Abstract

We have proposed a sideband-controllable fiber soliton laser by means of chirped fiber Bragg gratings (CFBGs). Each side of the spectral sidebands of laser could be removed by using a CFBG with proper dispersion. Numerical simulations have well reproduced the experimental observations. The numerical and experimental investigations show that the generation of the unilateral sidebands is attributed to the CFBG-induced spectral filtering effect. Our work provides an effective way to manage conventional solitons with spectral sidebands.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Liu, “Interaction and motion of solitons in passively-mode-locked fiber lasers,” Phys. Rev. A84(5), 053828 (2011).
    [CrossRef]
  2. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics6(2), 84–92 (2012).
    [CrossRef]
  3. D. Mao, X. M. Liu, L. R. Wang, X. H. Hu, and H. Lu, “Partially polarized wave-breaking-free dissipative soliton with super-broad spectrum in a mode-locked fiber laser,” Laser Phys. Lett.8(2), 134–138 (2011).
    [CrossRef]
  4. L. R. Wang, X. M. Liu, Y. K. Gong, D. Mao, and H. Feng, “Ultra-broadband high-energy pulse generation and evolution in a compact erbium-doped all-fiber laser,” Laser Phys. Lett.8(5), 376–381 (2011).
    [CrossRef]
  5. X. Liu, “Dissipative soliton evolution in ultra-large normal-cavity-dispersion fiber lasers,” Opt. Express17(12), 9549–9557 (2009).
    [CrossRef] [PubMed]
  6. Y. Deng, M. Koch, F. Lu, G. Wicks, and W. Knox, “Colliding-pulse passive harmonic mode-locking in a femtosecond Yb-doped fiber laser with a semiconductor saturable absorber,” Opt. Express12(16), 3872–3877 (2004).
    [CrossRef] [PubMed]
  7. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
    [CrossRef] [PubMed]
  8. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express17(20), 17630–17635 (2009).
    [CrossRef] [PubMed]
  9. L. Yun and X. Liu, “Generation and Propagation of Bound-State Pulses in a Passively Mode-Locked Figure-Eight Laser,” IEEE Photon. J.4(2), 512–519 (2012).
    [CrossRef]
  10. X. Liu, “Mechanism of high-energy pulse generation without wave breaking in mode-locked fiber lasers,” Phys. Rev. A82(5), 053808 (2010).
    [CrossRef]
  11. L. R. Wang, X. M. Liu, and Y. K. Gong, “Giant-chirp oscillator for ultra-large net-normal-dispersion fiber lasers,” Laser Phys. Lett.7(1), 63–67 (2010).
    [CrossRef]
  12. X. Liu, “Soliton formation and evolution in passively-mode-locked lasers with ultralong anomalous-dispersion fibers,” Phys. Rev. A84(2), 023835 (2011).
    [CrossRef]
  13. K. Tamura, J. Jacobson, E. P. Ippen, H. A. Haus, and J. G. Fujimoto, “Unidirectional ring resonators for self-starting passively mode-locked lasers,” Opt. Lett.18(3), 220–222 (1993).
    [CrossRef] [PubMed]
  14. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-Similar Evolution of Parabolic Pulses in a Laser,” Phys. Rev. Lett.92(21), 213902 (2004).
    [CrossRef] [PubMed]
  15. X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A81(2), 023811 (2010).
    [CrossRef]
  16. X. Liu, “Dynamic evolution of temporal dissipative-soliton molecules in large normal path-averaged dispersion fiber lasers,” Phys. Rev. A82(6), 063834 (2010).
    [CrossRef]
  17. G. P. Agrawal, “Applications of Nonlinear Fiber Optics,” Fourth ed., (Academic Press, Boston, 2007).
  18. M. L. Dennis and I. N. Duling, “Experimental study of sideband generation in femtosecond fiber laser,” IEEE J. Quantum Electron.30(6), 1469–1477 (1994).
    [CrossRef]
  19. D. U. Noske and J. R. Taylor, “Spectral and temporal stabilization of a diode-pumped ytterbium-erbium fiber soliton laser,” Electron. Lett.29(25), 2200–2201 (1993).
    [CrossRef]
  20. Z. Luo, A. Luo, W. Xu, C. Song, Y. Gao, and W. Chen, “Sideband controllable soliton all-fiber ring laser passively mode-locked by nonlinear polarization rotation,” Laser Phys. Lett.6(8), 582–585 (2009).
    [CrossRef]
  21. O. Katz, Y. Sintov, Y. Nafcha, and Y. Glick, “Passively mode-locked ytterbium fiber laser utilizing chirped-fiber-Bragg-gratings for dispersion control,” Opt. Commun.269(1), 156–165 (2007).
    [CrossRef]
  22. X. Liu, “Numerical and experimental investigation of dissipative solitons in passively mode-locked fiber lasers with large net-normal-dispersion and high nonlinearity,” Opt. Express17(25), 22401–22416 (2009).
    [CrossRef] [PubMed]
  23. X. Liu and B. Lee, “A fast method for nonlinear Schrödinger equation,” IEEE Photon. Technol. Lett.15(11), 1549–1551 (2003).
    [CrossRef]

