Abstract

We report the fabrication of femtosecond laser-induced, first-order waveguide Bragg gratings in lithium niobate in the low repetition rate regime. Type-II waveguides are written into an x-cut lithium niobate wafer and structured periodically to achieve narrowband reflections at wavelengths around 1550 nm. Additionally, electrodes are employed to allow for electro-optic tuning of the spectral response. We demonstrate wavelength control of the central reflection peak by applying a static external electric field. A maximum shift of the reflection peak of Δλ = 625 pm is observed.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A.-Pure Appl. Op.11, 013001 (2009).
    [CrossRef]
  2. J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett.89, 081108 (2006).
    [CrossRef]
  3. M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate,” Appl. Phys. Lett.93, 101111 (2008).
    [CrossRef]
  4. J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” phys. status solidi (a)208, 276–283 (2011).
    [CrossRef]
  5. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21, 1729–1731 (1996).
    [CrossRef] [PubMed]
  6. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71, 3329–3331 (1997).
    [CrossRef]
  7. H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-Cut lithium niobate,” IEEE Photon. Technol. Lett.19, 892–894 (2007).
    [CrossRef]
  8. A. H. Nejadmalayeri and P. R. Herman, “Ultrafast laser waveguide writing: lithium niobate and the role of circular polarization and picosecond pulse width,” Opt. Lett.31, 2987–2989 (2006).
    [CrossRef] [PubMed]
  9. Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser,” Opt. Lett.33, 2281–2283 (2008).
    [CrossRef] [PubMed]
  10. G. D. Marshall, R. J. Williams, N. Jovanovic, M. J. Steel, and M. J. Withford, “Point-by-point written fiber-Bragg gratings and their application in complex grating designs,” Opt. Express18, 19844–19859 (2010).
    [CrossRef] [PubMed]
  11. G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett.31, 2690–2691 (2006).
    [CrossRef] [PubMed]
  12. H. Zhang, S. M. Eaton, J. Li, and P. R. Herman, “Femtosecond laser direct writing of multiwavelength bragg grating waveguides in glass,” Opt. Lett.31, 3495–3497 (2006).
    [CrossRef] [PubMed]
  13. H. Zhang, S. M. Eaton, J. Li, A. H. Nejadmalayeri, and P. R. Herman, “Type II high-strength bragg grating waveguides photowritten with ultrashort laser pulses,” Opt. Express15, 4182–4191 (2007).
    [CrossRef] [PubMed]
  14. H. Zhang, S. M. Eaton, and P. R. Herman, “Single-step writing of bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser,” Opt. Lett.32, 2559–2561 (2007).
    [CrossRef] [PubMed]
  15. G. D. Marshall, P. Dekker, M. Ams, J. A. Piper, and M. J. Withford, “Directly written monolithic waveguide laser incorporating a distributed feedback waveguide-Bragg grating,” Opt. Lett.33, 956–958 (2008).
    [CrossRef] [PubMed]
  16. D. Grobnic, S. Mihailov, C. Smelser, F. Genereux, G. Baldenberger, and R. Vallee, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett.17, 1453–1455 (2005).
    [CrossRef]
  17. J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A.89, 127–132 (2007).
    [CrossRef]
  18. J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys. A.86, 165–170 (2006).
    [CrossRef]
  19. V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salath, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85, 1122–1124 (2004).
    [CrossRef]
  20. J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Waveguides in lithium niobate fabricated by focused ultrashort laser pulses,” Appl. Surf. Sci.253, 7899–7902 (2007).
    [CrossRef]
  21. G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quant. Electron.16, 373–375 (1984).
    [CrossRef]
  22. M. Ams, G. Marshall, D. Spence, and M. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express13, 5676–5681 (2005).
    [CrossRef] [PubMed]
  23. G. Brown, R. R. Thomson, A. K. Kar, N. D. Psaila, and H. T. Bookey, “Ultrafast laser inscription of bragg-grating waveguides using the multiscan technique,” Opt. Lett.37, 491–493 (2012).
    [CrossRef] [PubMed]
  24. N. Sanner, N. Huot, E. Audouard, C. Larat, J. Huignard, and B. Loiseaux, “Programmable focal spot shaping of amplified femtosecond laser pulses,” Opt. Lett.30, 1479–1481 (2005).
    [CrossRef] [PubMed]

2012 (1)

2011 (1)

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” phys. status solidi (a)208, 276–283 (2011).
[CrossRef]

2010 (1)

2009 (1)

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A.-Pure Appl. Op.11, 013001 (2009).
[CrossRef]

2008 (3)

2007 (5)

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Waveguides in lithium niobate fabricated by focused ultrashort laser pulses,” Appl. Surf. Sci.253, 7899–7902 (2007).
[CrossRef]

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A.89, 127–132 (2007).
[CrossRef]

H. Zhang, S. M. Eaton, J. Li, A. H. Nejadmalayeri, and P. R. Herman, “Type II high-strength bragg grating waveguides photowritten with ultrashort laser pulses,” Opt. Express15, 4182–4191 (2007).
[CrossRef] [PubMed]

H. Zhang, S. M. Eaton, and P. R. Herman, “Single-step writing of bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser,” Opt. Lett.32, 2559–2561 (2007).
[CrossRef] [PubMed]

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-Cut lithium niobate,” IEEE Photon. Technol. Lett.19, 892–894 (2007).
[CrossRef]

2006 (5)

2005 (3)

2004 (1)

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salath, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85, 1122–1124 (2004).
[CrossRef]

1997 (1)

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71, 3329–3331 (1997).
[CrossRef]

1996 (1)

1984 (1)

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quant. Electron.16, 373–375 (1984).
[CrossRef]

Ams, M.

