Abstract

Fabrication and experimental characterization of a broadband quarter-wave plate, which is based on two-dimensional and binary silicon high-contrast gratings, are reported. The quarter-wave plate feature is achieved by the utilization of a regime, in which the proposed grating structure exhibits nearly total and approximately equal transmission of transverse electric and transverse magnetic waves with a phase difference of approximately π/2. The numerical and experimental results suggest a percent bandwidth of 42% and 33%, respectively, if the operation regime is defined as the range for which the conversion efficiency is higher than 0.9. A compact circular polarizer can be implemented by combining the grating with a linear polarizer.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Karagodsky and C. J. Chang-Hasnain, “Physics of near-wavelength high contrast gratings,” Opt. Express20, 10888–10895 (2012).
    [CrossRef] [PubMed]
  2. C. Mateus, M. Huang, Y. Deng, A. Neureuther, and C. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett.16, 518 –520 (2004).
    [CrossRef]
  3. C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62μm) using a subwavelength grating,” IEEE Photon. Technol. Lett.16, 1676 –1678 (2004).
    [CrossRef]
  4. V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Matrix Fabry–Perot resonance mechanism in high-contrast gratings,” Opt. Lett.36, 1704–1706 (2011).
    [CrossRef] [PubMed]
  5. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photon.1, 119–122 (2007).
    [CrossRef]
  6. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photon.2, 180–184 (2008).
    [CrossRef]
  7. Y. Zhou, V. Karagodsky, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “A novel ultra-low loss hollow-core waveguide using subwavelength high-contrast gratings,” Opt. Express17, 1508–1517 (2009).
    [CrossRef] [PubMed]
  8. V. Karagodsky, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “Dispersion properties of high-contrast grating hollow-core waveguides,” Opt. Lett.35, 4099–4101 (2010).
    [CrossRef] [PubMed]
  9. F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings,” Opt. Express18, 12606–12614 (2010).
    [CrossRef] [PubMed]
  10. D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon.4, 466–470 (2010).
    [CrossRef]
  11. F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett.104, 163903 (2010).
    [CrossRef] [PubMed]
  12. W. Yang, F. Sedgwick, Z. Zhang, and C. J. Chang-Hasnain, “High contrast grating based saturable absorber for mode-locked lasers,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2010), p. CThI5.
  13. M. Zohar, M. Auslender, L. Faraone, and S. Hava, “Novel resonant cavity-enhanced absorber structures for high-efficiency midinfrared photodetector application,” J. Nanophoton.5, 051824 (2011).
    [CrossRef]
  14. H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, R. Guo, W. Wu, and Z. Zhou, “Polarizing beam splitter based on a subwavelength asymmetric profile grating,” J. Opt.12, 015703 (2010).
    [CrossRef]
  15. H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, W. Wu, and Z. Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt.12, 045703 (2010).
    [CrossRef]
  16. W.-M. Ye, X.-D. Yuan, C.-C. Guo, and C. Zen, “Unidirectional transmission in non-symmetric gratings made of isotropic material,” Opt. Express18, 7590–7595 (2010).
    [CrossRef] [PubMed]
  17. Y. Zhou, M. Huang, and C. Chang-Hasnain, “Large fabrication tolerance for VCSELs using high-contrast grating,” IEEE Photon. Technol. Lett.20, 434 –436 (2008).
    [CrossRef]
  18. M. Mutlu, A. E. Akosman, and E. Ozbay, “Broadband circular polarizer based on high-contrast gratings,” Opt. Lett.37, 2094–2096 (2012).
    [CrossRef] [PubMed]
  19. V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express18, 16973–16988 (2010).
    [CrossRef] [PubMed]
  20. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A12, 1068–1076 (1995).
    [CrossRef]
  21. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  22. M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators,” Opt. Lett.36, 1653–1655 (2011).
    [CrossRef] [PubMed]
  23. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 2005).
  24. Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, and E. Ozbay, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett.97, 081901 (2010).
    [CrossRef]
  25. S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. H. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology16, 1874–1877 (2005).
    [CrossRef]
  26. D. W. C. So and S. R. Seshadri, “Thin-film grating polarizer,” Opt. Lett.19, 469–471 (1994).
    [CrossRef] [PubMed]
  27. G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys.90, 3825–3830 (2001).
    [CrossRef]

2012 (2)

2011 (3)

2010 (9)

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, and E. Ozbay, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett.97, 081901 (2010).
[CrossRef]

V. Karagodsky, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “Dispersion properties of high-contrast grating hollow-core waveguides,” Opt. Lett.35, 4099–4101 (2010).
[CrossRef] [PubMed]

