Abstract

We demonstrate a novel dynamic BOTDA sensor based, for the first time to our knowledge, on the use of the Brillouin phase-shift in addition to the conventional Brillouin gain. This provides the advantage of measurements that are largely immune to variations in fiber attenuation or changes in pump pulse power. Furthermore, the optical detection deployed leads to an enhanced precision or measurement time and to the broadening of the measurement range. Proof-of-concept experiments demonstrate 1.66-kHz measurement rate with 1-m resolution over a 160 m sensing fiber length. Moreover, a measurement range of 2560 µε with a precision of 20 µε is successfully proved.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel)11(4), 4152–4187 (2011).
    [CrossRef] [PubMed]
  2. K. Y. Song and K. Hotate, “Distributed fiber strain sensor at 1 kHz sampling rate based on Brillouin optical correlation domain analysis,” IEEE Photon. Technol. Lett.19(23), 1928–1930 (2007).
    [CrossRef]
  3. K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett.36(11), 2062–2064 (2011).
    [CrossRef] [PubMed]
  4. R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Opt. Lett.34(17), 2613–2615 (2009).
    [CrossRef] [PubMed]
  5. Q. Cui, S. Pamukcu, W. Xiao, and M. Pervizpour, “Truly distributed fiber vibration sensor using pulse base BOTDA with wide dynamic range,” IEEE Photon. Technol. Lett.23(24), 1887–1889 (2011).
    [CrossRef]
  6. Y. Peled, A. Motil, and M. Tur, “Fast Brillouin optical time domain analysis for dynamic sensing,” Opt. Express20(8), 8584–8591 (2012).
    [CrossRef] [PubMed]
  7. A. Zornoza, M. Sagues, and A. Loayssa, “Self-heterodyne detection for SNR Improvement and Distributed phase shift measurements in BOTDA,” J. Lightwave Technol.30(8), 1066–1072 (2012).
    [CrossRef]
  8. M. González Herráez, K. Y. Song, and L. Thévenaz, “Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express14(4), 1395–1400 (2006).
    [CrossRef] [PubMed]
  9. A. Minardo, R. Bernini, and L. Zeni, “Stimulated Brillouin scattering modeling for high-resolution, time-domain distributed sensing,” Opt. Express15(16), 10397–10407 (2007).
    [CrossRef] [PubMed]
  10. J. Humlícek, E. Schmidt, L. Bocánek, R. Svehla, and K. Ploog, “Exciton line shapes of GaAs/AlAs multiple quantum wells,” Phys. Rev. B Condens. Matter48(8), 5241–5248 (1993).
    [CrossRef] [PubMed]
  11. A. Zornoza, D. Olier, M. Sagues, and A. Loayssa, “Brillouin distributed sensor using RF shaping of pump pulses,” Meas. Sci. Technol.21(9), 094021 (2010).
    [CrossRef]

2012 (2)

2011 (3)

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel)11(4), 4152–4187 (2011).
[CrossRef] [PubMed]

K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett.36(11), 2062–2064 (2011).
[CrossRef] [PubMed]

Q. Cui, S. Pamukcu, W. Xiao, and M. Pervizpour, “Truly distributed fiber vibration sensor using pulse base BOTDA with wide dynamic range,” IEEE Photon. Technol. Lett.23(24), 1887–1889 (2011).
[CrossRef]

2010 (1)

A. Zornoza, D. Olier, M. Sagues, and A. Loayssa, “Brillouin distributed sensor using RF shaping of pump pulses,” Meas. Sci. Technol.21(9), 094021 (2010).
[CrossRef]

2009 (1)

2007 (2)

K. Y. Song and K. Hotate, “Distributed fiber strain sensor at 1 kHz sampling rate based on Brillouin optical correlation domain analysis,” IEEE Photon. Technol. Lett.19(23), 1928–1930 (2007).
[CrossRef]

A. Minardo, R. Bernini, and L. Zeni, “Stimulated Brillouin scattering modeling for high-resolution, time-domain distributed sensing,” Opt. Express15(16), 10397–10407 (2007).
[CrossRef] [PubMed]

2006 (1)

1993 (1)

J. Humlícek, E. Schmidt, L. Bocánek, R. Svehla, and K. Ploog, “Exciton line shapes of GaAs/AlAs multiple quantum wells,” Phys. Rev. B Condens. Matter48(8), 5241–5248 (1993).
[CrossRef] [PubMed]

Bao, X.

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel)11(4), 4152–4187 (2011).
[CrossRef] [PubMed]

Bernini, R.

