Abstract

We report the first experimental demonstration of broadband frequency comb generation from a single-frequency pump laser at 1-μm using parametric oscillation in a high-Q silicon-nitride ring resonator. The resonator dispersion is engineered to have a broad anomalous group velocity dispersion region near the pump wavelength for efficient parametric four-wave mixing. The comb spans 55 THz with a 230-GHz free spectral range. These results demonstrate the powerful advantage of dispersion engineering in chip-based devices for producing combs with a wide range of pump wavelengths.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Th. Udem, R. Holzwart, and T. W. Hänsch, “Optical frequency metrology,” Nature416, 233–237 (2002).
    [CrossRef] [PubMed]
  2. S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Science3, 825–828 (2001).
    [CrossRef]
  3. M. J. Thorpe and J. Ye, “Cavity enhanced direct frequency comb spctroscopy,” Appl. Phys. B91, 397–414 (2008).
    [CrossRef]
  4. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator based optical frequency combs,” Science332, 555–559 (2011).
    [CrossRef] [PubMed]
  5. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007).
    [CrossRef]
  6. I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF2 resonator,” Opt. Lett.45, 878–880 (2009).
    [CrossRef]
  7. I. H. Agha, Y. Okawachi, and A. L. Gaeta, “Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres,” Opt. Express17, 16209–16215 (2009).
    [CrossRef] [PubMed]
  8. D. Braje, L. Hollberg, and S. Diddams, “Brillouin-enhanced hyperparametric generation of an optical frequency comb in a monolithic highly nonlinear fiber cavity pumped by a cw laser,” Phys. Rev. Lett.102, 193902 (2009).
  9. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4, 41–45 (2010).
    [CrossRef]
  10. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects,” Nature Photon.4, 37–40 (2010).
    [CrossRef]
  11. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nature Photon.6, 369–373 (2012).
    [CrossRef]
  12. Scott B. Papp and Scott A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A84, 053833 (2011).
    [CrossRef]
  13. M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express19, 14233–14239 (2011).
    [CrossRef] [PubMed]
  14. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett.36, 3398–3400 (2011).
    [CrossRef] [PubMed]
  15. P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett.107, 063901 (2011).
    [CrossRef]
  16. I. S. Grudinin, L. Baumgartel, and N. Yu, “Frequency comb from a microresonator with engineered spectrum,” Opt. Express20, 6604–6609 (2012).
    [CrossRef] [PubMed]
  17. T. Herr, J. Riemensberger, C. Wang, K. Hartinger, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics of Kerr frequency comb formation in microresonators,” Nature Photon.6, 480–487 (2012).
    [CrossRef]
  18. S. B. Papp, P. Del’Haye, and S. A. Diddams,“Mechanical control of a microrod-resonator optical frequency comb,” arXiv:1205.4272v1.
  19. A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Normal group-velocity dispersion Kerr frequency comb,” Opt. Lett.37, 43–45 (2012).
    [CrossRef] [PubMed]
  20. Y. K. Chembo and Nan Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A82, 033801 (2010).
    [CrossRef]
  21. A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett.36, 2845–2847 (2011).
    [CrossRef] [PubMed]
  22. A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Transient regime of Kerr frequency comb formation,” arXiv:1111.3922v1.
  23. A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Hard and soft excitation regimes of Kerr frequency combs,” Phys. Rev. A85, 023830 (2012).
    [CrossRef]
  24. F. Quinlan, G. Ycas, S. Osterman, and S. A Diddams, “A 12.5 GHz-spaced optical frequency comb spanning ¿400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum.81, 063105 (2010).
    [CrossRef] [PubMed]
  25. A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Nature Photon.5, 293–296 (2011).
    [CrossRef]
  26. C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-Infrared optical frequency combs based on crystalline microresonators,” arXiv:119.2716v1.
  27. J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, “Dispersion engineered high-Q silicon nitride ring-resonators via atomic layer deposition,” arXiv:1207.3841v1.
  28. A. R. Johnson, Y. Okawachi, J. S. Levy, J. Cardenas, K. Saha, M. Lipson, and A. L. Gaeta, “Chip-based frequency combs with sub-100 GHz repetition rates,” Opt. Lett.37, 875–877 (2012).
    [CrossRef] [PubMed]
  29. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon.5, 770–776 (2011).
    [CrossRef]
  30. F. Ferdous, H. Miao, P. H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express20, 21033–21043 (2012).
    [CrossRef] [PubMed]
  31. J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” arXiv:1210.2994.
  32. K. Saha, Y. Okawachi, B. Shim, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “On-chip high repetition rate femtosecond source,” CTu3G.3, CLEO: Science and Innovations (2012).

