Abstract

An optical sensor based on One-Dimensional photonic crystal (1D PhC) stack mode-gap cavity has been designed, fabricated and characterized. By introducing quadratically modulated width tapering structure, a waveguide coupled 1D PhC stack mode-gap cavity with calculated Q-factor 1.74 × 107 and an effective mode volume 1.48(λ/nSi)3 has been designed. This cavity has been used for sensing applications by immersing into water-ethanol mixture of different volume concentrations. Transmission measurement shows a quality factor as high as 27, 000 can be achieved for the cavity immersed in analytes. A sensitivity of 269nm/RIU has been demonstrated.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hu and D. Dai, “Cascaded-ring optical sensor with enhanced sensitivity by using suspended Si-nanowires,” Photon. Technol. Lett.23(13), 842–844 (2011).
    [CrossRef]
  2. J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express16(6), 4296–4301 (2008).
    [CrossRef] [PubMed]
  3. A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q Microcavities,” Opt. Lett.31(12), 1896–1898 (2006).
    [CrossRef] [PubMed]
  4. H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale2(9), 1544–1559 (2010).
    [CrossRef] [PubMed]
  5. R. V. Nair and R. Vijaya, “Photonic crystal sensors: An overview,” Prog. Quantum Electron.34(3), 89–134 (2010).
    [CrossRef]
  6. M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys.73(9), 096501 (2010).
    [CrossRef]
  7. B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett.97(15), 151105 (2010).
    [CrossRef]
  8. T. Xu, N. Zhu, M. Y.-C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, “Pillar-array based optical sensor,” Opt. Express18(6), 5420–5425 (2010).
    [CrossRef] [PubMed]
  9. M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron.27(1), 101–105 (2011).
    [CrossRef] [PubMed]
  10. Q. Quan, F. Vollmer, I. B. Burgess, P. B. Deotare, I. W. Frank, Sindy, K. Y. Tang, R. Illic, and M. Lončar, “Ultrasensitive on-chip photonic crystal nanobeam sensor using optical bistability,” Quantum Electronics and Laser Science Conference (QELS) Baltimore, Maryland, May 1, (2011).
  11. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009).
    [CrossRef]
  12. B.-H. Ahn, J.-H. Kang, M.-K. Kim, J.-H. Song, B. Min, K.-S. Kim, and Y.-H. Lee, “One-dimensional parabolic-beam photonic crystal laser,” Opt. Express18(6), 5654–5660 (2010).
    [CrossRef] [PubMed]
  13. M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q Nanocavity with 1D Photonic Gap,” Opt. Express16(15), 11095–11102 (2008).
    [CrossRef] [PubMed]
  14. E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y.-G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express18(15), 15859–15869 (2010).
    [CrossRef] [PubMed]
  15. B. C. Richards, J. Hendrickson, J. D. Olitzky, R. Gibson, M. Gehl, K. Kieu, U. K. Khankhoje, A. Homyk, A. Scherer, J.-Y. Kim, Y.-H. Lee, G. Khitrova, and H. M. Gibbs, “Characterization of 1D photonic crystal nanobeam cavities using curved microfiber,” Opt. Express18(20), 20558–20564 (2010).
    [CrossRef] [PubMed]
  16. Y. Gong, B. Ellis, G. Shambat, T. Sarmiento, J. S. Harris, and J. Vuckovic, “Nanobeam photonic crystal cavity quantum dot laser,” Opt. Express18(9), 8781–8789 (2010).
    [CrossRef] [PubMed]
  17. Q. Quan and M. Lončar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express19(19), 18529–18542 (2011).
    [CrossRef] [PubMed]
  18. CRC Handbook of Chemistry and Physics, ed. David R. Lide (92nd Edition Internet Version 2012).

2011 (3)

J. Hu and D. Dai, “Cascaded-ring optical sensor with enhanced sensitivity by using suspended Si-nanowires,” Photon. Technol. Lett.23(13), 842–844 (2011).
[CrossRef]

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron.27(1), 101–105 (2011).
[CrossRef] [PubMed]

Q. Quan and M. Lončar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express19(19), 18529–18542 (2011).
[CrossRef] [PubMed]

2010 (9)

B.-H. Ahn, J.-H. Kang, M.-K. Kim, J.-H. Song, B. Min, K.-S. Kim, and Y.-H. Lee, “One-dimensional parabolic-beam photonic crystal laser,” Opt. Express18(6), 5654–5660 (2010).
[CrossRef] [PubMed]

E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y.-G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express18(15), 15859–15869 (2010).
[CrossRef] [PubMed]

