Abstract

We demonstrate experimentally new families of vector solitons with locked and precessing states of polarization for fundamental and multipulse soliton operations in a carbon nanotube mode-locked fiber laser with anomalous dispersion laser cavity.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett.88(9), 097903 (2002).
    [CrossRef] [PubMed]
  2. L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett.10(1), 268–273 (2010).
    [CrossRef] [PubMed]
  3. M. Spanner, K. M. Davitt, and M. Y. Ivanova, “Stability of angular confinement and rotational acceleration of a diatomic molecule in an optical centrifuge,” J. Chem. Phys.115(18), 8403–8410 (2001).
    [CrossRef]
  4. N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat Commun2, 362 (2011).
    [CrossRef] [PubMed]
  5. S. V. Sergeyev, “Spontaneous Light Polarization Symmetry Breaking for an anisotropic ring cavity dye laser,” Phys. Rev. A59(5), 3909–3917 (1999).
    [CrossRef]
  6. H. Zeghlache and A. Boulnois, “Polarization instability in lasers. I. Model and steady states of neodymium-doped fiber lasers,” Phys. Rev. A52(5), 4229–4242 (1995).
    [CrossRef] [PubMed]
  7. R. Leners and G. Stéphan, “Rate equation analysis of a multimode bipolarization Nd3+ doped fibre laser,” Quantum Semiclass. Opt.7(5), 757–794 (1995).
    [CrossRef]
  8. Yu. V. Loiko, A. M. Kul’minskii, and A. P. Voitovich, “Impact of the vectorial degrees of freedom on the nonlinear behavior of class B lasers,” Opt. Commun.210(1-2), 121–148 (2002).
    [CrossRef]
  9. G. D. Van Wiggeren and R. Roy, “High-speed fiber-optic polarization analyzer: measurements of the polarization dynamics of an erbium-doped fiber ring laser,” Opt. Commun.164(1-3), 107–120 (1999).
    [CrossRef]
  10. S. Sergeyev, K. O’Mahoney, S. Popov, and A. T. Friberg, “Coherence and anticoherence resonance in high-concentration erbium-doped fiber laser,” Opt. Lett.35(22), 3736–3738 (2010).
    [CrossRef] [PubMed]
  11. J. W. Haus, G. Shaulov, E. A. Kuzin, and J. Sanchez-Mondragon, “Vector soliton fiber lasers,” Opt. Lett.24(6), 376–378 (1999).
    [CrossRef] [PubMed]
  12. A. Martinez, M. Omura, M. Takiguchi, B. Xu, T. Kuga, T. Ishigure, and S. Yamashita, “Multi-solitons in a dispersion managed fiber laser using a carbon nanotube-coated taper fiber,” in Conference on Nonlinear Photonics (NP), Technical Digest (CD) (Optical Society of America, 2012) paper JT5A.29.
  13. Y. S. Fedotov, S. M. Kobtsev, R. N. Arif, A. G. Rozhin, C. Mou, and S. K. Turitsyn, “Spectrum-, pulsewidth-, and wavelength-switchable all-fiber mode-locked Yb laser with fiber based birefringent filter,” Opt. Express20(16), 17797–17805 (2012).
    [CrossRef] [PubMed]
  14. B. G. Bale, S. Boscolo, J. N. Kutz, and S. K. Turitsyn, “Intracavity dynamics in high-power mode-locked fiber lasers,” Phys. Rev. A81(3), 033828 (2010).
    [CrossRef]
  15. Ph. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics6(2), 84–92 (2012).
    [CrossRef]
  16. J. M. Soto-Crespo and N. Akhmediev, “Soliton as Strange Attractor: Nonlinear Synchronization and Chaos,” Phys. Rev. Lett.95(2), 024101 (2005).
    [CrossRef] [PubMed]
  17. F. Li, P. K. A. Wai, and J. N. Kutz, “Geometrical description of the onset of multipulsing in mode-locked laser cavities,” J. Opt. Soc. Am. B27(10), 2068–2077 (2010).
    [CrossRef]
  18. S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett.82(20), 3988–3991 (1999).
    [CrossRef]
  19. B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Polarization-locked temporal vector solitons in a fiber laser: experiment,” J. Opt. Soc. Am. B17(3), 354–365 (2000).
    [CrossRef]
  20. H. Zhang, D. Y. Tang, L. M. Zhao, and H. Y. Tam, “Induced solitons formed by cross-polarization coupling in a birefringent cavity fiber laser,” Opt. Lett.33(20), 2317–2319 (2008).
    [CrossRef] [PubMed]
  21. L. M. Zhao, D. Y. Tang, X. Wu, H. Zhang, and H. Y. Tam, “Coexistence of polarization-locked and polarization-rotating vector solitons in a fiber laser with SESAM,” Opt. Lett.34(20), 3059–3061 (2009).
    [CrossRef] [PubMed]
  22. L. M. Zhao, D. Y. Tang, H. Zhang, and X. Wu, “Polarization rotation locking of vector solitons in a fiber ring laser,” Opt. Express16(14), 10053–10058 (2008).
    [CrossRef] [PubMed]
  23. J. H. Wong, K. Wu, H. H. Liu, Ch. Ouyang, H. Wang, Sh. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun.284(7), 2007–2011 (2011).
    [CrossRef]
  24. D. Y. Tang, H. Zhang, L. M. Zhao, and X. Wu, “Observation of high-order polarization-locked vector solitons in a fiber laser,” Phys. Rev. Lett.101(15), 153904 (2008).
    [CrossRef] [PubMed]
  25. C. Mou, S. Sergeyev, A. Rozhin, and S. Turistyn, “All-fiber polarization locked vector soliton laser using carbon nanotubes,” Opt. Lett.36(19), 3831–3833 (2011).
    [CrossRef] [PubMed]
  26. C. Mou, S. Sergeyev, A. Rozhin, and S. K. Turitsyn, “Vector Solitons with Slowly Precessing States of Polarization,” in Conference on Nonlinear Photonics (NP), Technical Digest (CD) (Optical Society of America, 2012) paper NTu2D.
  27. D. G. Aronson, G. B. Ermentrout, and N. Kopell, “Amplitude response of coupled oscillators,” Physica D41(3), 403–449 (1990).
    [CrossRef]

