Abstract

A new real-time integral imaging pick-up and display method is demonstrated. This proposed method utilizes the dual-camera optical pick-up part to collect 3D information of real scene in real-time without pre-calibration. Elemental images are then provided by a computer-generated integral imaging part and displayed by a projection-type integral imaging display part. The theoretical analysis indicates the method is robust to the camera position deviation, which profits the real-time data processing. Experimental results show that the fully continuous, real 3D scene pick-up and display system is feasible with a throughput of 8 fps in real time. Further analysis predicts that the parallel optimization can be adopted by the proposed method for real-time 3D pick-up and display with a throughput of 25 fps.

© 2012 OSA

Full Article  |  PDF Article
Related Articles
Three-dimensional display technologies of recent interest: principles, status, and issues [Invited]

Jisoo Hong, Youngmin Kim, Hee-Jin Choi, Joonku Hahn, Jae-Hyeung Park, Hwi Kim, Sung-Wook Min, Ni Chen, and Byoungho Lee
Appl. Opt. 50(34) H87-H115 (2011)

Homogeneous light field model for interactive control of viewing parameters of integral imaging displays

Yin Xu, XiaoRui Wang, Yan Sun, and JianQi Zhang
Opt. Express 20(13) 14137-14151 (2012)

Advances in three-dimensional integral imaging: sensing, display, and applications [Invited]

Xiao Xiao, Bahram Javidi, Manuel Martinez-Corral, and Adrian Stern
Appl. Opt. 52(4) 546-560 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [Invited],” Appl. Opt. 50(34), H87–H115 (2011).
    [Crossref] [PubMed]
  2. B. Lee, S. Jung, and J.-H. Park, “Viewing-angle-enhanced integral imaging by lens switching,” Opt. Lett. 27(10), 818–820 (2002).
    [Crossref] [PubMed]
  3. X.-R. Wang, Q.-F. Bu, and D.-Y. Zhang, “Method for quantifying the effects of aliasing on the viewing resolution of integral images,” Opt. Lett. 34(21), 3382–3384 (2009).
    [Crossref] [PubMed]
  4. D.-Q. Pham, N. Kim, K.-C. Kwon, J.-H. Jung, K. Hong, B. Lee, and J.-H. Park, “Depth enhancement of integral imaging by using polymer-dispersed liquid-crystal films and a dual-depth configuration,” Opt. Lett. 35(18), 3135–3137 (2010).
    [Crossref] [PubMed]
  5. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36(7), 1598–1603 (1997).
    [Crossref] [PubMed]
  6. J.-S. Jang and B. Javidi, “Real-time all-optical three-dimensional integral imaging projector,” Appl. Opt. 41(23), 4866–4869 (2002).
    [Crossref] [PubMed]
  7. J. Arai, M. Okui, T. Yamashita, and F. Okano, “Integral three-dimensional television using a 2000-scanning-line video system,” Appl. Opt. 45(8), 1704–1712 (2006).
    [Crossref] [PubMed]
  8. Z. Kavehvash, K. Mehrany, and S. Bagheri, “Optimization of the lens-array structure for performance improvement of integral imaging,” Opt. Lett. 36(20), 3993–3995 (2011).
    [Crossref] [PubMed]
  9. H. Liao, M. Iwahara, N. Hata, and T. Dohi, “High-quality integral videography using a multiprojector,” Opt. Express 12(6), 1067–1076 (2004).
    [Crossref] [PubMed]
  10. Y. Xu, X. R. Wang, Y. Sun, and J. Q. Zhang, “Homogeneous light field model for interactive control of viewing parameters of integral imaging displays,” Opt. Express 20(13), 14137–14151 (2012).
    [Crossref] [PubMed]
  11. I. Moon and B. Javidi, “Three-dimensional recognition of photon-starved events using computational integral imaging and statistical sampling,” Opt. Lett. 34(6), 731–733 (2009).
    [Crossref] [PubMed]
  12. X.-Zh. Sang, F.-C. Fan, C.-C. Jiang, S. Choi, W.-H. Dou, C. Yu, and D. Xu, “Demonstration of a large-size real-time full-color three-dimensional display,” Opt. Lett. 34(24), 3803–3805 (2009).
    [Crossref] [PubMed]
  13. Y. Taguchi, T. Koike, K. Takahashi, and T. Naemura, “TransCAIP: A live 3D TV system using a camera array and an integral photography display with interactive control of vieding parameters,” Proc. IEEE 15(5), 841–852 (2009).
  14. H. Navarro, A. Dorado, G. Saavedra, A. Llavador, M. Martínez-Corral, and B. Javidi, “Is it worth using an array of cameras to capture the spatio-angular information of a 3D scene or is it enough with just two?” Proc. SPIE 8384, 838406, 838406-7 (2012).
    [Crossref]
  15. H.-H. Kang, J.-H. Lee, and E.-S. Kim, “Enhanced compression rate of integral images by using motion-compensated residual images in three-dimensional integral-imaging,” Opt. Express 20(5), 5440–5459 (2012).
    [Crossref] [PubMed]
  16. J. H. Lee and N. S. Lee, “variable block size motion estimation algorithm and its hardware architecture for H.264/AVC,” Proceedings of the 2004 Int. Symp. On Circuits and Syst., 3, 741–744 (2004).
  17. J.-J. Lee, D.-H. Shin, and B.-G. Lee, “Simple correction method of distorted elemental images using surface markers on lenslet array for computational integral imaging reconstruction,” Opt. Express 17(20), 18026–18037 (2009).
    [Crossref] [PubMed]
  18. B. Lee, S.-W. Min, and B. Javidi, “Theoretical analysis for three-dimensional integral imaging systems with double devices,” Appl. Opt. 41(23), 4856–4865 (2002).
    [Crossref] [PubMed]