B. C. Richards, J. Hendrickson, J. D. Olitzky, R. Gibson, M. Gehl, K. Kieu, U. K. Khankhoje, A. Homyk, A. Scherer, J.-Y. Kim, Y.-H. Lee, G. Khitrova, and H. M. Gibbs, “Characterization of 1D photonic crystal nanobeam cavities using curved microfiber,” Opt. Express18(20), 20558–20564 (2010).
[CrossRef] [PubMed]

Y. Gong, B. Ellis, G. Shambat, T. Sarmiento, J. S. Harris, and J. Vuckovic, “Nanobeam photonic crystal cavity quantum dot laser,” Opt. Express18(9), 8781–8789 (2010).
[CrossRef] [PubMed]

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale2(9), 1544–1559 (2010).
[CrossRef] [PubMed]

R. V. Nair and R. Vijaya, “Photonic crystal sensors: An overview,” Prog. Quantum Electron.34(3), 89–134 (2010).
[CrossRef]

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys.73(9), 096501 (2010).
[CrossRef]

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett.97(15), 151105 (2010).
[CrossRef]

T. Xu, N. Zhu, M. Y.-C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, “Pillar-array based optical sensor,” Opt. Express18(6), 5420–5425 (2010).
[CrossRef] [PubMed]

2009 (1)

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009).
[CrossRef]

2008 (2)

2006 (1)

Ahn, B.-H.

Aitchison, J. S.

Armani, A. M.

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale2(9), 1544–1559 (2010).
[CrossRef] [PubMed]

A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q Microcavities,” Opt. Lett.31(12), 1896–1898 (2006).
[CrossRef] [PubMed]

Chen, L.

Dai, D.

J. Hu and D. Dai, “Cascaded-ring optical sensor with enhanced sensitivity by using suspended Si-nanowires,” Photon. Technol. Lett.23(13), 842–844 (2011).
[CrossRef]

Deotare, P. B.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009).
[CrossRef]

Di Falco, A.

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron.27(1), 101–105 (2011).
[CrossRef] [PubMed]

Dündar, M. A.

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett.97(15), 151105 (2010).
[CrossRef]

Ellis, B.

Frank, I. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009).
[CrossRef]

Gehl, M.

Gibbs, H. M.

Gibson, R.

Gong, Y.

Harris, J. S.

He, S.

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett.97(15), 151105 (2010).
[CrossRef]

Hendrickson, J.

Homyk, A.

Hu, J.

J. Hu and D. Dai, “Cascaded-ring optical sensor with enhanced sensitivity by using suspended Si-nanowires,” Photon. Technol. Lett.23(13), 842–844 (2011).
[CrossRef]

Hunt, H. K.

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale2(9), 1544–1559 (2010).
[CrossRef] [PubMed]

Kang, J.-H.

Karouta, F.

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett.97(15), 151105 (2010).
[CrossRef]

Kawasaki, K.

Khan, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009).
[CrossRef]

Khankhoje, U. K.

Khitrova, G.

Kieu, K.

Kim, J.-Y.

Kim, K.-S.

Kim, M.-K.

Krauss, T. F.

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron.27(1), 101–105 (2011).
[CrossRef] [PubMed]

Kuramochi, E.

Lee, Y.-H.

Lipson, M.

Loncar, M.

Q. Quan and M. Lončar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express19(19), 18529–18542 (2011).
[CrossRef] [PubMed]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009).
[CrossRef]

McCutcheon, M. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009).
[CrossRef]

Min, B.

Nair, R. V.

R. V. Nair and R. Vijaya, “Photonic crystal sensors: An overview,” Prog. Quantum Electron.34(3), 89–134 (2010).
[CrossRef]

Notomi, M.

Nötzel, R.

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett.97(15), 151105 (2010).
[CrossRef]

Olitzky, J. D.

Quan, Q.

Richards, B. C.

Robinson, J. T.

Roh, Y.-G.

Ruda, H. E.

Sarmiento, T.

Scherer, A.

Scullion, M. G.

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron.27(1), 101–105 (2011).
[CrossRef] [PubMed]

Shambat, G.

Song, J.-H.

Tanabe, T.

Taniyama, H.

Vahala, K. J.

van der Heijden, R. W.

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett.97(15), 151105 (2010).
[CrossRef]

Vijaya, R.

R. V. Nair and R. Vijaya, “Photonic crystal sensors: An overview,” Prog. Quantum Electron.34(3), 89–134 (2010).
[CrossRef]

Vuckovic, J.

Wang, B.

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett.97(15), 151105 (2010).
[CrossRef]

Wosinski, L.

Xu, M. Y.-C.