2012

2011

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat Commun2, 362 (2011).
[CrossRef] [PubMed]

J. H. Wong, K. Wu, H. H. Liu, Ch. Ouyang, H. Wang, Sh. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun.284(7), 2007–2011 (2011).
[CrossRef]

C. Mou, S. Sergeyev, A. Rozhin, and S. Turistyn, “All-fiber polarization locked vector soliton laser using carbon nanotubes,” Opt. Lett.36(19), 3831–3833 (2011).
[CrossRef] [PubMed]

2010

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett.10(1), 268–273 (2010).
[CrossRef] [PubMed]

F. Li, P. K. A. Wai, and J. N. Kutz, “Geometrical description of the onset of multipulsing in mode-locked laser cavities,” J. Opt. Soc. Am. B27(10), 2068–2077 (2010).
[CrossRef]

B. G. Bale, S. Boscolo, J. N. Kutz, and S. K. Turitsyn, “Intracavity dynamics in high-power mode-locked fiber lasers,” Phys. Rev. A81(3), 033828 (2010).
[CrossRef]

S. Sergeyev, K. O’Mahoney, S. Popov, and A. T. Friberg, “Coherence and anticoherence resonance in high-concentration erbium-doped fiber laser,” Opt. Lett.35(22), 3736–3738 (2010).
[CrossRef] [PubMed]

2009

2008

2005

J. M. Soto-Crespo and N. Akhmediev, “Soliton as Strange Attractor: Nonlinear Synchronization and Chaos,” Phys. Rev. Lett.95(2), 024101 (2005).
[CrossRef] [PubMed]