2012 (3)

2011 (2)

2010 (1)

2009 (5)

2006 (1)

2004 (1)

2002 (3)

1997 (1)

Arai, J.

Bagheri, S.

Bu, Q.-F.

Chen, N.

Choi, H.-J.

Choi, S.

Dohi, T.

Dorado, A.

H. Navarro, A. Dorado, G. Saavedra, A. Llavador, M. Martínez-Corral, and B. Javidi, “Is it worth using an array of cameras to capture the spatio-angular information of a 3D scene or is it enough with just two?” Proc. SPIE 8384, 838406, 838406-7 (2012).
[Crossref]

Dou, W.-H.

Fan, F.-C.

Hahn, J.

Hata, N.

Hong, J.

Hong, K.

Hoshino, H.

Iwahara, M.

Jang, J.-S.

Javidi, B.

Jiang, C.-C.

Jung, J.-H.

Jung, S.

Kang, H.-H.

Kavehvash, Z.

Kim, E.-S.

Kim, H.

Kim, N.

Kim, Y.

Koike, T.

Y. Taguchi, T. Koike, K. Takahashi, and T. Naemura, “TransCAIP: A live 3D TV system using a camera array and an integral photography display with interactive control of vieding parameters,” Proc. IEEE 15(5), 841–852 (2009).

Kwon, K.-C.

Lee, B.

Lee, B.-G.

Lee, J.-H.

Lee, J.-J.

Liao, H.

Llavador, A.

H. Navarro, A. Dorado, G. Saavedra, A. Llavador, M. Martínez-Corral, and B. Javidi, “Is it worth using an array of cameras to capture the spatio-angular information of a 3D scene or is it enough with just two?” Proc. SPIE 8384, 838406, 838406-7 (2012).
[Crossref]

Martínez-Corral, M.

H. Navarro, A. Dorado, G. Saavedra, A. Llavador, M. Martínez-Corral, and B. Javidi, “Is it worth using an array of cameras to capture the spatio-angular information of a 3D scene or is it enough with just two?” Proc. SPIE 8384, 838406, 838406-7 (2012).
[Crossref]

Mehrany, K.

Min, S.-W.

Moon, I.

Naemura, T.

Y. Taguchi, T. Koike, K. Takahashi, and T. Naemura, “TransCAIP: A live 3D TV system using a camera array and an integral photography display with interactive control of vieding parameters,” Proc. IEEE 15(5), 841–852 (2009).