Xu, T.

Zhu, N.

Appl. Phys. Lett. (2)

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett.97(15), 151105 (2010).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lončar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009).
[CrossRef]

Biosens. Bioelectron. (1)

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron.27(1), 101–105 (2011).
[CrossRef] [PubMed]

Nanoscale (1)

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale2(9), 1544–1559 (2010).
[CrossRef] [PubMed]

Opt. Express (8)

J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express16(6), 4296–4301 (2008).
[CrossRef] [PubMed]

T. Xu, N. Zhu, M. Y.-C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, “Pillar-array based optical sensor,” Opt. Express18(6), 5420–5425 (2010).
[CrossRef] [PubMed]

B.-H. Ahn, J.-H. Kang, M.-K. Kim, J.-H. Song, B. Min, K.-S. Kim, and Y.-H. Lee, “One-dimensional parabolic-beam photonic crystal laser,” Opt. Express18(6), 5654–5660 (2010).
[CrossRef] [PubMed]

M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q Nanocavity with 1D Photonic Gap,” Opt. Express16(15), 11095–11102 (2008).
[CrossRef] [PubMed]

E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y.-G. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express18(15), 15859–15869 (2010).
[CrossRef] [PubMed]

B. C. Richards, J. Hendrickson, J. D. Olitzky, R. Gibson, M. Gehl, K. Kieu, U. K. Khankhoje, A. Homyk, A. Scherer, J.-Y. Kim, Y.-H. Lee, G. Khitrova, and H. M. Gibbs, “Characterization of 1D photonic crystal nanobeam cavities using curved microfiber,” Opt. Express18(20), 20558–20564 (2010).
[CrossRef] [PubMed]

Y. Gong, B. Ellis, G. Shambat, T. Sarmiento, J. S. Harris, and J. Vuckovic, “Nanobeam photonic crystal cavity quantum dot laser,” Opt. Express18(9), 8781–8789 (2010).
[CrossRef] [PubMed]

Q. Quan and M. Lončar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express19(19), 18529–18542 (2011).
[CrossRef] [PubMed]

Opt. Lett. (1)

Photon. Technol. Lett. (1)

J. Hu and D. Dai, “Cascaded-ring optical sensor with enhanced sensitivity by using suspended Si-nanowires,” Photon. Technol. Lett.23(13), 842–844 (2011).
[CrossRef]

Prog. Quantum Electron. (1)

R. V. Nair and R. Vijaya, “Photonic crystal sensors: An overview,” Prog. Quantum Electron.34(3), 89–134 (2010).
[CrossRef]

Rep. Prog. Phys. (1)

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys.73(9), 096501 (2010).
[CrossRef]

Other (2)

Q. Quan, F. Vollmer, I. B. Burgess, P. B. Deotare, I. W. Frank, Sindy, K. Y. Tang, R. Illic, and M. Lončar, “Ultrasensitive on-chip photonic crystal nanobeam sensor using optical bistability,” Quantum Electronics and Laser Science Conference (QELS) Baltimore, Maryland, May 1, (2011).

CRC Handbook of Chemistry and Physics, ed. David R. Lide (92nd Edition Internet Version 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematics of width-modulated stack cavity, in which a = 400 nm, Wx = 0.3a and Wy quadratically modulated from Wy(0) = 2.5a in the center to Wy(20) = 5.0a on both sides; (b) Intensity profile (|Ey|2) calculated by 3D FDTD method; (c) Zoomed in picture of the framed part in (a) with annotations; (d) TE band structure of the mode-gap waveguides with Wy = 2.5a (red) and Wy = 5.0a (blue). The black dot indicates the resonant frequency.

Fig. 2
Fig. 2

Influence of (a) Wx, (b) Wy(0) and (c) number of Gaussian mirror segments (NG) on the Q-factor and sensitivity of width-modulated stack cavity sensor;(d) Wavelength shift and variance of Q-factor over different background refractive indices.

Fig. 3
Fig. 3

Scanning electron microscope (SEM) image of the fabricated stack cavity sensor.

Fig. 4
Fig. 4

(a) Measured transmission spectrum with estimated input power of about 6 μw. The dots are the experimental data and the line is the fit to Lorentzian lineshape. The full width at half maximum (FWHM) is about 58 pm; (b) The transmission spectrum taken as the cavity was immersed into water-ethanol mixture of different volume concentrations with estimated input power of about 180 μw (c) Wavelengths of the cavity mode in different background refractive indices; (d) Wavelengths of cavity mode in different background temperatures when the estimated input power is about 6 μw. The slope is about −0.025nm/°C.

Metrics