Abstract

Beams carried orbital angular momentum (OAM) are proposed for wireless optical interconnects on chip and a full scheme of encoding and decoding of OAM at single frequency is demonstrated with numerical simulation. With proposed structure, beams with OAM order of −3 to 4 are generated and four orders of them (0 to 3) are used to encode and decode data so that the increased data density of two folds is achieved. According to such results, we believe that if OAM is utilized as an additional dimension in wireless optical interconnects, the data density can be significantly increased since the adopted orders of OAM could be infinite in principle. Moreover, such improvement could be easily applied to the existing architecture without any more complex technology.

© 2012 OSA

Full Article  |  PDF Article

Corrections

Dengke Zhang, Xue Feng, and Yidong Huang, "Erratum: Encoding and decoding of orbital angular momentum for wireless optical interconnects on chip," Opt. Express 21, 17567-17567 (2013)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-21-15-17567

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45(11), 8185–8189 (1992).
    [CrossRef] [PubMed]
  2. M. Padgett, J. Courtial, and L. Allen, “Light's orbital angular momentum,” Phys. Today57(5), 35–40 (2004).
    [CrossRef]
  3. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys.3(5), 305–310 (2007).
    [CrossRef]
  4. L. Allen and M. J. Padgett, “The Poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density,” Opt. Commun.184(1-4), 67–71 (2000).
    [CrossRef]
  5. S. M. Barnett, “Optical angular-momentum flux,” J. Opt. B Quantum Semiclassical Opt.4(2), S7–S16 (2002).
    [CrossRef]
  6. N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt.43(12), 2485–2491 (1996).
    [CrossRef]
  7. H. He, M. E. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett.75(5), 826–829 (1995).
    [CrossRef] [PubMed]
  8. K. T. Gahagan and G. A. Swartzlander., “Optical vortex trapping of particles,” Opt. Lett.21(11), 827–829 (1996).
    [CrossRef] [PubMed]
  9. S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral phase contrast imaging in microscopy,” Opt. Express13(3), 689–694 (2005).
    [CrossRef] [PubMed]
  10. J. Lobera and J. Coupland, “Contrast enhancing techniques in digital holographic microscopy,” Meas. Sci. Technol.19(2), 025501 (2008).
    [CrossRef]
  11. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412(6844), 313–316 (2001).
    [CrossRef] [PubMed]
  12. B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett.99(8), 087701 (2007).
    [CrossRef] [PubMed]
  13. Z. Bouchal and R. Celechovský, “Mixed vortex states of light as information carriers,” New J. Phys.6, 131 (2004).
    [CrossRef]
  14. J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett.88(25), 257901 (2002).
    [CrossRef] [PubMed]
  15. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express12(22), 5448–5456 (2004).
    [CrossRef] [PubMed]
  16. R. Čelechovský and Z. Bouchal, “Optical implementation of the vortex information channel,” New J. Phys.9(9), 328 (2007).
    [CrossRef]
  17. F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys.14(3), 033001 (2012).
    [CrossRef]
  18. J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics6(7), 488–496 (2012).
    [CrossRef]
  19. R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE96(2), 230–247 (2008).
    [CrossRef]
  20. S. Richard, “The Achievements and Challenges of Silicon Photonics,” Adv. Opt. Technol.2008, 472305 (2008).
  21. L. Tsybeskov, D. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE97(7), 1161–1165 (2009).
    [CrossRef]
  22. M. Paniccia, “Integrating silicon photonics,” Nat. Photonics4(8), 498–499 (2010).
    [CrossRef]
  23. A. Alù and N. Engheta, “Wireless at the Nanoscale: Optical Interconnects using Matched Nanoantennas,” Phys. Rev. Lett.104(21), 213902 (2010).
    [CrossRef] [PubMed]
  24. S. M. Mohammadi, L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thidé, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital angular momentum in radio—a system study,” IEEE Trans. Antenn. Propag.58(2), 565–572 (2010).
    [CrossRef]
  25. Y. F. Yu, Y. H. Fu, X. M. Zhang, A. Q. Liu, T. Bourouina, T. Mei, Z. X. Shen, and D. P. Tsai, “Pure angular momentum generator using a ring resonator,” Opt. Express18(21), 21651–21662 (2010).
    [CrossRef] [PubMed]
  26. N. K. Fontaine, C. R. Doerr, and L. Buhl, “Efficient multiplexing and demultiplexing of free-space orbital angular momentum using photonic integrated circuits,” in Optical Fiber Communication Conference, California, USA, March 4, 2012.
  27. D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat Commun2, 267 (2011).
    [CrossRef] [PubMed]
  28. N. K. Fontaine, C. R. Doerr, M. A. Mestre, R. Ryf, P. Winzer, L. Buhl, Y. Sun, X. Jiang, and R. Lingle, “Space-division multiplexing and all-optical MIMO demultiplexing using a photonic integrated circuit,” in Optical Fiber Communication Conference, California, USA, March 4, 2012.
  29. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  30. G. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
    [CrossRef]
  31. H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett.26(2), 87–88 (1990).
    [CrossRef]