2012 (2)

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics6(2), 84–92 (2012).
[CrossRef]

L. Yun and X. Liu, “Generation and Propagation of Bound-State Pulses in a Passively Mode-Locked Figure-Eight Laser,” IEEE Photon. J.4(2), 512–519 (2012).
[CrossRef]

2011 (4)

D. Mao, X. M. Liu, L. R. Wang, X. H. Hu, and H. Lu, “Partially polarized wave-breaking-free dissipative soliton with super-broad spectrum in a mode-locked fiber laser,” Laser Phys. Lett.8(2), 134–138 (2011).
[CrossRef]

L. R. Wang, X. M. Liu, Y. K. Gong, D. Mao, and H. Feng, “Ultra-broadband high-energy pulse generation and evolution in a compact erbium-doped all-fiber laser,” Laser Phys. Lett.8(5), 376–381 (2011).
[CrossRef]

X. Liu, “Soliton formation and evolution in passively-mode-locked lasers with ultralong anomalous-dispersion fibers,” Phys. Rev. A84(2), 023835 (2011).
[CrossRef]

X. Liu, “Interaction and motion of solitons in passively-mode-locked fiber lasers,” Phys. Rev. A84(5), 053828 (2011).
[CrossRef]

2010 (4)

X. Liu, “Mechanism of high-energy pulse generation without wave breaking in mode-locked fiber lasers,” Phys. Rev. A82(5), 053808 (2010).
[CrossRef]

L. R. Wang, X. M. Liu, and Y. K. Gong, “Giant-chirp oscillator for ultra-large net-normal-dispersion fiber lasers,” Laser Phys. Lett.7(1), 63–67 (2010).
[CrossRef]

X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A81(2), 023811 (2010).
[CrossRef]

X. Liu, “Dynamic evolution of temporal dissipative-soliton molecules in large normal path-averaged dispersion fiber lasers,” Phys. Rev. A82(6), 063834 (2010).
[CrossRef]

2009 (4)

2008 (1)

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
[CrossRef] [PubMed]

2007 (1)

O. Katz, Y. Sintov, Y. Nafcha, and Y. Glick, “Passively mode-locked ytterbium fiber laser utilizing chirped-fiber-Bragg-gratings for dispersion control,” Opt. Commun.269(1), 156–165 (2007).
[CrossRef]

2004 (2)

2003 (1)

X. Liu and B. Lee, “A fast method for nonlinear Schrödinger equation,” IEEE Photon. Technol. Lett.15(11), 1549–1551 (2003).
[CrossRef]

1994 (1)

M. L. Dennis and I. N. Duling, “Experimental study of sideband generation in femtosecond fiber laser,” IEEE J. Quantum Electron.30(6), 1469–1477 (1994).
[CrossRef]

1993 (2)

D. U. Noske and J. R. Taylor, “Spectral and temporal stabilization of a diode-pumped ytterbium-erbium fiber soliton laser,” Electron. Lett.29(25), 2200–2201 (1993).
[CrossRef]

K. Tamura, J. Jacobson, E. P. Ippen, H. A. Haus, and J. G. Fujimoto, “Unidirectional ring resonators for self-starting passively mode-locked lasers,” Opt. Lett.18(3), 220–222 (1993).
[CrossRef] [PubMed]

Akhmediev, N.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics6(2), 84–92 (2012).
[CrossRef]

Bao, Q. L.