2002

Yu. V. Loiko, A. M. Kul’minskii, and A. P. Voitovich, “Impact of the vectorial degrees of freedom on the nonlinear behavior of class B lasers,” Opt. Commun.210(1-2), 121–148 (2002).
[CrossRef]

G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett.88(9), 097903 (2002).
[CrossRef] [PubMed]

2001

M. Spanner, K. M. Davitt, and M. Y. Ivanova, “Stability of angular confinement and rotational acceleration of a diatomic molecule in an optical centrifuge,” J. Chem. Phys.115(18), 8403–8410 (2001).
[CrossRef]

2000

1999

G. D. Van Wiggeren and R. Roy, “High-speed fiber-optic polarization analyzer: measurements of the polarization dynamics of an erbium-doped fiber ring laser,” Opt. Commun.164(1-3), 107–120 (1999).
[CrossRef]

S. V. Sergeyev, “Spontaneous Light Polarization Symmetry Breaking for an anisotropic ring cavity dye laser,” Phys. Rev. A59(5), 3909–3917 (1999).
[CrossRef]

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett.82(20), 3988–3991 (1999).
[CrossRef]

J. W. Haus, G. Shaulov, E. A. Kuzin, and J. Sanchez-Mondragon, “Vector soliton fiber lasers,” Opt. Lett.24(6), 376–378 (1999).
[CrossRef] [PubMed]

1995

H. Zeghlache and A. Boulnois, “Polarization instability in lasers. I. Model and steady states of neodymium-doped fiber lasers,” Phys. Rev. A52(5), 4229–4242 (1995).
[CrossRef] [PubMed]

R. Leners and G. Stéphan, “Rate equation analysis of a multimode bipolarization Nd3+ doped fibre laser,” Quantum Semiclass. Opt.7(5), 757–794 (1995).
[CrossRef]

1990

D. G. Aronson, G. B. Ermentrout, and N. Kopell, “Amplitude response of coupled oscillators,” Physica D41(3), 403–449 (1990).
[CrossRef]

Aditya, Sh.

J. H. Wong, K. Wu, H. H. Liu, Ch. Ouyang, H. Wang, Sh. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun.284(7), 2007–2011 (2011).
[CrossRef]

Akhmediev, N.

Ph. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics6(2), 84–92 (2012).
[CrossRef]

J. M. Soto-Crespo and N. Akhmediev, “Soliton as Strange Attractor: Nonlinear Synchronization and Chaos,” Phys. Rev. Lett.95(2), 024101 (2005).
[CrossRef] [PubMed]

Akhmediev, N. N.

B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Polarization-locked temporal vector solitons in a fiber laser: experiment,” J. Opt. Soc. Am. B17(3), 354–365 (2000).
[CrossRef]

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett.82(20), 3988–3991 (1999).
[CrossRef]

Arif, R. N.

Aronson, D. G.

D. G. Aronson, G. B. Ermentrout, and N. Kopell, “Amplitude response of coupled oscillators,” Physica D41(3), 403–449 (1990).
[CrossRef]

Bale, B. G.

B. G. Bale, S. Boscolo, J. N. Kutz, and S. K. Turitsyn, “Intracavity dynamics in high-power mode-locked fiber lasers,” Phys. Rev. A81(3), 033828 (2010).
[CrossRef]

Bergman, K.

B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Polarization-locked temporal vector solitons in a fiber laser: experiment,” J. Opt. Soc. Am. B17(3), 354–365 (2000).
[CrossRef]

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett.82(20), 3988–3991 (1999).
[CrossRef]

Boscolo, S.

B. G. Bale, S. Boscolo, J. N. Kutz, and S. K. Turitsyn, “Intracavity dynamics in high-power mode-locked fiber lasers,” Phys. Rev. A81(3), 033828 (2010).
[CrossRef]

Boulnois, A.

H. Zeghlache and A. Boulnois, “Polarization instability in lasers. I. Model and steady states of neodymium-doped fiber lasers,” Phys. Rev. A52(5), 4229–4242 (1995).
[CrossRef] [PubMed]

Chernov, A.

