G. Mohs, and N. S. Bergano, “20 Tbit/s transmission over 6860 km with sub-Nyquist channel spacing,” J. Lightwave Technol.30(4), 651–657 (2012).
[CrossRef]

2010 (1)

2006 (1)

Bergano, N. S.

Cai, J.-X.

Chang, G. K.

Z. Dong, J. Yu, Z. Jia, H. C. Chien, X. Li, and G. K. Chang, “7x224 Gb/s/ch Nyquist-WDM transmission over 1600-km SMF-28 using PDM-CSRZ-QPSK modulation,” IEEE Photon. Technol. Lett.24(13), 1157–1159 (2012).
[CrossRef]

Chien, H. C.

Z. Dong, J. Yu, Z. Jia, H. C. Chien, X. Li, and G. K. Chang, “7x224 Gb/s/ch Nyquist-WDM transmission over 1600-km SMF-28 using PDM-CSRZ-QPSK modulation,” IEEE Photon. Technol. Lett.24(13), 1157–1159 (2012).
[CrossRef]

H. C. Chien, J. Yu, Z. Jia, Z. Dong, and X. Xiao, “Performance assessment of noise-suppressed Nyquist-WDM for Terabit superchannel transmission,” J. Lightwave Technol.30(23), 10.1109 (2012).

Davidson, C. R.

Doerr, C. R.

Dong, Z.

H. C. Chien, J. Yu, Z. Jia, Z. Dong, and X. Xiao, “Performance assessment of noise-suppressed Nyquist-WDM for Terabit superchannel transmission,” J. Lightwave Technol.30(23), 10.1109 (2012).

Z. Dong, J. Yu, Z. Jia, H. C. Chien, X. Li, and G. K. Chang, “7x224 Gb/s/ch Nyquist-WDM transmission over 1600-km SMF-28 using PDM-CSRZ-QPSK modulation,” IEEE Photon. Technol. Lett.24(13), 1157–1159 (2012).
[CrossRef]

Dorrer, C.

Duelk, M.

Foursa, D. G.

Jia, Z.

H. C. Chien, J. Yu, Z. Jia, Z. Dong, and X. Xiao, “Performance assessment of noise-suppressed Nyquist-WDM for Terabit superchannel transmission,” J. Lightwave Technol.30(23), 10.1109 (2012).

Z. Dong, J. Yu, Z. Jia, H. C. Chien, X. Li, and G. K. Chang, “7x224 Gb/s/ch Nyquist-WDM transmission over 1600-km SMF-28 using PDM-CSRZ-QPSK modulation,” IEEE Photon. Technol. Lett.24(13), 1157–1159 (2012).
[CrossRef]

Li, X.

Z. Dong, J. Yu, Z. Jia, H. C. Chien, X. Li, and G. K. Chang, “7x224 Gb/s/ch Nyquist-WDM transmission over 1600-km SMF-28 using PDM-CSRZ-QPSK modulation,” IEEE Photon. Technol. Lett.24(13), 1157–1159 (2012).
[CrossRef]

Lucero, A.

Lyubomirsky, I.

Mohs, G.

Patterson, W. W.

Pilipetskii, A. N.

Raybon, G.

Sinkin, O. V.

Winzer, P. J.

Xiao, X.

H. C. Chien, J. Yu, Z. Jia, Z. Dong, and X. Xiao, “Performance assessment of noise-suppressed Nyquist-WDM for Terabit superchannel transmission,” J. Lightwave Technol.30(23), 10.1109 (2012).

Yu, J.

H. C. Chien, J. Yu, Z. Jia, Z. Dong, and X. Xiao, “Performance assessment of noise-suppressed Nyquist-WDM for Terabit superchannel transmission,” J. Lightwave Technol.30(23), 10.1109 (2012).

Z. Dong, J. Yu, Z. Jia, H. C. Chien, X. Li, and G. K. Chang, “7x224 Gb/s/ch Nyquist-WDM transmission over 1600-km SMF-28 using PDM-CSRZ-QPSK modulation,” IEEE Photon. Technol. Lett.24(13), 1157–1159 (2012).
[CrossRef]

Zhang, H.