Buckley, J. R.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-Similar Evolution of Parabolic Pulses in a Laser,” Phys. Rev. Lett.92(21), 213902 (2004).
[CrossRef] [PubMed]

Chen, W.

Z. Luo, A. Luo, W. Xu, C. Song, Y. Gao, and W. Chen, “Sideband controllable soliton all-fiber ring laser passively mode-locked by nonlinear polarization rotation,” Laser Phys. Lett.6(8), 582–585 (2009).
[CrossRef]

Clark, W. G.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-Similar Evolution of Parabolic Pulses in a Laser,” Phys. Rev. Lett.92(21), 213902 (2004).
[CrossRef] [PubMed]

Deng, Y.

Dennis, M. L.

M. L. Dennis and I. N. Duling, “Experimental study of sideband generation in femtosecond fiber laser,” IEEE J. Quantum Electron.30(6), 1469–1477 (1994).
[CrossRef]

Duling, I. N.

M. L. Dennis and I. N. Duling, “Experimental study of sideband generation in femtosecond fiber laser,” IEEE J. Quantum Electron.30(6), 1469–1477 (1994).
[CrossRef]

Feng, H.

L. R. Wang, X. M. Liu, Y. K. Gong, D. Mao, and H. Feng, “Ultra-broadband high-energy pulse generation and evolution in a compact erbium-doped all-fiber laser,” Laser Phys. Lett.8(5), 376–381 (2011).
[CrossRef]

Ferrari, A. C.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
[CrossRef] [PubMed]

Fujimoto, J. G.

Gao, Y.

Z. Luo, A. Luo, W. Xu, C. Song, Y. Gao, and W. Chen, “Sideband controllable soliton all-fiber ring laser passively mode-locked by nonlinear polarization rotation,” Laser Phys. Lett.6(8), 582–585 (2009).
[CrossRef]

Glick, Y.

O. Katz, Y. Sintov, Y. Nafcha, and Y. Glick, “Passively mode-locked ytterbium fiber laser utilizing chirped-fiber-Bragg-gratings for dispersion control,” Opt. Commun.269(1), 156–165 (2007).
[CrossRef]

Gong, Y. K.

L. R. Wang, X. M. Liu, Y. K. Gong, D. Mao, and H. Feng, “Ultra-broadband high-energy pulse generation and evolution in a compact erbium-doped all-fiber laser,” Laser Phys. Lett.8(5), 376–381 (2011).
[CrossRef]

L. R. Wang, X. M. Liu, and Y. K. Gong, “Giant-chirp oscillator for ultra-large net-normal-dispersion fiber lasers,” Laser Phys. Lett.7(1), 63–67 (2010).
[CrossRef]

Grelu, P.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics6(2), 84–92 (2012).
[CrossRef]

Haus, H. A.

Hennrich, F.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
[CrossRef] [PubMed]

Hu, X. H.

D. Mao, X. M. Liu, L. R. Wang, X. H. Hu, and H. Lu, “Partially polarized wave-breaking-free dissipative soliton with super-broad spectrum in a mode-locked fiber laser,” Laser Phys. Lett.8(2), 134–138 (2011).
[CrossRef]

Ilday, F. Ö.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-Similar Evolution of Parabolic Pulses in a Laser,” Phys. Rev. Lett.92(21), 213902 (2004).
[CrossRef] [PubMed]

Ippen, E. P.

Jacobson, J.

Katz, O.

O. Katz, Y. Sintov, Y. Nafcha, and Y. Glick, “Passively mode-locked ytterbium fiber laser utilizing chirped-fiber-Bragg-gratings for dispersion control,” Opt. Commun.269(1), 156–165 (2007).
[CrossRef]

Knox, W.