J. H. Wong, K. Wu, H. H. Liu, Ch. Ouyang, H. Wang, Sh. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun.284(7), 2007–2011 (2011).
[CrossRef]

Collings, B. C.

B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Polarization-locked temporal vector solitons in a fiber laser: experiment,” J. Opt. Soc. Am. B17(3), 354–365 (2000).
[CrossRef]

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett.82(20), 3988–3991 (1999).
[CrossRef]

Cundiff, S. T.

B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Polarization-locked temporal vector solitons in a fiber laser: experiment,” J. Opt. Soc. Am. B17(3), 354–365 (2000).
[CrossRef]

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett.82(20), 3988–3991 (1999).
[CrossRef]

Davitt, K. M.

M. Spanner, K. M. Davitt, and M. Y. Ivanova, “Stability of angular confinement and rotational acceleration of a diatomic molecule in an optical centrifuge,” J. Chem. Phys.115(18), 8403–8410 (2001).
[CrossRef]

Ermentrout, G. B.

D. G. Aronson, G. B. Ermentrout, and N. Kopell, “Amplitude response of coupled oscillators,” Physica D41(3), 403–449 (1990).
[CrossRef]

Fedotov, Y. S.

Friberg, A. T.

Fu, S.

J. H. Wong, K. Wu, H. H. Liu, Ch. Ouyang, H. Wang, Sh. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun.284(7), 2007–2011 (2011).
[CrossRef]

Grelu, Ph.

Ph. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics6(2), 84–92 (2012).
[CrossRef]

Haus, J. W.

Higuchi, T.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat Commun2, 362 (2011).
[CrossRef] [PubMed]

Ivanova, M. Y.

M. Spanner, K. M. Davitt, and M. Y. Ivanova, “Stability of angular confinement and rotational acceleration of a diatomic molecule in an optical centrifuge,” J. Chem. Phys.115(18), 8403–8410 (2001).
[CrossRef]

Käll, M.

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett.10(1), 268–273 (2010).
[CrossRef] [PubMed]

Kanda, N.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat Commun2, 362 (2011).
[CrossRef] [PubMed]

Kelleher, E. J. R.

J. H. Wong, K. Wu, H. H. Liu, Ch. Ouyang, H. Wang, Sh. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun.284(7), 2007–2011 (2011).
[CrossRef]

Knox, W. H.

B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Polarization-locked temporal vector solitons in a fiber laser: experiment,” J. Opt. Soc. Am. B17(3), 354–365 (2000).
[CrossRef]

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett.82(20), 3988–3991 (1999).
[CrossRef]

Kobtsev, S. M.

Konishi, K.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat Commun2, 362 (2011).
[CrossRef] [PubMed]

Kopell, N.

D. G. Aronson, G. B. Ermentrout, and N. Kopell, “Amplitude response of coupled oscillators,” Physica D41(3), 403–449 (1990).
[CrossRef]

Kul’minskii, A. M.

Yu. V. Loiko, A. M. Kul’minskii, and A. P. Voitovich, “Impact of the vectorial degrees of freedom on the nonlinear behavior of class B lasers,” Opt. Commun.210(1-2), 121–148 (2002).
[CrossRef]

Kutz, J. N.

F. Li, P. K. A. Wai, and J. N. Kutz, “Geometrical description of the onset of multipulsing in mode-locked laser cavities,” J. Opt. Soc. Am. B27(10), 2068–2077 (2010).
[CrossRef]

B. G. Bale, S. Boscolo, J. N. Kutz, and S. K. Turitsyn, “Intracavity dynamics in high-power mode-locked fiber lasers,” Phys. Rev. A81(3), 033828 (2010).
[CrossRef]

Kuwata-Gonokami, M.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat Commun2, 362 (2011).
[CrossRef] [PubMed]

Kuzin, E. A.

Leners, R.

R. Leners and G. Stéphan, “Rate equation analysis of a multimode bipolarization Nd3+ doped fibre laser,” Quantum Semiclass. Opt.7(5), 757–794 (1995).
[CrossRef]

Li, F.