IEEE Photon. Technol. Lett. (1)

Z. Dong, J. Yu, Z. Jia, H. C. Chien, X. Li, and G. K. Chang, “7x224 Gb/s/ch Nyquist-WDM transmission over 1600-km SMF-28 using PDM-CSRZ-QPSK modulation,” IEEE Photon. Technol. Lett.24(13), 1157–1159 (2012).
[CrossRef]

J. Lightwave Technol. (4)

Other (8)

Y.-K. Huang, E. Ip, M. Huang, B. Zhu, P. N. Ji, Y. Shao, D. W. Peckham, R. Lingle, Y. Aono, T. Tajima, and T. Wang, “10×456-Gb/s DP-16QAM transmission over 8×100 km of ULAF using coherent detection with a 30-GHz analog-to-digital converter,” in Proc. OECC, Sapporo, PDP2 (2010).

P. J. Winzer, A. H. Gnauck, S. Chandrasekhar, S. Draving, J. Evangelista, and B. Zhu, “Generation and 1,200-km transmission of 448-Gb/s ETDM 56-Gbaud PDM 16-QAM using a single I/Q modulator,” in Proc. ECOC, Torino, PD2.2 (2010).

X. Zhou, L. Nelson, P. Magill, R. Isaac, B. Zhu, D. W. Peckham, P. Borel, and K. Carlson, “8x450-Gb/s, 50-GHz-spaced, PDM-32QAM transmission over 400km and one 50GHz-grid ROADM,” in Proc. OFC, Los Angeles, CA, PDPB3 (2011).

A. Sano, T. Kobayashi, A. Matsuura, S. Yamamoto, S. Yamanaka, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, and T. Mizuno, “100x120-Gb/s PDM 64-QAM transmission over 160 km using linewidth-tolerant pilotless digital coherent detection,” in Proc. ECOC, Torino, Italy, PD2.4 (2010).

A. H. Gnauck, P. J. Winzer, A. Konczykowska, F. Jorge, J. Dupuy, M. Riet, G. Charlet, B. Zhu, and D. W. Peckham, “Generation and transmission of 21.4-Gbaud PDM 64-QAM using a high-power DAC driving a single I/Q modulator,” in Proc. OFC, Los Angeles, CA, PDPB2 (2011).

J. Li, E. Tipsuwannakul, M. Karlsson, and P. A. Andrekson, “Low-complexity duobinary signaling and detection for sensitivity improvement in Nyquist-WDM coherent system,” in Proc. OFC, Los Angeles, CA, OM3H.2 (2012).

J. G. Proakis, Digital Communications, 4th ed. (McGraw-Hill, New York, 2000).

J. Li, E. Tipsuwannakul, M. Karlsson, and P. A. Andrekson, “Low complexity duobinary signaling and detection for sensitivity improvement in Nyquist-WDM coherent system,” in Proc. OFC, Los Angeles, CA, OW3H.2 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Electrical spectra after CMA equalization and digital post duo-binary filtering, respectively; (b) Transfer function of digital post filter.

Fig. 2
Fig. 2

BER performance as a function of ADC bandwidth.

Fig. 3
Fig. 3

Experimental setup. Inset (a)-(c) show the eye diagrams of the single optical carrier after I/Q MOD, two cascaded IMs and OTDM, respectively. OC: optical coupler, I/Q MOD: I/Q modulator, EA: electrical amplifier, IM: intensity modulator, DL: delay line, ATT: optical attenuator, PBC: polarization beam combiner, WSS: wavelength selective switch, SW: switch, TOF: tunable optical filter, PBS: polarization beam splitter.

Fig. 4
Fig. 4

(a) Optical spectra of the single optical carrier before and after WSS; (b) Optical spectra of all the 40 N-WDM channels before and after 2800-km SMF-28 transmission.

Fig. 5
Fig. 5

Experimental results. (a) BER versus OSNR for the single channel and the WDM channel, (b) BER of all the WDM channels after 2800-km SMF-28 transmission.

Metrics