Bocánek, L.

J. Humlícek, E. Schmidt, L. Bocánek, R. Svehla, and K. Ploog, “Exciton line shapes of GaAs/AlAs multiple quantum wells,” Phys. Rev. B Condens. Matter48(8), 5241–5248 (1993).
[CrossRef] [PubMed]

Chen, L.

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel)11(4), 4152–4187 (2011).
[CrossRef] [PubMed]

Cui, Q.

Q. Cui, S. Pamukcu, W. Xiao, and M. Pervizpour, “Truly distributed fiber vibration sensor using pulse base BOTDA with wide dynamic range,” IEEE Photon. Technol. Lett.23(24), 1887–1889 (2011).
[CrossRef]

González Herráez, M.

He, Z.

Hotate, K.

K. Y. Song, M. Kishi, Z. He, and K. Hotate, “High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation,” Opt. Lett.36(11), 2062–2064 (2011).
[CrossRef] [PubMed]

K. Y. Song and K. Hotate, “Distributed fiber strain sensor at 1 kHz sampling rate based on Brillouin optical correlation domain analysis,” IEEE Photon. Technol. Lett.19(23), 1928–1930 (2007).
[CrossRef]

Humlícek, J.

J. Humlícek, E. Schmidt, L. Bocánek, R. Svehla, and K. Ploog, “Exciton line shapes of GaAs/AlAs multiple quantum wells,” Phys. Rev. B Condens. Matter48(8), 5241–5248 (1993).
[CrossRef] [PubMed]

Kishi, M.

Loayssa, A.

A. Zornoza, M. Sagues, and A. Loayssa, “Self-heterodyne detection for SNR Improvement and Distributed phase shift measurements in BOTDA,” J. Lightwave Technol.30(8), 1066–1072 (2012).
[CrossRef]

A. Zornoza, D. Olier, M. Sagues, and A. Loayssa, “Brillouin distributed sensor using RF shaping of pump pulses,” Meas. Sci. Technol.21(9), 094021 (2010).
[CrossRef]

Minardo, A.

Motil, A.

Olier, D.

A. Zornoza, D. Olier, M. Sagues, and A. Loayssa, “Brillouin distributed sensor using RF shaping of pump pulses,” Meas. Sci. Technol.21(9), 094021 (2010).
[CrossRef]

Pamukcu, S.

Q. Cui, S. Pamukcu, W. Xiao, and M. Pervizpour, “Truly distributed fiber vibration sensor using pulse base BOTDA with wide dynamic range,” IEEE Photon. Technol. Lett.23(24), 1887–1889 (2011).
[CrossRef]

Peled, Y.

Pervizpour, M.

Q. Cui, S. Pamukcu, W. Xiao, and M. Pervizpour, “Truly distributed fiber vibration sensor using pulse base BOTDA with wide dynamic range,” IEEE Photon. Technol. Lett.23(24), 1887–1889 (2011).
[CrossRef]

Ploog, K.

J. Humlícek, E. Schmidt, L. Bocánek, R. Svehla, and K. Ploog, “Exciton line shapes of GaAs/AlAs multiple quantum wells,” Phys. Rev. B Condens. Matter48(8), 5241–5248 (1993).
[CrossRef] [PubMed]

Sagues, M.

A. Zornoza, M. Sagues, and A. Loayssa, “Self-heterodyne detection for SNR Improvement and Distributed phase shift measurements in BOTDA,” J. Lightwave Technol.30(8), 1066–1072 (2012).
[CrossRef]

A. Zornoza, D. Olier, M. Sagues, and A. Loayssa, “Brillouin distributed sensor using RF shaping of pump pulses,” Meas. Sci. Technol.21(9), 094021 (2010).
[CrossRef]

Schmidt, E.

J. Humlícek, E. Schmidt, L. Bocánek, R. Svehla, and K. Ploog, “Exciton line shapes of GaAs/AlAs multiple quantum wells,” Phys. Rev. B Condens. Matter48(8), 5241–5248 (1993).
[CrossRef] [PubMed]

Song, K. Y.

Svehla, R.

J. Humlícek, E. Schmidt, L. Bocánek, R. Svehla, and K. Ploog, “Exciton line shapes of GaAs/AlAs multiple quantum wells,” Phys. Rev. B Condens. Matter48(8), 5241–5248 (1993).
[CrossRef] [PubMed]

Thévenaz, L.

Tur, M.

Xiao, W.