Liu, H. H.

J. H. Wong, K. Wu, H. H. Liu, Ch. Ouyang, H. Wang, Sh. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun.284(7), 2007–2011 (2011).
[CrossRef]

Loiko, Yu. V.

Yu. V. Loiko, A. M. Kul’minskii, and A. P. Voitovich, “Impact of the vectorial degrees of freedom on the nonlinear behavior of class B lasers,” Opt. Commun.210(1-2), 121–148 (2002).
[CrossRef]

Miljkovic, V. D.

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett.10(1), 268–273 (2010).
[CrossRef] [PubMed]

Mou, C.

O’Mahoney, K.

Obraztsova, E. D.

J. H. Wong, K. Wu, H. H. Liu, Ch. Ouyang, H. Wang, Sh. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun.284(7), 2007–2011 (2011).
[CrossRef]

Ouyang, Ch.

J. H. Wong, K. Wu, H. H. Liu, Ch. Ouyang, H. Wang, Sh. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun.284(7), 2007–2011 (2011).
[CrossRef]

Popov, S.

Roy, R.

G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett.88(9), 097903 (2002).
[CrossRef] [PubMed]

G. D. Van Wiggeren and R. Roy, “High-speed fiber-optic polarization analyzer: measurements of the polarization dynamics of an erbium-doped fiber ring laser,” Opt. Commun.164(1-3), 107–120 (1999).
[CrossRef]

Rozhin, A.

Rozhin, A. G.

Sanchez-Mondragon, J.

Sergeyev, S.

Sergeyev, S. V.

S. V. Sergeyev, “Spontaneous Light Polarization Symmetry Breaking for an anisotropic ring cavity dye laser,” Phys. Rev. A59(5), 3909–3917 (1999).
[CrossRef]

Shaulov, G.

Shimizu, H.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat Commun2, 362 (2011).
[CrossRef] [PubMed]

Shum, P.

J. H. Wong, K. Wu, H. H. Liu, Ch. Ouyang, H. Wang, Sh. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun.284(7), 2007–2011 (2011).
[CrossRef]

Soto-Crespo, J. M.

J. M. Soto-Crespo and N. Akhmediev, “Soliton as Strange Attractor: Nonlinear Synchronization and Chaos,” Phys. Rev. Lett.95(2), 024101 (2005).
[CrossRef] [PubMed]

B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Polarization-locked temporal vector solitons in a fiber laser: experiment,” J. Opt. Soc. Am. B17(3), 354–365 (2000).
[CrossRef]

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett.82(20), 3988–3991 (1999).
[CrossRef]

Spanner, M.

M. Spanner, K. M. Davitt, and M. Y. Ivanova, “Stability of angular confinement and rotational acceleration of a diatomic molecule in an optical centrifuge,” J. Chem. Phys.115(18), 8403–8410 (2001).
[CrossRef]

Stéphan, G.

R. Leners and G. Stéphan, “Rate equation analysis of a multimode bipolarization Nd3+ doped fibre laser,” Quantum Semiclass. Opt.7(5), 757–794 (1995).
[CrossRef]

Tam, H. Y.

Tang, D. Y.

Tong, L.

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett.10(1), 268–273 (2010).
[CrossRef] [PubMed]

Turistyn, S.

Turitsyn, S. K.

Van Wiggeren, G. D.

G. D. Van Wiggeren and R. Roy, “High-speed fiber-optic polarization analyzer: measurements of the polarization dynamics of an erbium-doped fiber ring laser,” Opt. Commun.164(1-3), 107–120 (1999).
[CrossRef]

VanWiggeren, G. D.

G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett.88(9), 097903 (2002).
[CrossRef] [PubMed]

Voitovich, A. P.

Yu. V. Loiko, A. M. Kul’minskii, and A. P. Voitovich, “Impact of the vectorial degrees of freedom on the nonlinear behavior of class B lasers,” Opt. Commun.210(1-2), 121–148 (2002).
[CrossRef]

Wai, P. K. A.