F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings,” Opt. Express18, 12606–12614 (2010).
[CrossRef] [PubMed]

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon.4, 466–470 (2010).
[CrossRef]

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett.104, 163903 (2010).
[CrossRef] [PubMed]

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, R. Guo, W. Wu, and Z. Zhou, “Polarizing beam splitter based on a subwavelength asymmetric profile grating,” J. Opt.12, 015703 (2010).
[CrossRef]

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, W. Wu, and Z. Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt.12, 045703 (2010).
[CrossRef]

W.-M. Ye, X.-D. Yuan, C.-C. Guo, and C. Zen, “Unidirectional transmission in non-symmetric gratings made of isotropic material,” Opt. Express18, 7590–7595 (2010).
[CrossRef] [PubMed]

V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express18, 16973–16988 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (2)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photon.2, 180–184 (2008).
[CrossRef]

Y. Zhou, M. Huang, and C. Chang-Hasnain, “Large fabrication tolerance for VCSELs using high-contrast grating,” IEEE Photon. Technol. Lett.20, 434 –436 (2008).
[CrossRef]

2007 (1)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photon.1, 119–122 (2007).
[CrossRef]

2005 (1)

S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. H. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology16, 1874–1877 (2005).
[CrossRef]

2004 (2)

C. Mateus, M. Huang, Y. Deng, A. Neureuther, and C. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett.16, 518 –520 (2004).
[CrossRef]

C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62μm) using a subwavelength grating,” IEEE Photon. Technol. Lett.16, 1676 –1678 (2004).
[CrossRef]

2001 (1)

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys.90, 3825–3830 (2001).
[CrossRef]

1995 (1)

1994 (1)

Ahn, S.-W.

S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. H. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology16, 1874–1877 (2005).
[CrossRef]

Akosman, A. E.

Alici, K. B.

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, and E. Ozbay, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett.97, 081901 (2010).
[CrossRef]

Auslender, M.

M. Zohar, M. Auslender, L. Faraone, and S. Hava, “Novel resonant cavity-enhanced absorber structures for high-efficiency midinfrared photodetector application,” J. Nanophoton.5, 051824 (2011).
[CrossRef]

Aussenegg, F. R.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys.90, 3825–3830 (2001).
[CrossRef]

Balanis, C. A.

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 2005).

Beausoleil, R. G.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon.4, 466–470 (2010).
[CrossRef]

Britzger, M.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett.104, 163903 (2010).
[CrossRef] [PubMed]

Brückner, F.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett.104, 163903 (2010).
[CrossRef] [PubMed]

Burmeister, O.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett.104, 163903 (2010).
[CrossRef] [PubMed]

Caglayan, H.

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, and E. Ozbay, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett.97, 081901 (2010).
[CrossRef]

Chang-Hasnain, C.

Y. Zhou, M. Huang, and C. Chang-Hasnain, “Large fabrication tolerance for VCSELs using high-contrast grating,” IEEE Photon. Technol. Lett.20, 434 –436 (2008).
[CrossRef]

C. Mateus, M. Huang, Y. Deng, A. Neureuther, and C. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett.16, 518 –520 (2004).
[CrossRef]

C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62μm) using a subwavelength grating,” IEEE Photon. Technol. Lett.16, 1676 –1678 (2004).
[CrossRef]

Chang-Hasnain, C. J.

V. Karagodsky and C. J. Chang-Hasnain, “Physics of near-wavelength high contrast gratings,” Opt. Express20, 10888–10895 (2012).
[CrossRef] [PubMed]

V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Matrix Fabry–Perot resonance mechanism in high-contrast gratings,” Opt. Lett.36, 1704–1706 (2011).
[CrossRef] [PubMed]

V. Karagodsky, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “Dispersion properties of high-contrast grating hollow-core waveguides,” Opt. Lett.35, 4099–4101 (2010).
[CrossRef] [PubMed]

F. Lu, F. G. Sedgwick, V. Karagodsky, C. Chase, and C. J. Chang-Hasnain, “Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings,” Opt. Express18, 12606–12614 (2010).
[CrossRef] [PubMed]

V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express18, 16973–16988 (2010).
[CrossRef] [PubMed]

Y. Zhou, V. Karagodsky, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “A novel ultra-low loss hollow-core waveguide using subwavelength high-contrast gratings,” Opt. Express17, 1508–1517 (2009).
[CrossRef] [PubMed]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photon.2, 180–184 (2008).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photon.1, 119–122 (2007).
[CrossRef]

W. Yang, F. Sedgwick, Z. Zhang, and C. J. Chang-Hasnain, “High contrast grating based saturable absorber for mode-locked lasers,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2010), p. CThI5.