2012 (2)

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys.14(3), 033001 (2012).
[CrossRef]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics6(7), 488–496 (2012).
[CrossRef]

2011 (1)

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat Commun2, 267 (2011).
[CrossRef] [PubMed]

2010 (5)

M. Paniccia, “Integrating silicon photonics,” Nat. Photonics4(8), 498–499 (2010).
[CrossRef]

A. Alù and N. Engheta, “Wireless at the Nanoscale: Optical Interconnects using Matched Nanoantennas,” Phys. Rev. Lett.104(21), 213902 (2010).
[CrossRef] [PubMed]

S. M. Mohammadi, L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thidé, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital angular momentum in radio—a system study,” IEEE Trans. Antenn. Propag.58(2), 565–572 (2010).
[CrossRef]

Y. F. Yu, Y. H. Fu, X. M. Zhang, A. Q. Liu, T. Bourouina, T. Mei, Z. X. Shen, and D. P. Tsai, “Pure angular momentum generator using a ring resonator,” Opt. Express18(21), 21651–21662 (2010).
[CrossRef] [PubMed]

G. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
[CrossRef]

2009 (1)

L. Tsybeskov, D. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE97(7), 1161–1165 (2009).
[CrossRef]

2008 (3)

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE96(2), 230–247 (2008).
[CrossRef]

S. Richard, “The Achievements and Challenges of Silicon Photonics,” Adv. Opt. Technol.2008, 472305 (2008).

J. Lobera and J. Coupland, “Contrast enhancing techniques in digital holographic microscopy,” Meas. Sci. Technol.19(2), 025501 (2008).
[CrossRef]

2007 (3)

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett.99(8), 087701 (2007).
[CrossRef] [PubMed]

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys.3(5), 305–310 (2007).
[CrossRef]

R. Čelechovský and Z. Bouchal, “Optical implementation of the vortex information channel,” New J. Phys.9(9), 328 (2007).
[CrossRef]

2005 (2)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral phase contrast imaging in microscopy,” Opt. Express13(3), 689–694 (2005).
[CrossRef] [PubMed]

2004 (3)

M. Padgett, J. Courtial, and L. Allen, “Light's orbital angular momentum,” Phys. Today57(5), 35–40 (2004).
[CrossRef]

Z. Bouchal and R. Celechovský, “Mixed vortex states of light as information carriers,” New J. Phys.6, 131 (2004).
[CrossRef]

G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express12(22), 5448–5456 (2004).
[CrossRef] [PubMed]

2002 (2)

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett.88(25), 257901 (2002).
[CrossRef] [PubMed]

S. M. Barnett, “Optical angular-momentum flux,” J. Opt. B Quantum Semiclassical Opt.4(2), S7–S16 (2002).
[CrossRef]

2001 (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412(6844), 313–316 (2001).
[CrossRef] [PubMed]