2012 (7)

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nature Photon.6, 369–373 (2012).
[CrossRef]

T. Herr, J. Riemensberger, C. Wang, K. Hartinger, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics of Kerr frequency comb formation in microresonators,” Nature Photon.6, 480–487 (2012).
[CrossRef]

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Hard and soft excitation regimes of Kerr frequency combs,” Phys. Rev. A85, 023830 (2012).
[CrossRef]

A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Normal group-velocity dispersion Kerr frequency comb,” Opt. Lett.37, 43–45 (2012).
[CrossRef] [PubMed]

A. R. Johnson, Y. Okawachi, J. S. Levy, J. Cardenas, K. Saha, M. Lipson, and A. L. Gaeta, “Chip-based frequency combs with sub-100 GHz repetition rates,” Opt. Lett.37, 875–877 (2012).
[CrossRef] [PubMed]

I. S. Grudinin, L. Baumgartel, and N. Yu, “Frequency comb from a microresonator with engineered spectrum,” Opt. Express20, 6604–6609 (2012).
[CrossRef] [PubMed]

F. Ferdous, H. Miao, P. H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express20, 21033–21043 (2012).
[CrossRef] [PubMed]

2011 (8)

M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express19, 14233–14239 (2011).
[CrossRef] [PubMed]

A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett.36, 2845–2847 (2011).
[CrossRef] [PubMed]

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett.36, 3398–3400 (2011).
[CrossRef] [PubMed]

Scott B. Papp and Scott A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A84, 053833 (2011).
[CrossRef]

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett.107, 063901 (2011).
[CrossRef]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Nature Photon.5, 293–296 (2011).
[CrossRef]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon.5, 770–776 (2011).
[CrossRef]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator based optical frequency combs,” Science332, 555–559 (2011).
[CrossRef] [PubMed]

2010 (4)

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4, 41–45 (2010).
[CrossRef]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects,” Nature Photon.4, 37–40 (2010).
[CrossRef]

Y. K. Chembo and Nan Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A82, 033801 (2010).
[CrossRef]

F. Quinlan, G. Ycas, S. Osterman, and S. A Diddams, “A 12.5 GHz-spaced optical frequency comb spanning ¿400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum.81, 063105 (2010).
[CrossRef] [PubMed]

2009 (2)

2008 (1)

M. J. Thorpe and J. Ye, “Cavity enhanced direct frequency comb spctroscopy,” Appl. Phys. B91, 397–414 (2008).
[CrossRef]

2007 (1)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007).
[CrossRef]

2002 (1)

Th. Udem, R. Holzwart, and T. W. Hänsch, “Optical frequency metrology,” Nature416, 233–237 (2002).
[CrossRef] [PubMed]

2001 (1)

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Science3, 825–828 (2001).
[CrossRef]

1939 (1)

D. Braje, L. Hollberg, and S. Diddams, “Brillouin-enhanced hyperparametric generation of an optical frequency comb in a monolithic highly nonlinear fiber cavity pumped by a cw laser,” Phys. Rev. Lett.102, 193902 (2009).

Agha, I. H.

Aksyuk, V.

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007).
[CrossRef]

Baumgartel, L.

Bergquist, J. C.

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Science3, 825–828 (2001).
[CrossRef]

Braje, D.