Koch, M.

Lee, B.

X. Liu and B. Lee, “A fast method for nonlinear Schrödinger equation,” IEEE Photon. Technol. Lett.15(11), 1549–1551 (2003).
[CrossRef]

Liu, X.

L. Yun and X. Liu, “Generation and Propagation of Bound-State Pulses in a Passively Mode-Locked Figure-Eight Laser,” IEEE Photon. J.4(2), 512–519 (2012).
[CrossRef]

X. Liu, “Interaction and motion of solitons in passively-mode-locked fiber lasers,” Phys. Rev. A84(5), 053828 (2011).
[CrossRef]

X. Liu, “Soliton formation and evolution in passively-mode-locked lasers with ultralong anomalous-dispersion fibers,” Phys. Rev. A84(2), 023835 (2011).
[CrossRef]

X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A81(2), 023811 (2010).
[CrossRef]

X. Liu, “Dynamic evolution of temporal dissipative-soliton molecules in large normal path-averaged dispersion fiber lasers,” Phys. Rev. A82(6), 063834 (2010).
[CrossRef]

X. Liu, “Mechanism of high-energy pulse generation without wave breaking in mode-locked fiber lasers,” Phys. Rev. A82(5), 053808 (2010).
[CrossRef]

X. Liu, “Dissipative soliton evolution in ultra-large normal-cavity-dispersion fiber lasers,” Opt. Express17(12), 9549–9557 (2009).
[CrossRef] [PubMed]

X. Liu, “Numerical and experimental investigation of dissipative solitons in passively mode-locked fiber lasers with large net-normal-dispersion and high nonlinearity,” Opt. Express17(25), 22401–22416 (2009).
[CrossRef] [PubMed]

X. Liu and B. Lee, “A fast method for nonlinear Schrödinger equation,” IEEE Photon. Technol. Lett.15(11), 1549–1551 (2003).
[CrossRef]

Liu, X. M.

D. Mao, X. M. Liu, L. R. Wang, X. H. Hu, and H. Lu, “Partially polarized wave-breaking-free dissipative soliton with super-broad spectrum in a mode-locked fiber laser,” Laser Phys. Lett.8(2), 134–138 (2011).
[CrossRef]

L. R. Wang, X. M. Liu, Y. K. Gong, D. Mao, and H. Feng, “Ultra-broadband high-energy pulse generation and evolution in a compact erbium-doped all-fiber laser,” Laser Phys. Lett.8(5), 376–381 (2011).
[CrossRef]

L. R. Wang, X. M. Liu, and Y. K. Gong, “Giant-chirp oscillator for ultra-large net-normal-dispersion fiber lasers,” Laser Phys. Lett.7(1), 63–67 (2010).
[CrossRef]

Loh, K. P.

Lu, F.

Lu, H.

D. Mao, X. M. Liu, L. R. Wang, X. H. Hu, and H. Lu, “Partially polarized wave-breaking-free dissipative soliton with super-broad spectrum in a mode-locked fiber laser,” Laser Phys. Lett.8(2), 134–138 (2011).
[CrossRef]

Luo, A.

Z. Luo, A. Luo, W. Xu, C. Song, Y. Gao, and W. Chen, “Sideband controllable soliton all-fiber ring laser passively mode-locked by nonlinear polarization rotation,” Laser Phys. Lett.6(8), 582–585 (2009).
[CrossRef]

Luo, Z.

Z. Luo, A. Luo, W. Xu, C. Song, Y. Gao, and W. Chen, “Sideband controllable soliton all-fiber ring laser passively mode-locked by nonlinear polarization rotation,” Laser Phys. Lett.6(8), 582–585 (2009).
[CrossRef]

Mao, D.

D. Mao, X. M. Liu, L. R. Wang, X. H. Hu, and H. Lu, “Partially polarized wave-breaking-free dissipative soliton with super-broad spectrum in a mode-locked fiber laser,” Laser Phys. Lett.8(2), 134–138 (2011).
[CrossRef]

L. R. Wang, X. M. Liu, Y. K. Gong, D. Mao, and H. Feng, “Ultra-broadband high-energy pulse generation and evolution in a compact erbium-doped all-fiber laser,” Laser Phys. Lett.8(5), 376–381 (2011).
[CrossRef]

Milne, W. I.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
[CrossRef] [PubMed]

Nafcha, Y.