Chase, C.

Chen, L.

C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62μm) using a subwavelength grating,” IEEE Photon. Technol. Lett.16, 1676 –1678 (2004).
[CrossRef]

Clausnitzer, T.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett.104, 163903 (2010).
[CrossRef] [PubMed]

Colak, E.

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, and E. Ozbay, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett.97, 081901 (2010).
[CrossRef]

Danzmann, K.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett.104, 163903 (2010).
[CrossRef] [PubMed]

Deng, Y.

C. Mateus, M. Huang, Y. Deng, A. Neureuther, and C. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett.16, 518 –520 (2004).
[CrossRef]

Ditlbacher, H.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys.90, 3825–3830 (2001).
[CrossRef]

Faraone, L.

M. Zohar, M. Auslender, L. Faraone, and S. Hava, “Novel resonant cavity-enhanced absorber structures for high-efficiency midinfrared photodetector application,” J. Nanophoton.5, 051824 (2011).
[CrossRef]

Fattal, D.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon.4, 466–470 (2010).
[CrossRef]

Fiorentino, M.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon.4, 466–470 (2010).
[CrossRef]

Friedrich, D.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett.104, 163903 (2010).
[CrossRef] [PubMed]

Gao, D.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, R. Guo, W. Wu, and Z. Zhou, “Polarizing beam splitter based on a subwavelength asymmetric profile grating,” J. Opt.12, 015703 (2010).
[CrossRef]

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, W. Wu, and Z. Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt.12, 045703 (2010).
[CrossRef]

Gaylord, T. K.

Gotschy, W.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys.90, 3825–3830 (2001).
[CrossRef]

Grann, E. B.

Guo, C.-C.

Guo, R.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, W. Wu, and Z. Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt.12, 045703 (2010).
[CrossRef]

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, R. Guo, W. Wu, and Z. Zhou, “Polarizing beam splitter based on a subwavelength asymmetric profile grating,” J. Opt.12, 015703 (2010).
[CrossRef]

Hao, R.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, W. Wu, and Z. Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt.12, 045703 (2010).
[CrossRef]

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, R. Guo, W. Wu, and Z. Zhou, “Polarizing beam splitter based on a subwavelength asymmetric profile grating,” J. Opt.12, 015703 (2010).
[CrossRef]

Hava, S.

M. Zohar, M. Auslender, L. Faraone, and S. Hava, “Novel resonant cavity-enhanced absorber structures for high-efficiency midinfrared photodetector application,” J. Nanophoton.5, 051824 (2011).
[CrossRef]

Hou, J.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, R. Guo, W. Wu, and Z. Zhou, “Polarizing beam splitter based on a subwavelength asymmetric profile grating,” J. Opt.12, 015703 (2010).
[CrossRef]

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, W. Wu, and Z. Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt.12, 045703 (2010).
[CrossRef]

Huang, M.

Y. Zhou, M. Huang, and C. Chang-Hasnain, “Large fabrication tolerance for VCSELs using high-contrast grating,” IEEE Photon. Technol. Lett.20, 434 –436 (2008).
[CrossRef]

C. Mateus, M. Huang, Y. Deng, A. Neureuther, and C. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett.16, 518 –520 (2004).
[CrossRef]

C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62μm) using a subwavelength grating,” IEEE Photon. Technol. Lett.16, 1676 –1678 (2004).
[CrossRef]

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photon.2, 180–184 (2008).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photon.1, 119–122 (2007).
[CrossRef]

Jiang, H.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, W. Wu, and Z. Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt.12, 045703 (2010).
[CrossRef]

Kafesaki, M.

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, and E. Ozbay, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett.97, 081901 (2010).
[CrossRef]

Karagodsky, V.

Kim, J.-S.

S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. H. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology16, 1874–1877 (2005).
[CrossRef]

Kim, S. H.

S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. H. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology16, 1874–1877 (2005).
[CrossRef]

Kley, E.-B.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett.104, 163903 (2010).
[CrossRef] [PubMed]

Koschny, T.

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, and E. Ozbay, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett.97, 081901 (2010).
[CrossRef]

Krenn, J. R.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys.90, 3825–3830 (2001).
[CrossRef]

Lamprecht, B.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys.90, 3825–3830 (2001).
[CrossRef]

Lee, K.-D.

S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. H. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology16, 1874–1877 (2005).
[CrossRef]

Lee, S.-H.