D. Braje, L. Hollberg, and S. Diddams, “Brillouin-enhanced hyperparametric generation of an optical frequency comb in a monolithic highly nonlinear fiber cavity pumped by a cw laser,” Phys. Rev. Lett.102, 193902 (2009).

Brasch, V.

J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, “Dispersion engineered high-Q silicon nitride ring-resonators via atomic layer deposition,” arXiv:1207.3841v1.

Cardenas, J.

Chembo, Y. K.

Y. K. Chembo and Nan Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A82, 033801 (2010).
[CrossRef]

Chen, L.

F. Ferdous, H. Miao, P. H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express20, 21033–21043 (2012).
[CrossRef] [PubMed]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon.5, 770–776 (2011).
[CrossRef]

Chen, T.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nature Photon.6, 369–373 (2012).
[CrossRef]

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” arXiv:1210.2994.

Chu, S.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4, 41–45 (2010).
[CrossRef]

Curtis, E. A.

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Science3, 825–828 (2001).
[CrossRef]

Del’Haye, P.

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett.107, 063901 (2011).
[CrossRef]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007).
[CrossRef]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-Infrared optical frequency combs based on crystalline microresonators,” arXiv:119.2716v1.

S. B. Papp, P. Del’Haye, and S. A. Diddams,“Mechanical control of a microrod-resonator optical frequency comb,” arXiv:1205.4272v1.

Diddams, S.

D. Braje, L. Hollberg, and S. Diddams, “Brillouin-enhanced hyperparametric generation of an optical frequency comb in a monolithic highly nonlinear fiber cavity pumped by a cw laser,” Phys. Rev. Lett.102, 193902 (2009).

Diddams, S. A

F. Quinlan, G. Ycas, S. Osterman, and S. A Diddams, “A 12.5 GHz-spaced optical frequency comb spanning ¿400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum.81, 063105 (2010).
[CrossRef] [PubMed]

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator based optical frequency combs,” Science332, 555–559 (2011).
[CrossRef] [PubMed]

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Science3, 825–828 (2001).
[CrossRef]

S. B. Papp, P. Del’Haye, and S. A. Diddams,“Mechanical control of a microrod-resonator optical frequency comb,” arXiv:1205.4272v1.

Diddams, Scott A.

Scott B. Papp and Scott A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A84, 053833 (2011).
[CrossRef]

Drullinger, R. E.

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Science3, 825–828 (2001).
[CrossRef]

Duchesne, D.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4, 41–45 (2010).
[CrossRef]

Ferdous, F.

F. Ferdous, H. Miao, P. H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express20, 21033–21043 (2012).
[CrossRef] [PubMed]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon.5, 770–776 (2011).
[CrossRef]

Ferrera, M.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4, 41–45 (2010).
[CrossRef]

Foster, M. A.

M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Opt. Express19, 14233–14239 (2011).
[CrossRef] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects,” Nature Photon.4, 37–40 (2010).
[CrossRef]

K. Saha, Y. Okawachi, B. Shim, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “On-chip high repetition rate femtosecond source,” CTu3G.3, CLEO: Science and Innovations (2012).

Gaeta, A. L.

Gavartin, E.

T. Herr, J. Riemensberger, C. Wang, K. Hartinger, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics of Kerr frequency comb formation in microresonators,” Nature Photon.6, 480–487 (2012).
[CrossRef]

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett.107, 063901 (2011).
[CrossRef]

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects,” Nature Photon.4, 37–40 (2010).
[CrossRef]

Gorodetsky, M. L.

T. Herr, J. Riemensberger, C. Wang, K. Hartinger, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics of Kerr frequency comb formation in microresonators,” Nature Photon.6, 480–487 (2012).
[CrossRef]

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett.107, 063901 (2011).
[CrossRef]

Grudinin, I. S.

I. S. Grudinin, L. Baumgartel, and N. Yu, “Frequency comb from a microresonator with engineered spectrum,” Opt. Express20, 6604–6609 (2012).
[CrossRef] [PubMed]

I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF2 resonator,” Opt. Lett.45, 878–880 (2009).
[CrossRef]

Hansch, T. W.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-Infrared optical frequency combs based on crystalline microresonators,” arXiv:119.2716v1.