O. Katz, Y. Sintov, Y. Nafcha, and Y. Glick, “Passively mode-locked ytterbium fiber laser utilizing chirped-fiber-Bragg-gratings for dispersion control,” Opt. Commun.269(1), 156–165 (2007).
[CrossRef]

Noske, D. U.

D. U. Noske and J. R. Taylor, “Spectral and temporal stabilization of a diode-pumped ytterbium-erbium fiber soliton laser,” Electron. Lett.29(25), 2200–2201 (1993).
[CrossRef]

Rozhin, A. G.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
[CrossRef] [PubMed]

Scardaci, V.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
[CrossRef] [PubMed]

Sintov, Y.

O. Katz, Y. Sintov, Y. Nafcha, and Y. Glick, “Passively mode-locked ytterbium fiber laser utilizing chirped-fiber-Bragg-gratings for dispersion control,” Opt. Commun.269(1), 156–165 (2007).
[CrossRef]

Song, C.

Z. Luo, A. Luo, W. Xu, C. Song, Y. Gao, and W. Chen, “Sideband controllable soliton all-fiber ring laser passively mode-locked by nonlinear polarization rotation,” Laser Phys. Lett.6(8), 582–585 (2009).
[CrossRef]

Sun, Z.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
[CrossRef] [PubMed]

Tamura, K.

Tang, D. Y.

Taylor, J. R.

D. U. Noske and J. R. Taylor, “Spectral and temporal stabilization of a diode-pumped ytterbium-erbium fiber soliton laser,” Electron. Lett.29(25), 2200–2201 (1993).
[CrossRef]

Wang, F.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
[CrossRef] [PubMed]

Wang, L. R.

L. R. Wang, X. M. Liu, Y. K. Gong, D. Mao, and H. Feng, “Ultra-broadband high-energy pulse generation and evolution in a compact erbium-doped all-fiber laser,” Laser Phys. Lett.8(5), 376–381 (2011).
[CrossRef]

D. Mao, X. M. Liu, L. R. Wang, X. H. Hu, and H. Lu, “Partially polarized wave-breaking-free dissipative soliton with super-broad spectrum in a mode-locked fiber laser,” Laser Phys. Lett.8(2), 134–138 (2011).
[CrossRef]

L. R. Wang, X. M. Liu, and Y. K. Gong, “Giant-chirp oscillator for ultra-large net-normal-dispersion fiber lasers,” Laser Phys. Lett.7(1), 63–67 (2010).
[CrossRef]

White, I. H.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
[CrossRef] [PubMed]

Wicks, G.

Wise, F. W.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-Similar Evolution of Parabolic Pulses in a Laser,” Phys. Rev. Lett.92(21), 213902 (2004).
[CrossRef] [PubMed]

Xu, W.

Z. Luo, A. Luo, W. Xu, C. Song, Y. Gao, and W. Chen, “Sideband controllable soliton all-fiber ring laser passively mode-locked by nonlinear polarization rotation,” Laser Phys. Lett.6(8), 582–585 (2009).
[CrossRef]

Yun, L.

L. Yun and X. Liu, “Generation and Propagation of Bound-State Pulses in a Passively Mode-Locked Figure-Eight Laser,” IEEE Photon. J.4(2), 512–519 (2012).
[CrossRef]

Zhang, H.

Zhao, L. M.