S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. H. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology16, 1874–1877 (2005).
[CrossRef]

Leitner, A.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys.90, 3825–3830 (2001).
[CrossRef]

Li, J.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon.4, 466–470 (2010).
[CrossRef]

Li, Z.

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, and E. Ozbay, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett.97, 081901 (2010).
[CrossRef]

Lu, F.

Mateus, C.

C. Mateus, M. Huang, Y. Deng, A. Neureuther, and C. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett.16, 518 –520 (2004).
[CrossRef]

C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62μm) using a subwavelength grating,” IEEE Photon. Technol. Lett.16, 1676 –1678 (2004).
[CrossRef]

Mo, W.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, W. Wu, and Z. Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt.12, 045703 (2010).
[CrossRef]

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, R. Guo, W. Wu, and Z. Zhou, “Polarizing beam splitter based on a subwavelength asymmetric profile grating,” J. Opt.12, 015703 (2010).
[CrossRef]

Moharam, M. G.

Mutlu, M.

Neureuther, A.

C. Mateus, M. Huang, Y. Deng, A. Neureuther, and C. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett.16, 518 –520 (2004).
[CrossRef]

Ozbay, E.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Park, J.-D.

S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. H. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology16, 1874–1877 (2005).
[CrossRef]

Peng, Z.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon.4, 466–470 (2010).
[CrossRef]

Pesala, B.

Pommet, D. A.

Schider, G.

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys.90, 3825–3830 (2001).
[CrossRef]

Schnabel, R.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett.104, 163903 (2010).
[CrossRef] [PubMed]

Sedgwick, F.

W. Yang, F. Sedgwick, Z. Zhang, and C. J. Chang-Hasnain, “High contrast grating based saturable absorber for mode-locked lasers,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2010), p. CThI5.

Sedgwick, F. G.

Serebryannikov, A. E.

Seshadri, S. R.

So, D. W. C.

Suzuki, Y.

C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62μm) using a subwavelength grating,” IEEE Photon. Technol. Lett.16, 1676 –1678 (2004).
[CrossRef]

Tünnermann, A.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett.104, 163903 (2010).
[CrossRef] [PubMed]

Wu, H.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, R. Guo, W. Wu, and Z. Zhou, “Polarizing beam splitter based on a subwavelength asymmetric profile grating,” J. Opt.12, 015703 (2010).
[CrossRef]

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, W. Wu, and Z. Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt.12, 045703 (2010).
[CrossRef]

Wu, W.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, R. Guo, W. Wu, and Z. Zhou, “Polarizing beam splitter based on a subwavelength asymmetric profile grating,” J. Opt.12, 015703 (2010).
[CrossRef]

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, W. Wu, and Z. Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt.12, 045703 (2010).
[CrossRef]

Yang, W.

W. Yang, F. Sedgwick, Z. Zhang, and C. J. Chang-Hasnain, “High contrast grating based saturable absorber for mode-locked lasers,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2010), p. CThI5.

Ye, W.-M.

Yoon, P.-W.

S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. H. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology16, 1874–1877 (2005).
[CrossRef]

Yuan, X.-D.

Zen, C.

Zhang, Z.

W. Yang, F. Sedgwick, Z. Zhang, and C. J. Chang-Hasnain, “High contrast grating based saturable absorber for mode-locked lasers,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2010), p. CThI5.

Zhao, R.

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, and E. Ozbay, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett.97, 081901 (2010).
[CrossRef]

Zhou, Y.

Y. Zhou, V. Karagodsky, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “A novel ultra-low loss hollow-core waveguide using subwavelength high-contrast gratings,” Opt. Express17, 1508–1517 (2009).
[CrossRef] [PubMed]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photon.2, 180–184 (2008).
[CrossRef]

Y. Zhou, M. Huang, and C. Chang-Hasnain, “Large fabrication tolerance for VCSELs using high-contrast grating,” IEEE Photon. Technol. Lett.20, 434 –436 (2008).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photon.1, 119–122 (2007).
[CrossRef]

Zhou, Z.

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, W. Wu, and Z. Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt.12, 045703 (2010).
[CrossRef]

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, R. Guo, W. Wu, and Z. Zhou, “Polarizing beam splitter based on a subwavelength asymmetric profile grating,” J. Opt.12, 015703 (2010).
[CrossRef]

Zohar, M.