2000 (1)

L. Allen and M. J. Padgett, “The Poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density,” Opt. Commun.184(1-4), 67–71 (2000).
[CrossRef]

1996 (2)

N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt.43(12), 2485–2491 (1996).
[CrossRef]

K. T. Gahagan and G. A. Swartzlander., “Optical vortex trapping of particles,” Opt. Lett.21(11), 827–829 (1996).
[CrossRef] [PubMed]

1995 (1)

H. He, M. E. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett.75(5), 826–829 (1995).
[CrossRef] [PubMed]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

1990 (1)

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett.26(2), 87–88 (1990).
[CrossRef]

Ahmed, N.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics6(7), 488–496 (2012).
[CrossRef]

Allen, L.

M. Padgett, J. Courtial, and L. Allen, “Light's orbital angular momentum,” Phys. Today57(5), 35–40 (2004).
[CrossRef]

L. Allen and M. J. Padgett, “The Poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density,” Opt. Commun.184(1-4), 67–71 (2000).
[CrossRef]

N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt.43(12), 2485–2491 (1996).
[CrossRef]

L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Alù, A.

A. Alù and N. Engheta, “Wireless at the Nanoscale: Optical Interconnects using Matched Nanoantennas,” Phys. Rev. Lett.104(21), 213902 (2010).
[CrossRef] [PubMed]

Barnett, S.

Barnett, S. M.

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett.88(25), 257901 (2002).
[CrossRef] [PubMed]

S. M. Barnett, “Optical angular-momentum flux,” J. Opt. B Quantum Semiclassical Opt.4(2), S7–S16 (2002).
[CrossRef]

Beausoleil, R. G.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE96(2), 230–247 (2008).
[CrossRef]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Bergman, J.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett.99(8), 087701 (2007).
[CrossRef] [PubMed]

Bergman, J. E. S.

S. M. Mohammadi, L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thidé, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital angular momentum in radio—a system study,” IEEE Trans. Antenn. Propag.58(2), 565–572 (2010).
[CrossRef]

Bernet, S.

Bianchini, A.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys.14(3), 033001 (2012).
[CrossRef]

Bouchal, Z.

R. Čelechovský and Z. Bouchal, “Optical implementation of the vortex information channel,” New J. Phys.9(9), 328 (2007).
[CrossRef]

Z. Bouchal and R. Celechovský, “Mixed vortex states of light as information carriers,” New J. Phys.6, 131 (2004).
[CrossRef]

Bourouina, T.

Carozzi, T. D.

S. M. Mohammadi, L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thidé, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital angular momentum in radio—a system study,” IEEE Trans. Antenn. Propag.58(2), 565–572 (2010).
[CrossRef]

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett.99(8), 087701 (2007).
[CrossRef] [PubMed]

Celechovský, R.

R. Čelechovský and Z. Bouchal, “Optical implementation of the vortex information channel,” New J. Phys.9(9), 328 (2007).
[CrossRef]

Z. Bouchal and R. Celechovský, “Mixed vortex states of light as information carriers,” New J. Phys.6, 131 (2004).
[CrossRef]

Coupland, J.

J. Lobera and J. Coupland, “Contrast enhancing techniques in digital holographic microscopy,” Meas. Sci. Technol.19(2), 025501 (2008).
[CrossRef]

Courtial, J.

M. Padgett, J. Courtial, and L. Allen, “Light's orbital angular momentum,” Phys. Today57(5), 35–40 (2004).
[CrossRef]

G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express12(22), 5448–5456 (2004).
[CrossRef] [PubMed]

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett.88(25), 257901 (2002).
[CrossRef] [PubMed]

Daldorff, L. K. S.