Hänsch, T. W.

Th. Udem, R. Holzwart, and T. W. Hänsch, “Optical frequency metrology,” Nature416, 233–237 (2002).
[CrossRef] [PubMed]

Hartinger, K.

T. Herr, J. Riemensberger, C. Wang, K. Hartinger, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics of Kerr frequency comb formation in microresonators,” Nature Photon.6, 480–487 (2012).
[CrossRef]

J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, “Dispersion engineered high-Q silicon nitride ring-resonators via atomic layer deposition,” arXiv:1207.3841v1.

Herr, T.

T. Herr, J. Riemensberger, C. Wang, K. Hartinger, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics of Kerr frequency comb formation in microresonators,” Nature Photon.6, 480–487 (2012).
[CrossRef]

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett.107, 063901 (2011).
[CrossRef]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-Infrared optical frequency combs based on crystalline microresonators,” arXiv:119.2716v1.

J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, “Dispersion engineered high-Q silicon nitride ring-resonators via atomic layer deposition,” arXiv:1207.3841v1.

Hofer, J.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-Infrared optical frequency combs based on crystalline microresonators,” arXiv:119.2716v1.

Hollberg, L.

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Science3, 825–828 (2001).
[CrossRef]

D. Braje, L. Hollberg, and S. Diddams, “Brillouin-enhanced hyperparametric generation of an optical frequency comb in a monolithic highly nonlinear fiber cavity pumped by a cw laser,” Phys. Rev. Lett.102, 193902 (2009).

Holzwart, R.

Th. Udem, R. Holzwart, and T. W. Hänsch, “Optical frequency metrology,” Nature416, 233–237 (2002).
[CrossRef] [PubMed]

Holzwarth, R.

T. Herr, J. Riemensberger, C. Wang, K. Hartinger, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics of Kerr frequency comb formation in microresonators,” Nature Photon.6, 480–487 (2012).
[CrossRef]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator based optical frequency combs,” Science332, 555–559 (2011).
[CrossRef] [PubMed]

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett.107, 063901 (2011).
[CrossRef]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007).
[CrossRef]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-Infrared optical frequency combs based on crystalline microresonators,” arXiv:119.2716v1.

J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, “Dispersion engineered high-Q silicon nitride ring-resonators via atomic layer deposition,” arXiv:1207.3841v1.

Ilchenko, V. S.

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Hard and soft excitation regimes of Kerr frequency combs,” Phys. Rev. A85, 023830 (2012).
[CrossRef]

A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett.36, 2845–2847 (2011).
[CrossRef] [PubMed]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Nature Photon.5, 293–296 (2011).
[CrossRef]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Transient regime of Kerr frequency comb formation,” arXiv:1111.3922v1.

Itano, W. M.

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Science3, 825–828 (2001).
[CrossRef]

Jeon, S.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nature Photon.6, 369–373 (2012).
[CrossRef]

Johnson, A. R.

Kippenberg, T. J.

T. Herr, J. Riemensberger, C. Wang, K. Hartinger, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics of Kerr frequency comb formation in microresonators,” Nature Photon.6, 480–487 (2012).
[CrossRef]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator based optical frequency combs,” Science332, 555–559 (2011).
[CrossRef] [PubMed]

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett.107, 063901 (2011).
[CrossRef]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007).
[CrossRef]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-Infrared optical frequency combs based on crystalline microresonators,” arXiv:119.2716v1.

J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, “Dispersion engineered high-Q silicon nitride ring-resonators via atomic layer deposition,” arXiv:1207.3841v1.

Kuzucu, O.

Leaird, D. E.

F. Ferdous, H. Miao, P. H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express20, 21033–21043 (2012).
[CrossRef] [PubMed]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon.5, 770–776 (2011).
[CrossRef]

Lee, H.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nature Photon.6, 369–373 (2012).
[CrossRef]

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” arXiv:1210.2994.