M. Zohar, M. Auslender, L. Faraone, and S. Hava, “Novel resonant cavity-enhanced absorber structures for high-efficiency midinfrared photodetector application,” J. Nanophoton.5, 051824 (2011).
[CrossRef]

Appl. Phys. Lett. (1)

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, and E. Ozbay, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett.97, 081901 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

C. Mateus, M. Huang, Y. Deng, A. Neureuther, and C. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett.16, 518 –520 (2004).
[CrossRef]

C. Mateus, M. Huang, L. Chen, C. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62μm) using a subwavelength grating,” IEEE Photon. Technol. Lett.16, 1676 –1678 (2004).
[CrossRef]

Y. Zhou, M. Huang, and C. Chang-Hasnain, “Large fabrication tolerance for VCSELs using high-contrast grating,” IEEE Photon. Technol. Lett.20, 434 –436 (2008).
[CrossRef]

J. Appl. Phys. (1)

G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Optical properties of Ag and Au nanowire gratings,” J. Appl. Phys.90, 3825–3830 (2001).
[CrossRef]

J. Nanophoton. (1)

M. Zohar, M. Auslender, L. Faraone, and S. Hava, “Novel resonant cavity-enhanced absorber structures for high-efficiency midinfrared photodetector application,” J. Nanophoton.5, 051824 (2011).
[CrossRef]

J. Opt. (2)

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, R. Guo, W. Wu, and Z. Zhou, “Polarizing beam splitter based on a subwavelength asymmetric profile grating,” J. Opt.12, 015703 (2010).
[CrossRef]

H. Wu, W. Mo, J. Hou, D. Gao, R. Hao, H. Jiang, R. Guo, W. Wu, and Z. Zhou, “A high performance polarization independent reflector based on a multilayered configuration grating structure,” J. Opt.12, 045703 (2010).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nanotechnology (1)

S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. H. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology16, 1874–1877 (2005).
[CrossRef]

Nat. Photon. (3)

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, “Flat dielectric grating reflectors with focusing abilities,” Nat. Photon.4, 466–470 (2010).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photon.1, 119–122 (2007).
[CrossRef]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photon.2, 180–184 (2008).
[CrossRef]

Opt. Express (5)

Opt. Lett. (5)

Phys. Rev. Lett. (1)

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev. Lett.104, 163903 (2010).
[CrossRef] [PubMed]

Other (3)

W. Yang, F. Sedgwick, Z. Zhang, and C. J. Chang-Hasnain, “High contrast grating based saturable absorber for mode-locked lasers,” in “Conference on Lasers and Electro-Optics,” (Optical Society of America, 2010), p. CThI5.

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, 2005).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Illustration of the proposed quarter-wave plate geometry. The dashed square box on the left denotes one period. The geometrical parameters are given by r = 220 nm, g = 350 nm, hg = 320 nm, and Λ = 570 nm. In the theoretical and numerical consideration, for the sake of simplicity, regions I and III are assumed to be infinite in the −z and +z directions, respectively. The materials constituting region III and the ridges in region II are sapphire and silicon, respectively, whereas region I is free-space. n0, nsi, and ns represent the refractive indices of free-space, silicon, and sapphire, respectively. Grating direction is defined such that it corresponds to the y direction.

Fig. 2
Fig. 2

Numerical (a) TM and TE transmitted intensities, (b) circular conversion coefficients, and (c) conversion efficiency spectrum obtained via FDTD simulations. The wavelength interval of operation is denoted by Δλ. The numerical conversion efficiency spectrum yields a percent bandwidth of 42%.

Fig. 3
Fig. 3

(a) Zoomed out and (b) zoomed in top view SEM micrographs of the fabricated HCG structure. In (b), the legends V1, V2, and V3 denote the geometrical parameters g, r, and Λ, respectively.

Fig. 4
Fig. 4

Visual illustrations of the experimental setups that are utilized for the measurement of (a) linear transmission coefficients and (b) circular conversion coefficients. The arrows, which lie inside the HCG samples and point upwards, denote the grating direction that is defined in the caption of Fig. 1.

Fig. 5
Fig. 5

Experimentally obtained (a) TM and TE transmitted intensities, (b) circular conversion coefficients, and (c) conversion efficiency spectrum. The wavelength interval of operation is denoted by Δλ. The experimental conversion efficiency spectrum yields a percent bandwidth of 33%.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

C eff = | C + | 2 | C | 2 | C + | 2 + | C | 2 .
BW % = 200 % λ H / λ L 1 λ H / λ L + 1 ,
η = arctan ( | C + | | C | | C + | + | C | ) .
η = arctan ( ( 1 + C eff ) / ( 1 C eff ) 1 ( 1 + C eff ) / ( 1 C eff ) + 1 ) .

Metrics