Wang, H.

J. H. Wong, K. Wu, H. H. Liu, Ch. Ouyang, H. Wang, Sh. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun.284(7), 2007–2011 (2011).
[CrossRef]

Wong, J. H.

J. H. Wong, K. Wu, H. H. Liu, Ch. Ouyang, H. Wang, Sh. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun.284(7), 2007–2011 (2011).
[CrossRef]

Wu, K.

J. H. Wong, K. Wu, H. H. Liu, Ch. Ouyang, H. Wang, Sh. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun.284(7), 2007–2011 (2011).
[CrossRef]

Wu, X.

Yoshioka, K.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat Commun2, 362 (2011).
[CrossRef] [PubMed]

Zeghlache, H.

H. Zeghlache and A. Boulnois, “Polarization instability in lasers. I. Model and steady states of neodymium-doped fiber lasers,” Phys. Rev. A52(5), 4229–4242 (1995).
[CrossRef] [PubMed]

Zhang, H.

Zhao, L. M.

J. Chem. Phys.

M. Spanner, K. M. Davitt, and M. Y. Ivanova, “Stability of angular confinement and rotational acceleration of a diatomic molecule in an optical centrifuge,” J. Chem. Phys.115(18), 8403–8410 (2001).
[CrossRef]

J. Opt. Soc. Am. B

Nano Lett.

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett.10(1), 268–273 (2010).
[CrossRef] [PubMed]

Nat Commun

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat Commun2, 362 (2011).
[CrossRef] [PubMed]

Nat. Photonics

Ph. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics6(2), 84–92 (2012).
[CrossRef]

Opt. Commun.

Yu. V. Loiko, A. M. Kul’minskii, and A. P. Voitovich, “Impact of the vectorial degrees of freedom on the nonlinear behavior of class B lasers,” Opt. Commun.210(1-2), 121–148 (2002).
[CrossRef]

G. D. Van Wiggeren and R. Roy, “High-speed fiber-optic polarization analyzer: measurements of the polarization dynamics of an erbium-doped fiber ring laser,” Opt. Commun.164(1-3), 107–120 (1999).
[CrossRef]

J. H. Wong, K. Wu, H. H. Liu, Ch. Ouyang, H. Wang, Sh. Aditya, P. Shum, S. Fu, E. J. R. Kelleher, A. Chernov, and E. D. Obraztsova, “Vector solitons in a laser passively mode-locked by single-wall carbon nanotubes,” Opt. Commun.284(7), 2007–2011 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

S. V. Sergeyev, “Spontaneous Light Polarization Symmetry Breaking for an anisotropic ring cavity dye laser,” Phys. Rev. A59(5), 3909–3917 (1999).
[CrossRef]

H. Zeghlache and A. Boulnois, “Polarization instability in lasers. I. Model and steady states of neodymium-doped fiber lasers,” Phys. Rev. A52(5), 4229–4242 (1995).
[CrossRef] [PubMed]

B. G. Bale, S. Boscolo, J. N. Kutz, and S. K. Turitsyn, “Intracavity dynamics in high-power mode-locked fiber lasers,” Phys. Rev. A81(3), 033828 (2010).
[CrossRef]

Phys. Rev. Lett.

G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett.88(9), 097903 (2002).
[CrossRef] [PubMed]

J. M. Soto-Crespo and N. Akhmediev, “Soliton as Strange Attractor: Nonlinear Synchronization and Chaos,” Phys. Rev. Lett.95(2), 024101 (2005).
[CrossRef] [PubMed]

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett.82(20), 3988–3991 (1999).
[CrossRef]

D. Y. Tang, H. Zhang, L. M. Zhao, and X. Wu, “Observation of high-order polarization-locked vector solitons in a fiber laser,” Phys. Rev. Lett.101(15), 153904 (2008).
[CrossRef] [PubMed]

Physica D

D. G. Aronson, G. B. Ermentrout, and N. Kopell, “Amplitude response of coupled oscillators,” Physica D41(3), 403–449 (1990).
[CrossRef]

Quantum Semiclass. Opt.