Lee, W. D.

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Science3, 825–828 (2001).
[CrossRef]

Levy, J. S.

Li, J.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nature Photon.6, 369–373 (2012).
[CrossRef]

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” arXiv:1210.2994.

Liang, W.

A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett.36, 2845–2847 (2011).
[CrossRef] [PubMed]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Nature Photon.5, 293–296 (2011).
[CrossRef]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Transient regime of Kerr frequency comb formation,” arXiv:1111.3922v1.

Lipson, M.

Little, B. E.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4, 41–45 (2010).
[CrossRef]

Maleki, L.

A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Normal group-velocity dispersion Kerr frequency comb,” Opt. Lett.37, 43–45 (2012).
[CrossRef] [PubMed]

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Hard and soft excitation regimes of Kerr frequency combs,” Phys. Rev. A85, 023830 (2012).
[CrossRef]

A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett.36, 2845–2847 (2011).
[CrossRef] [PubMed]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Nature Photon.5, 293–296 (2011).
[CrossRef]

I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF2 resonator,” Opt. Lett.45, 878–880 (2009).
[CrossRef]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Transient regime of Kerr frequency comb formation,” arXiv:1111.3922v1.

Matsko, A. B.

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Hard and soft excitation regimes of Kerr frequency combs,” Phys. Rev. A85, 023830 (2012).
[CrossRef]

A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Normal group-velocity dispersion Kerr frequency comb,” Opt. Lett.37, 43–45 (2012).
[CrossRef] [PubMed]

A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett.36, 2845–2847 (2011).
[CrossRef] [PubMed]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Nature Photon.5, 293–296 (2011).
[CrossRef]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Transient regime of Kerr frequency comb formation,” arXiv:1111.3922v1.

Miao, H.

F. Ferdous, H. Miao, P. H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express20, 21033–21043 (2012).
[CrossRef] [PubMed]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon.5, 770–776 (2011).
[CrossRef]

Morandotti, R.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4, 41–45 (2010).
[CrossRef]

Moss, D. J.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4, 41–45 (2010).
[CrossRef]

Oates, C. W.

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Science3, 825–828 (2001).
[CrossRef]

Okawachi, Y.

Osterman, S.

F. Quinlan, G. Ycas, S. Osterman, and S. A Diddams, “A 12.5 GHz-spaced optical frequency comb spanning ¿400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum.81, 063105 (2010).
[CrossRef] [PubMed]

Painter, O.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nature Photon.6, 369–373 (2012).
[CrossRef]

Papp, S. B.

S. B. Papp, P. Del’Haye, and S. A. Diddams,“Mechanical control of a microrod-resonator optical frequency comb,” arXiv:1205.4272v1.

Papp, Scott B.

Scott B. Papp and Scott A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A84, 053833 (2011).
[CrossRef]

Picque, N.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-Infrared optical frequency combs based on crystalline microresonators,” arXiv:119.2716v1.

Quinlan, F.

F. Quinlan, G. Ycas, S. Osterman, and S. A Diddams, “A 12.5 GHz-spaced optical frequency comb spanning ¿400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum.81, 063105 (2010).
[CrossRef] [PubMed]

Razzari, L.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4, 41–45 (2010).
[CrossRef]

Riemensberger, J.

T. Herr, J. Riemensberger, C. Wang, K. Hartinger, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics of Kerr frequency comb formation in microresonators,” Nature Photon.6, 480–487 (2012).
[CrossRef]

J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, “Dispersion engineered high-Q silicon nitride ring-resonators via atomic layer deposition,” arXiv:1207.3841v1.

Saha, K.

Savchenkov, A. A.

A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Normal group-velocity dispersion Kerr frequency comb,” Opt. Lett.37, 43–45 (2012).
[CrossRef] [PubMed]

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Hard and soft excitation regimes of Kerr frequency combs,” Phys. Rev. A85, 023830 (2012).
[CrossRef]

A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett.36, 2845–2847 (2011).
[CrossRef] [PubMed]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Nature Photon.5, 293–296 (2011).
[CrossRef]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Transient regime of Kerr frequency comb formation,” arXiv:1111.3922v1.