Navarro, H.

H. Navarro, A. Dorado, G. Saavedra, A. Llavador, M. Martínez-Corral, and B. Javidi, “Is it worth using an array of cameras to capture the spatio-angular information of a 3D scene or is it enough with just two?” Proc. SPIE 8384, 838406, 838406-7 (2012).
[Crossref]

Okano, F.

Okui, M.

Park, J.-H.

Pham, D.-Q.

Saavedra, G.

H. Navarro, A. Dorado, G. Saavedra, A. Llavador, M. Martínez-Corral, and B. Javidi, “Is it worth using an array of cameras to capture the spatio-angular information of a 3D scene or is it enough with just two?” Proc. SPIE 8384, 838406, 838406-7 (2012).
[Crossref]

Sang, X.-Zh.

Shin, D.-H.

Sun, Y.

Taguchi, Y.

Y. Taguchi, T. Koike, K. Takahashi, and T. Naemura, “TransCAIP: A live 3D TV system using a camera array and an integral photography display with interactive control of vieding parameters,” Proc. IEEE 15(5), 841–852 (2009).

Takahashi, K.

Y. Taguchi, T. Koike, K. Takahashi, and T. Naemura, “TransCAIP: A live 3D TV system using a camera array and an integral photography display with interactive control of vieding parameters,” Proc. IEEE 15(5), 841–852 (2009).

Wang, X. R.

Wang, X.-R.

Xu, D.

Xu, Y.

Yamashita, T.

Yu, C.

Yuyama, I.

Zhang, D.-Y.

Zhang, J. Q.

Appl. Opt. (5)

Opt. Express (4)

Opt. Lett. (6)

Proc. IEEE (1)

Y. Taguchi, T. Koike, K. Takahashi, and T. Naemura, “TransCAIP: A live 3D TV system using a camera array and an integral photography display with interactive control of vieding parameters,” Proc. IEEE 15(5), 841–852 (2009).

Proc. SPIE (1)

H. Navarro, A. Dorado, G. Saavedra, A. Llavador, M. Martínez-Corral, and B. Javidi, “Is it worth using an array of cameras to capture the spatio-angular information of a 3D scene or is it enough with just two?” Proc. SPIE 8384, 838406, 838406-7 (2012).
[Crossref]

Other (1)

J. H. Lee and N. S. Lee, “variable block size motion estimation algorithm and its hardware architecture for H.264/AVC,” Proceedings of the 2004 Int. Symp. On Circuits and Syst., 3, 741–744 (2004).

Supplementary Material (1)

» Media 1: MOV (4060 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic configuration of the real-time integral imaging pick-up and display system (Media 1)

Fig. 2
Fig. 2

Real-time optical pick-up integral image part: (a) Sketch, (b) Results.

Fig. 3
Fig. 3

Schematic diagram of pick-up part for integral imaging

Fig. 4
Fig. 4

EIs and 3D reconstructed images comparison results: (a) EIs generated by the proposed method, (b) EIs achieved by the conventional direct camera array pick-up method, (c) PSNR of each corresponding EI, (d) 3D reconstructed images of EIs 4(a), (e) 3D reconstructed images of EIs 4(b).

Fig. 5
Fig. 5

EIs generated by CGII

Fig. 6
Fig. 6

Reconstructed 3D images observed from different viewpoints: (a) 3D real scene 1 and (b) 3D real scene 2.

Fig. 7
Fig. 7

The process flow of the proposed method and the processing time of each process.

Tables (3)

Tables Icon

Table 1 Characteristics comparison between the conventional and OPII methods.

Tables Icon

Table 2 Parameters of Part II (CGII)

Tables Icon

Table 3 Parameters of Part III (PII)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

{ p x = ( x R (i,j) x R ( i , j ) ) / (i i ) p y = ( y R (i,j) y R ( i , j ) ) / (j j ) ,(i i ) ,(j j )
R (m,n) ={ x R (m,n) = x R (i,j) +(im) p x y R (m,n) = y R (i,j) +(jn) p y

Metrics