R. Leners and G. Stéphan, “Rate equation analysis of a multimode bipolarization Nd3+ doped fibre laser,” Quantum Semiclass. Opt.7(5), 757–794 (1995).
[CrossRef]

Other

A. Martinez, M. Omura, M. Takiguchi, B. Xu, T. Kuga, T. Ishigure, and S. Yamashita, “Multi-solitons in a dispersion managed fiber laser using a carbon nanotube-coated taper fiber,” in Conference on Nonlinear Photonics (NP), Technical Digest (CD) (Optical Society of America, 2012) paper JT5A.29.

C. Mou, S. Sergeyev, A. Rozhin, and S. K. Turitsyn, “Vector Solitons with Slowly Precessing States of Polarization,” in Conference on Nonlinear Photonics (NP), Technical Digest (CD) (Optical Society of America, 2012) paper NTu2D.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental set-up

Fig. 2
Fig. 2

Polarization locked vector soliton. (a) output optical spectrum, (b) single pulse train, (c) measured auto-correlation trace. Polarization dynamics in the time frame of 40-40 000 round trips (1 µs – 1 ms) in terms of (d) optical power of orthogonally polarized modes Ix (solid line) and Iy (dashed line), total power I = Ix + Iy (dotted line), (e) phase difference and degree of polarization, and (f) Stokes parameters at Poincaré sphere. Parameters: pump current Ip = 209, mA, period T = 38.9 ns, pulse width Tp = 455 fs, output power I = 0.15 mW, phase difference Δφπ and DOP = 61%.

Fig. 3
Fig. 3

Vector soliton with slowly evolving state of polarization for two-pulse operation. (a) output optical spectrum, (b) single pulse train, (c) measured auto-correlation trace. Polarization dynamics in the time frame of 40-40 000 round trips (1 µs – 1 ms) in terms of (d) optical power of orthogonally polarized modes Ix (solid line) and Iy (dashed line), total power I = Ix + Iy (dotted line), (e) phase difference and degree of polarization, and (f) Stokes parameters at Poincaré sphere. Parameters: pump current Ip = 306, mA, period T = 38.9 ns, pulse width Tp = 247 fs, output power I≈0.55 mW.

Fig. 4
Fig. 4

Vector soliton with slowly evolving state of polarization for five-pulse operation. (a) output optical spectrum, (b) single pulse train, (c) measured auto-correlation trace. Polarization dynamics in the time frame of 40-40 000 round trips (1 µs – 1 ms) in terms of (d) optical power of orthogonally polarized modes Ix (solid line) and Iy (dashed line), total power I = Ix + Iy (dotted line), (e) phase difference and degree of polarization, and (f) Stokes parameters at Poincaré sphere. Parameters: pump current Ip = 320 mA, period T = 38.9 ns, pulse width Tp = 292 fs, output power I≈0.65 mW.

Fig. 5
Fig. 5

Vector soliton with slowly evolving state of polarization for two-pulse operation. (a) output optical spectrum, (b) single pulse train, (c) measured auto-correlation trace. Polarization dynamics in the time frame of 40-40 000 round trips (1 µs – 1 ms) in terms of (d) optical power of orthogonally polarized modes Ix (solid line) and Iy (dashed line), total power I = Ix + Iy (dotted line), (e) phase difference and degree of polarization, and (f) Stokes parameters at Poincaré sphere. Parameters: pump current Ip = 355 mA, period T = 20 ns, pulse width Tp = 228 fs, output power I≈0.55 mW.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S 0 = | u | 2 + | v | 2 , S 1 = | u | 2 | v | 2 ,S = 2 2| u || v |cosΔφ,S = 3 2| u || v |sinΔφ, s i = S i S 1 2 + S 2 2 + S 3 2 ,DOP= S 1 2 + S 2 2 + S 3 2 S 0 ,(i=1,2,3).

Metrics