Q. Cui, S. Pamukcu, W. Xiao, and M. Pervizpour, “Truly distributed fiber vibration sensor using pulse base BOTDA with wide dynamic range,” IEEE Photon. Technol. Lett.23(24), 1887–1889 (2011).
[CrossRef]

Zeni, L.

Zornoza, A.

A. Zornoza, M. Sagues, and A. Loayssa, “Self-heterodyne detection for SNR Improvement and Distributed phase shift measurements in BOTDA,” J. Lightwave Technol.30(8), 1066–1072 (2012).
[CrossRef]

A. Zornoza, D. Olier, M. Sagues, and A. Loayssa, “Brillouin distributed sensor using RF shaping of pump pulses,” Meas. Sci. Technol.21(9), 094021 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

K. Y. Song and K. Hotate, “Distributed fiber strain sensor at 1 kHz sampling rate based on Brillouin optical correlation domain analysis,” IEEE Photon. Technol. Lett.19(23), 1928–1930 (2007).
[CrossRef]

Q. Cui, S. Pamukcu, W. Xiao, and M. Pervizpour, “Truly distributed fiber vibration sensor using pulse base BOTDA with wide dynamic range,” IEEE Photon. Technol. Lett.23(24), 1887–1889 (2011).
[CrossRef]

J. Lightwave Technol. (1)

Meas. Sci. Technol. (1)

A. Zornoza, D. Olier, M. Sagues, and A. Loayssa, “Brillouin distributed sensor using RF shaping of pump pulses,” Meas. Sci. Technol.21(9), 094021 (2010).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B Condens. Matter (1)

J. Humlícek, E. Schmidt, L. Bocánek, R. Svehla, and K. Ploog, “Exciton line shapes of GaAs/AlAs multiple quantum wells,” Phys. Rev. B Condens. Matter48(8), 5241–5248 (1993).
[CrossRef] [PubMed]

Sensors (Basel) (1)

X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors (Basel)11(4), 4152–4187 (2011).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic representation of SBS interaction and the received signal.

Fig. 2
Fig. 2

Calculated (a) amplitude at conventional BOTDA and (b) RF phase-shift of the proposed technique for different values of gB. In (b) the effect of a variation in BFS on the detected RF phase-shift is schematically depicted (black sinusoids) to highlight the dynamic measurement principle.

Fig. 3
Fig. 3

Phasor diagram of the detected RF signal.

Fig. 4
Fig. 4

Calculated BFS precision for the conventional BOTDA (dotted line) and phase-shift technique (dashed line), both with an equal SNR of 44dB, and for the phase-shift technique with 6-dB SNR enhancement (solid line).

Fig. 5
Fig. 5

Calculated (a) RF phase shift of the proposed technique for two Gaussian pulses of 40 MHz (red dashed line) and 30 MHz (black solid line) bandwidth and (b) precision of both pulses for a SNR equal to 44dB.

Fig. 6
Fig. 6

Experimental setup for the phase-shift-based BOTDA dynamic strain measurements.

Fig. 7
Fig. 7

(a) Amplitude and (b) phase-shift spectra for different attenuation values of the pulse and probe signals.

Fig. 8
Fig. 8

(a) BFS Precision achieved for the phase-shift technique using pulses of 9 ns with 64 averages (red dashed line) and 128 averages (blue dotted line), and for pulses of 10 ns with 64 averages (black solid line). (b) RF phase-shift spectra for pulses of 9 ns (red dashed line) and 10 ns (black solid line).

Fig. 9
Fig. 9

Fast-acquisition phase-shift-based measurement of the induced strain at the cantilever beam.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E(t)= E SB exp(j2π( ν 0 f RF )t)+ E 0 exp(j2π ν 0 t) + E SB exp(j2π( ν 0 + f RF )t) H SBS ( ν 0 + f RF ,z)
H SBS ( ν,z )=exp( G SBS +j φ SBS )( 1+ G SBS )exp( j φ SBS )
H SBS ( ν,z )=( 1+ g B Δ ν B 2 Δ ν B 2 +4Δ ν 2 )exp( j 2 g B ΔνΔ ν B Δ ν B 2 +4Δ ν 2 )
P(t) | f RF = E 0 E SB [ ( 1+ G SBS )cos( 2π f RF t+ φ SBS )cos( 2π f RF t ) ] 4 E 0 E SB g B Δ ν B Δ ν B 2 + ( 2Δν ) 2 cos( 2π f RF tarctan( 2 Δν Δ ν B ) )

Metrics