S. M. Mohammadi, L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thidé, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital angular momentum in radio—a system study,” IEEE Trans. Antenn. Propag.58(2), 565–572 (2010).
[CrossRef]

Dolinar, S.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics6(7), 488–496 (2012).
[CrossRef]

Dorfmüller, J.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat Commun2, 267 (2011).
[CrossRef] [PubMed]

Dregely, D.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat Commun2, 267 (2011).
[CrossRef] [PubMed]

Engheta, N.

A. Alù and N. Engheta, “Wireless at the Nanoscale: Optical Interconnects using Matched Nanoantennas,” Phys. Rev. Lett.104(21), 213902 (2010).
[CrossRef] [PubMed]

Fazal, I. M.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics6(7), 488–496 (2012).
[CrossRef]

Forozesh, K.

S. M. Mohammadi, L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thidé, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital angular momentum in radio—a system study,” IEEE Trans. Antenn. Propag.58(2), 565–572 (2010).
[CrossRef]

Franke-Arnold, S.

G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express12(22), 5448–5456 (2004).
[CrossRef] [PubMed]

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett.88(25), 257901 (2002).
[CrossRef] [PubMed]

Friese, M. E.

H. He, M. E. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett.75(5), 826–829 (1995).
[CrossRef] [PubMed]

Fu, Y. H.

Fürhapter, S.

Gahagan, K. T.

Gardes, F.

G. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
[CrossRef]

Gibson, G.

Giessen, H.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat Commun2, 267 (2011).
[CrossRef] [PubMed]

He, H.

H. He, M. E. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett.75(5), 826–829 (1995).
[CrossRef] [PubMed]

Heckenberg, N. R.

H. He, M. E. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett.75(5), 826–829 (1995).
[CrossRef] [PubMed]

Huang, H.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics6(7), 488–496 (2012).
[CrossRef]

Ibragimov, N. H.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett.99(8), 087701 (2007).
[CrossRef] [PubMed]

Ichikawa, M.

L. Tsybeskov, D. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE97(7), 1161–1165 (2009).
[CrossRef]

Isham, B.

S. M. Mohammadi, L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thidé, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital angular momentum in radio—a system study,” IEEE Trans. Antenn. Propag.58(2), 565–572 (2010).
[CrossRef]

Istomin, Y. N.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett.99(8), 087701 (2007).
[CrossRef] [PubMed]

Jesacher, A.

Karlsson, R. L.

S. M. Mohammadi, L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thidé, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital angular momentum in radio—a system study,” IEEE Trans. Antenn. Propag.58(2), 565–572 (2010).
[CrossRef]

Kato, K.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett.26(2), 87–88 (1990).
[CrossRef]

Kern, K.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat Commun2, 267 (2011).
[CrossRef] [PubMed]

Khamitova, R.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett.99(8), 087701 (2007).
[CrossRef] [PubMed]

Kuekes, P. J.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE96(2), 230–247 (2008).
[CrossRef]

Leach, J.

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett.88(25), 257901 (2002).
[CrossRef] [PubMed]

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Liu, A. Q.

Lobera, J.

J. Lobera and J. Coupland, “Contrast enhancing techniques in digital holographic microscopy,” Meas. Sci. Technol.19(2), 025501 (2008).
[CrossRef]

Lockwood, D.

L. Tsybeskov, D. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE97(7), 1161–1165 (2009).
[CrossRef]

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412(6844), 313–316 (2001).
[CrossRef] [PubMed]

Mari, E.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys.14(3), 033001 (2012).
[CrossRef]

Mashanovich, G.

G. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
[CrossRef]

Mei, T.

Mohammadi, S. M.

S. M. Mohammadi, L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thidé, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital angular momentum in radio—a system study,” IEEE Trans. Antenn. Propag.58(2), 565–572 (2010).
[CrossRef]

Molina-Terriza, G.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys.3(5), 305–310 (2007).
[CrossRef]

Nishi, I.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett.26(2), 87–88 (1990).
[CrossRef]

Padgett, M.

Padgett, M. J.