Schliesser, A.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007).
[CrossRef]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-Infrared optical frequency combs based on crystalline microresonators,” arXiv:119.2716v1.

Seidel, D.

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Hard and soft excitation regimes of Kerr frequency combs,” Phys. Rev. A85, 023830 (2012).
[CrossRef]

A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett.36, 2845–2847 (2011).
[CrossRef] [PubMed]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Nature Photon.5, 293–296 (2011).
[CrossRef]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Transient regime of Kerr frequency comb formation,” arXiv:1111.3922v1.

Shim, B.

K. Saha, Y. Okawachi, B. Shim, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “On-chip high repetition rate femtosecond source,” CTu3G.3, CLEO: Science and Innovations (2012).

Srinivasan, K.

F. Ferdous, H. Miao, P. H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express20, 21033–21043 (2012).
[CrossRef] [PubMed]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon.5, 770–776 (2011).
[CrossRef]

Thorpe, M. J.

M. J. Thorpe and J. Ye, “Cavity enhanced direct frequency comb spctroscopy,” Appl. Phys. B91, 397–414 (2008).
[CrossRef]

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects,” Nature Photon.4, 37–40 (2010).
[CrossRef]

Udem, Th.

Th. Udem, R. Holzwart, and T. W. Hänsch, “Optical frequency metrology,” Nature416, 233–237 (2002).
[CrossRef] [PubMed]

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Science3, 825–828 (2001).
[CrossRef]

Vahala, K. J.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nature Photon.6, 369–373 (2012).
[CrossRef]

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” arXiv:1210.2994.

Varghese, L. T.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon.5, 770–776 (2011).
[CrossRef]

Vogel, K. R.

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Science3, 825–828 (2001).
[CrossRef]

Wang, C.

T. Herr, J. Riemensberger, C. Wang, K. Hartinger, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics of Kerr frequency comb formation in microresonators,” Nature Photon.6, 480–487 (2012).
[CrossRef]

Wang, C. Y.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-Infrared optical frequency combs based on crystalline microresonators,” arXiv:119.2716v1.

Wang, J.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon.5, 770–776 (2011).
[CrossRef]

Wang, P. H.

Weiner, A. M.

F. Ferdous, H. Miao, P. H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express20, 21033–21043 (2012).
[CrossRef] [PubMed]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon.5, 770–776 (2011).
[CrossRef]

Wen, Y. H.

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007).
[CrossRef]

Wineland, D. J.

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Science3, 825–828 (2001).
[CrossRef]

Yang, K. Y.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nature Photon.6, 369–373 (2012).
[CrossRef]

Ycas, G.

F. Quinlan, G. Ycas, S. Osterman, and S. A Diddams, “A 12.5 GHz-spaced optical frequency comb spanning ¿400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum.81, 063105 (2010).
[CrossRef] [PubMed]

Ye, J.

M. J. Thorpe and J. Ye, “Cavity enhanced direct frequency comb spctroscopy,” Appl. Phys. B91, 397–414 (2008).
[CrossRef]

Yu, N.

I. S. Grudinin, L. Baumgartel, and N. Yu, “Frequency comb from a microresonator with engineered spectrum,” Opt. Express20, 6604–6609 (2012).
[CrossRef] [PubMed]

I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF2 resonator,” Opt. Lett.45, 878–880 (2009).
[CrossRef]

Yu, Nan

Y. K. Chembo and Nan Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A82, 033801 (2010).
[CrossRef]

Appl. Phys. B (1)

M. J. Thorpe and J. Ye, “Cavity enhanced direct frequency comb spctroscopy,” Appl. Phys. B91, 397–414 (2008).
[CrossRef]

Nat. Photonics (1)

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4, 41–45 (2010).
[CrossRef]

Nature (2)

Th. Udem, R. Holzwart, and T. W. Hänsch, “Optical frequency metrology,” Nature416, 233–237 (2002).
[CrossRef] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007).
[CrossRef]