Electron. Lett. (1)

D. U. Noske and J. R. Taylor, “Spectral and temporal stabilization of a diode-pumped ytterbium-erbium fiber soliton laser,” Electron. Lett.29(25), 2200–2201 (1993).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. L. Dennis and I. N. Duling, “Experimental study of sideband generation in femtosecond fiber laser,” IEEE J. Quantum Electron.30(6), 1469–1477 (1994).
[CrossRef]

IEEE Photon. J. (1)

L. Yun and X. Liu, “Generation and Propagation of Bound-State Pulses in a Passively Mode-Locked Figure-Eight Laser,” IEEE Photon. J.4(2), 512–519 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

X. Liu and B. Lee, “A fast method for nonlinear Schrödinger equation,” IEEE Photon. Technol. Lett.15(11), 1549–1551 (2003).
[CrossRef]

Laser Phys. Lett. (4)

Z. Luo, A. Luo, W. Xu, C. Song, Y. Gao, and W. Chen, “Sideband controllable soliton all-fiber ring laser passively mode-locked by nonlinear polarization rotation,” Laser Phys. Lett.6(8), 582–585 (2009).
[CrossRef]

L. R. Wang, X. M. Liu, and Y. K. Gong, “Giant-chirp oscillator for ultra-large net-normal-dispersion fiber lasers,” Laser Phys. Lett.7(1), 63–67 (2010).
[CrossRef]

D. Mao, X. M. Liu, L. R. Wang, X. H. Hu, and H. Lu, “Partially polarized wave-breaking-free dissipative soliton with super-broad spectrum in a mode-locked fiber laser,” Laser Phys. Lett.8(2), 134–138 (2011).
[CrossRef]

L. R. Wang, X. M. Liu, Y. K. Gong, D. Mao, and H. Feng, “Ultra-broadband high-energy pulse generation and evolution in a compact erbium-doped all-fiber laser,” Laser Phys. Lett.8(5), 376–381 (2011).
[CrossRef]

Nat. Nanotechnol. (1)

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008).
[CrossRef] [PubMed]

Nat. Photonics (1)

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics6(2), 84–92 (2012).
[CrossRef]

Opt. Commun. (1)

O. Katz, Y. Sintov, Y. Nafcha, and Y. Glick, “Passively mode-locked ytterbium fiber laser utilizing chirped-fiber-Bragg-gratings for dispersion control,” Opt. Commun.269(1), 156–165 (2007).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. A (5)

X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A81(2), 023811 (2010).
[CrossRef]

X. Liu, “Dynamic evolution of temporal dissipative-soliton molecules in large normal path-averaged dispersion fiber lasers,” Phys. Rev. A82(6), 063834 (2010).
[CrossRef]

X. Liu, “Interaction and motion of solitons in passively-mode-locked fiber lasers,” Phys. Rev. A84(5), 053828 (2011).
[CrossRef]

X. Liu, “Soliton formation and evolution in passively-mode-locked lasers with ultralong anomalous-dispersion fibers,” Phys. Rev. A84(2), 023835 (2011).
[CrossRef]

X. Liu, “Mechanism of high-energy pulse generation without wave breaking in mode-locked fiber lasers,” Phys. Rev. A82(5), 053808 (2010).
[CrossRef]

Phys. Rev. Lett. (1)

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-Similar Evolution of Parabolic Pulses in a Laser,” Phys. Rev. Lett.92(21), 213902 (2004).
[CrossRef] [PubMed]

Other (1)

G. P. Agrawal, “Applications of Nonlinear Fiber Optics,” Fourth ed., (Academic Press, Boston, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the experimental fiber laser cavity.

Fig. 2
Fig. 2

(a) Optical spectrum, (b) autocorrelation trace, (c) oscilloscope trace, and (d) RF spectrum of CS in the fiber laser without CFBG.

Fig. 3
Fig. 3

(a) Spectrum and (b) autocorrelation trace of left unilateral sidebands CS pulse with 7-nm CFBG.

Fig. 4
Fig. 4

(a) Spectrum and (b) autocorrelation trace of right unilateral sidebands CS pulse with 12-nm CFBG.

Fig. 5
Fig. 5

Optical spectra (black curves) and pulse profiles (blue curves) (a) without CFBG, (b) with 7-nm CFBG, and (c) with 12-nm CFBG.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A z +i β 2 2 2 A t 2 =gA+iγ | A | 2 A+ g 2 Ω g 2 2 A t 2 ,
g= g 0 /exp( E p / E s ),

Metrics