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett.88(25), 257901 (2002).
[CrossRef] [PubMed]

L. Allen and M. J. Padgett, “The Poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density,” Opt. Commun.184(1-4), 67–71 (2000).
[CrossRef]

N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt.43(12), 2485–2491 (1996).
[CrossRef]

Palmer, K.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett.99(8), 087701 (2007).
[CrossRef] [PubMed]

Paniccia, M.

M. Paniccia, “Integrating silicon photonics,” Nat. Photonics4(8), 498–499 (2010).
[CrossRef]

Pas’ko, V.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Reed, G.

G. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
[CrossRef]

Ren, Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics6(7), 488–496 (2012).
[CrossRef]

Richard, S.

S. Richard, “The Achievements and Challenges of Silicon Photonics,” Adv. Opt. Technol.2008, 472305 (2008).

Ritsch-Marte, M.

Romanato, F.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys.14(3), 033001 (2012).
[CrossRef]

Rubinsztein-Dunlop, H.

H. He, M. E. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett.75(5), 826–829 (1995).
[CrossRef] [PubMed]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Shen, Z. X.

Simpson, N. B.

N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt.43(12), 2485–2491 (1996).
[CrossRef]

Sjöholm, J.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett.99(8), 087701 (2007).
[CrossRef] [PubMed]

Snider, G. S.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE96(2), 230–247 (2008).
[CrossRef]

Sponselli, A.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys.14(3), 033001 (2012).
[CrossRef]

Spreeuw, R. J.

L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Suzuki, S.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett.26(2), 87–88 (1990).
[CrossRef]

Swartzlander, G. A.

Takahashi, H.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett.26(2), 87–88 (1990).
[CrossRef]

Tamburini, F.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys.14(3), 033001 (2012).
[CrossRef]

Taubert, R.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat Commun2, 267 (2011).
[CrossRef] [PubMed]

Then, H.

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett.99(8), 087701 (2007).
[CrossRef] [PubMed]

Thidé, B.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys.14(3), 033001 (2012).
[CrossRef]

S. M. Mohammadi, L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thidé, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital angular momentum in radio—a system study,” IEEE Trans. Antenn. Propag.58(2), 565–572 (2010).
[CrossRef]

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett.99(8), 087701 (2007).
[CrossRef] [PubMed]

Thomson, D.

G. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
[CrossRef]

Torner, L.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys.3(5), 305–310 (2007).
[CrossRef]

Torres, J. P.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys.3(5), 305–310 (2007).
[CrossRef]

Tsai, D. P.

Tsybeskov, L.

L. Tsybeskov, D. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE97(7), 1161–1165 (2009).
[CrossRef]

Tur, M.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics6(7), 488–496 (2012).
[CrossRef]

Vasnetsov, M.

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412(6844), 313–316 (2001).
[CrossRef] [PubMed]

Vogelgesang, R.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat Commun2, 267 (2011).
[CrossRef] [PubMed]

Wang, J.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics6(7), 488–496 (2012).
[CrossRef]

Wang, S. Y.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE96(2), 230–247 (2008).
[CrossRef]

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412(6844), 313–316 (2001).
[CrossRef] [PubMed]

Williams, R. S.

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE96(2), 230–247 (2008).
[CrossRef]

Willner, A. E.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics6(7), 488–496 (2012).
[CrossRef]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Yan, Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics6(7), 488–496 (2012).
[CrossRef]

Yang, J.-Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics6(7), 488–496 (2012).
[CrossRef]

Yu, Y. F.

Yue, Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics6(7), 488–496 (2012).
[CrossRef]

Zeilinger, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412(6844), 313–316 (2001).
[CrossRef] [PubMed]

Zhang, X. M.