Nature Photon. (5)

T. Herr, J. Riemensberger, C. Wang, K. Hartinger, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal dynamics of Kerr frequency comb formation in microresonators,” Nature Photon.6, 480–487 (2012).
[CrossRef]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Nature Photon.5, 293–296 (2011).
[CrossRef]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple wavelength oscillator for on-chip optical interconnects,” Nature Photon.4, 37–40 (2010).
[CrossRef]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nature Photon.6, 369–373 (2012).
[CrossRef]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line shaping of on-chip microring resonator frequency combs,” Nature Photon.5, 770–776 (2011).
[CrossRef]

Opt. Express (4)

Opt. Lett. (5)

Phys. Rev. A (3)

A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki, “Hard and soft excitation regimes of Kerr frequency combs,” Phys. Rev. A85, 023830 (2012).
[CrossRef]

Scott B. Papp and Scott A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A84, 053833 (2011).
[CrossRef]

Y. K. Chembo and Nan Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A82, 033801 (2010).
[CrossRef]

Phys. Rev. Lett. (2)

P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett.107, 063901 (2011).
[CrossRef]

D. Braje, L. Hollberg, and S. Diddams, “Brillouin-enhanced hyperparametric generation of an optical frequency comb in a monolithic highly nonlinear fiber cavity pumped by a cw laser,” Phys. Rev. Lett.102, 193902 (2009).

Rev. Sci. Instrum. (1)

F. Quinlan, G. Ycas, S. Osterman, and S. A Diddams, “A 12.5 GHz-spaced optical frequency comb spanning ¿400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum.81, 063105 (2010).
[CrossRef] [PubMed]

Science (2)

S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Science3, 825–828 (2001).
[CrossRef]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator based optical frequency combs,” Science332, 555–559 (2011).
[CrossRef] [PubMed]

Other (6)

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hansch, N. Picque, and T. J. Kippenberg, “Mid-Infrared optical frequency combs based on crystalline microresonators,” arXiv:119.2716v1.

J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, “Dispersion engineered high-Q silicon nitride ring-resonators via atomic layer deposition,” arXiv:1207.3841v1.

S. B. Papp, P. Del’Haye, and S. A. Diddams,“Mechanical control of a microrod-resonator optical frequency comb,” arXiv:1205.4272v1.

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Transient regime of Kerr frequency comb formation,” arXiv:1111.3922v1.

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” arXiv:1210.2994.

K. Saha, Y. Okawachi, B. Shim, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “On-chip high repetition rate femtosecond source,” CTu3G.3, CLEO: Science and Innovations (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Simulated dispersion curves for the fundamental TE-mode of a silicon-nitride waveguide with 600-nm height and with widths of 1000, 1100, and 1200 nm.

Fig. 2
Fig. 2

(a–e) Comb generation dynamics (from top to bottom) with a pump laser at 1064 nm. As the power oscillating inside the microring increases and threshold is reached, cavity modes that are maximally phase-matched experience gain and oscillate. When the pump is tuned deeper into resonance and power in the side modes is further increased, cascaded four-wave mixing takes place, leading to multiple cascaded oscillations and development of a wide bandwidth comb. (f) Frequency comb spectrum generated with 2 W of pump power. The comb spans 97.3 THz with a spacing of 230 GHz. (g) A zoomed in spectrum at the longer wavelength end. Comb teeth do not appear at every FSR due to lack of proper phase-matching and power buildup.

Fig. 3
Fig. 3

(a) Simulated dispersion curves for the fundamental TE-mode (dashed yellow) and TM-mode (solid red) of a silicon-nitride waveguide with a 725-nm height and 1000-nm width. (b) Broadband frequency comb at 1 μm spanning 55 THz and 230-GHz comb spacing. (c–d) Zoomed in spectra of the low and high wavelength regions of the frequency comb showing fully developed comb lines at every cavity mode.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ k = 2 k p k s k i + Δ k n l ,

Metrics