Adv. Opt. Technol. (1)

S. Richard, “The Achievements and Challenges of Silicon Photonics,” Adv. Opt. Technol.2008, 472305 (2008).

Electron. Lett. (1)

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometre resolution,” Electron. Lett.26(2), 87–88 (1990).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

S. M. Mohammadi, L. K. S. Daldorff, J. E. S. Bergman, R. L. Karlsson, B. Thidé, K. Forozesh, T. D. Carozzi, and B. Isham, “Orbital angular momentum in radio—a system study,” IEEE Trans. Antenn. Propag.58(2), 565–572 (2010).
[CrossRef]

J. Mod. Opt. (1)

N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt.43(12), 2485–2491 (1996).
[CrossRef]

J. Opt. B Quantum Semiclassical Opt. (1)

S. M. Barnett, “Optical angular-momentum flux,” J. Opt. B Quantum Semiclassical Opt.4(2), S7–S16 (2002).
[CrossRef]

Meas. Sci. Technol. (1)

J. Lobera and J. Coupland, “Contrast enhancing techniques in digital holographic microscopy,” Meas. Sci. Technol.19(2), 025501 (2008).
[CrossRef]

Nat Commun (1)

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat Commun2, 267 (2011).
[CrossRef] [PubMed]

Nat. Photonics (3)

G. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010).
[CrossRef]

M. Paniccia, “Integrating silicon photonics,” Nat. Photonics4(8), 498–499 (2010).
[CrossRef]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics6(7), 488–496 (2012).
[CrossRef]

Nat. Phys. (1)

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys.3(5), 305–310 (2007).
[CrossRef]

Nature (2)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412(6844), 313–316 (2001).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

New J. Phys. (3)

Z. Bouchal and R. Celechovský, “Mixed vortex states of light as information carriers,” New J. Phys.6, 131 (2004).
[CrossRef]

R. Čelechovský and Z. Bouchal, “Optical implementation of the vortex information channel,” New J. Phys.9(9), 328 (2007).
[CrossRef]

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys.14(3), 033001 (2012).
[CrossRef]

Opt. Commun. (1)

L. Allen and M. J. Padgett, “The Poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density,” Opt. Commun.184(1-4), 67–71 (2000).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45(11), 8185–8189 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett. (4)

H. He, M. E. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett.75(5), 826–829 (1995).
[CrossRef] [PubMed]

J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, “Measuring the orbital angular momentum of a single photon,” Phys. Rev. Lett.88(25), 257901 (2002).
[CrossRef] [PubMed]

B. Thidé, H. Then, J. Sjöholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, “Utilization of photon orbital angular momentum in the low-frequency radio domain,” Phys. Rev. Lett.99(8), 087701 (2007).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Wireless at the Nanoscale: Optical Interconnects using Matched Nanoantennas,” Phys. Rev. Lett.104(21), 213902 (2010).
[CrossRef] [PubMed]

Phys. Today (1)

M. Padgett, J. Courtial, and L. Allen, “Light's orbital angular momentum,” Phys. Today57(5), 35–40 (2004).
[CrossRef]

Proc. IEEE (2)

R. G. Beausoleil, P. J. Kuekes, G. S. Snider, S. Y. Wang, and R. S. Williams, “Nanoelectronic and nanophotonic interconnect,” Proc. IEEE96(2), 230–247 (2008).
[CrossRef]

L. Tsybeskov, D. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE97(7), 1161–1165 (2009).
[CrossRef]

Other (2)

N. K. Fontaine, C. R. Doerr, and L. Buhl, “Efficient multiplexing and demultiplexing of free-space orbital angular momentum using photonic integrated circuits,” in Optical Fiber Communication Conference, California, USA, March 4, 2012.

N. K. Fontaine, C. R. Doerr, M. A. Mestre, R. Ryf, P. Winzer, L. Buhl, Y. Sun, X. Jiang, and R. Lingle, “Space-division multiplexing and all-optical MIMO demultiplexing using a photonic integrated circuit,” in Optical Fiber Communication Conference, California, USA, March 4, 2012.

Supplementary Material (8)

» Media 1: MPG (453 KB)     
» Media 2: MPG (452 KB)     
» Media 3: MPG (452 KB)     
» Media 4: MPG (452 KB)     
» Media 5: MPG (452 KB)     
» Media 6: MPG (452 KB)     
» Media 7: MPG (452 KB)     
» Media 8: MPG (452 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The proposed structure with one ring, one bus waveguide and eight download units and each download unit is constituted by an arc waveguide and a grating. Two strips around the ring represent p-doped and n-doped regions for electrical tuning of the ring. The inset shows the profile of the output grating.

Fig. 2
Fig. 2

(a) Optical power transmission at thru port of the structure and each resonant peak corresponds to a beam with OAM. Every eight resonant frequencies are grouped to generate eight different kinds of OAM of order l from −3 to 4. (b1-d1) Near field patterns of electrical component of OAM beams with order of 0, 1 and −1 (Media 1, Media 2, and Media 3). (b2-d2) Corresponding far field phase patterns of azimuthal electrical components. For l = 0, phase difference is zero along a circle, while for l = 1 and −1, both the phase shifts are 2π along a circle but with opposite rotation direction. (e) Near field patterns of beams with OAM order of 2 to 4, −2, and −3 (Media 4, Media 5, Media 6, Media 7, and Media 8).

Fig. 3
Fig. 3

In layer1, the input binary signals are transformed to quantized quaternary voltage signals and then applied on p-n junctions, and consequently four different types of OAM beams are generated. In layer2, the encoded beam is received by four elements and the signals are recovered by weighted superposition (weighting factors are represented by [ f 1 , f 2 , f 3 , f 4 ] ) among received lights and exported to two ports in binary format.

Fig. 4
Fig. 4

(a) The OAM order is tuned at the same frequency of 194.68 THz following tuning WGM order which is achieved by tuning of silicon refractive index. The OAM order is tuned to 1 or −1 from 0 with Δ n Si = 0.0116 or −0.0116 (b-d) Near field patterns for beams at frequency of 194.68 THz of l=0,1 ,and −1 corresponding to peaks shown in (a) . (e) Relationships of m and l versus the variation of silicon refractive index ( Δ n Si ). (f) Relationships of power transmission of ports (Port-1 and Port-2) and order of OAM versus variation of refractive index. At OAM order l=[ 0,1,2,3 ] , the corresponding recovered binary signals of [ 00,01,10,11 ] are recovered and exported through Port-1 and Port-2.

Fig. 5
Fig. 5

A schematic of structure for receiving and recovering signal. Four yellow rectangles represent the receiving elements, such as gratings or optical nano-antennas. Then the received lights are combined with weighting factors of [ f 1 , f 2 , f 3 , f 4 ] to recover the signals in binary form.

Fig. 6
Fig. 6

Schematic of transmission procedures for (a) normal system (including intensity modulator and photodetector) and (b) proposed system

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

βL=n 2π
n=N p+m
l={ m ( m4 ) m8 ( m>4 )
ReceivedlightsOutputports 1st2nd3rd4thport2port1 l=0 l=1 l=2 l=3 [ A r e j0(2π0/4) A r e j1(2π0/4) A r e j2(2π0/4) A r e j3(2π0/4) A r e j0(2π1/4) A r e j1(2π1/4) A r e j2(2π1/4) A r e j3(2π1/4) A r e j0(2π2/4) A r e j1(2π2/4) A r e j2(2π2/4) A r e j3(2π2/4) A r e j0(2π3/4) A r e j1(2π3/4) A r e j2(2π3/4) A r e j3(2π3/4) ][ f 1 f 2 f 3 f 4 ]=[ 0 0 0 1 1 0 1 1 ]
[ f 1 f 2 f 3 f 4 ]=[ 0.50+0.00i 0.50+0.00i -0.25+0.25i 0.00+0.00i 0.00+0.00i 0.50+0.00i 0.250.25i 0.00+0.00i ]=[ ( 1/2 ) e i0 (1/2 ) e i0 ( 2 /4 ) e i(3π/4) 0 0 (1/2 ) e i0 ( 2 /4 ) e i(5π/4) 0 ]

Metrics