Ancona, A.

M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate,” Appl. Phys. Lett.93, 101111 (2008).
[CrossRef]

Apostolopoulos, V.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salath, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85, 1122–1124 (2004).
[CrossRef]

Audouard, E.

Baldenberger, G.

D. Grobnic, S. Mihailov, C. Smelser, F. Genereux, G. Baldenberger, and R. Vallee, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett.17, 1453–1455 (2005).
[CrossRef]

Bookey, H. T.

G. Brown, R. R. Thomson, A. K. Kar, N. D. Psaila, and H. T. Bookey, “Ultrafast laser inscription of bragg-grating waveguides using the multiscan technique,” Opt. Lett.37, 491–493 (2012).
[CrossRef] [PubMed]

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-Cut lithium niobate,” IEEE Photon. Technol. Lett.19, 892–894 (2007).
[CrossRef]

Brown, G.

Burghoff, J.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A.89, 127–132 (2007).
[CrossRef]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Waveguides in lithium niobate fabricated by focused ultrashort laser pulses,” Appl. Surf. Sci.253, 7899–7902 (2007).
[CrossRef]

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys. A.86, 165–170 (2006).
[CrossRef]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett.89, 081108 (2006).
[CrossRef]

Cerullo, G.

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-Cut lithium niobate,” IEEE Photon. Technol. Lett.19, 892–894 (2007).
[CrossRef]

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salath, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85, 1122–1124 (2004).
[CrossRef]

Cheng, Y.

Chiodo, N.

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-Cut lithium niobate,” IEEE Photon. Technol. Lett.19, 892–894 (2007).
[CrossRef]

Colomb, T.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salath, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85, 1122–1124 (2004).
[CrossRef]

Davis, K. M.

Dekker, P.

Della Valle, G.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A.-Pure Appl. Op.11, 013001 (2009).
[CrossRef]

Depeursinge, C.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salath, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85, 1122–1124 (2004).
[CrossRef]

Döring, S.

M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate,” Appl. Phys. Lett.93, 101111 (2008).
[CrossRef]

Dreisow, F.

M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate,” Appl. Phys. Lett.93, 101111 (2008).
[CrossRef]

Dubs, C.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” phys. status solidi (a)208, 276–283 (2011).
[CrossRef]

Eaton, S. M.

Edwards, G. J.

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quant. Electron.16, 373–375 (1984).
[CrossRef]

Genereux, F.

D. Grobnic, S. Mihailov, C. Smelser, F. Genereux, G. Baldenberger, and R. Vallee, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett.17, 1453–1455 (2005).
[CrossRef]

Grebing, C.

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Waveguides in lithium niobate fabricated by focused ultrashort laser pulses,” Appl. Surf. Sci.253, 7899–7902 (2007).
[CrossRef]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett.89, 081108 (2006).
[CrossRef]

Grobnic, D.

D. Grobnic, S. Mihailov, C. Smelser, F. Genereux, G. Baldenberger, and R. Vallee, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett.17, 1453–1455 (2005).
[CrossRef]

Hartung, H.

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys. A.86, 165–170 (2006).
[CrossRef]

He, F.

Heinrich, M.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” phys. status solidi (a)208, 276–283 (2011).
[CrossRef]

M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate,” Appl. Phys. Lett.93, 101111 (2008).
[CrossRef]

Herman, P. R.

Hilbert, V.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” phys. status solidi (a)208, 276–283 (2011).
[CrossRef]

Hirao, K.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71, 3329–3331 (1997).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21, 1729–1731 (1996).
[CrossRef] [PubMed]

Huignard, J.

Huot, N.

Inouye, H.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71, 3329–3331 (1997).
[CrossRef]

Jovanovic, N.

Kar, A. K.

G. Brown, R. R. Thomson, A. K. Kar, N. D. Psaila, and H. T. Bookey, “Ultrafast laser inscription of bragg-grating waveguides using the multiscan technique,” Opt. Lett.37, 491–493 (2012).
[CrossRef] [PubMed]

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-Cut lithium niobate,” IEEE Photon. Technol. Lett.19, 892–894 (2007).
[CrossRef]

Laporta, P.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A.-Pure Appl. Op.11, 013001 (2009).
[CrossRef]

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salath, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85, 1122–1124 (2004).
[CrossRef]

Larat, C.

Laversenne, L.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salath, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85, 1122–1124 (2004).
[CrossRef]

Lawrence, M.

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quant. Electron.16, 373–375 (1984).
[CrossRef]

Li, J.

Liao, Y.

Loiseaux, B.

Marshall, G.

Marshall, G. D.

Midorikawa, K.

Mihailov, S.

D. Grobnic, S. Mihailov, C. Smelser, F. Genereux, G. Baldenberger, and R. Vallee, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett.17, 1453–1455 (2005).
[CrossRef]

Mitsuyu, T.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71, 3329–3331 (1997).
[CrossRef]

Miura, K.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71, 3329–3331 (1997).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21, 1729–1731 (1996).
[CrossRef] [PubMed]

Nejadmalayeri, A. H.

Nolte, S.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” phys. status solidi (a)208, 276–283 (2011).
[CrossRef]

M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate,” Appl. Phys. Lett.93, 101111 (2008).
[CrossRef]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Waveguides in lithium niobate fabricated by focused ultrashort laser pulses,” Appl. Surf. Sci.253, 7899–7902 (2007).
[CrossRef]

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A.89, 127–132 (2007).
[CrossRef]

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys. A.86, 165–170 (2006).
[CrossRef]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett.89, 081108 (2006).
[CrossRef]

Osellame, R.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A.-Pure Appl. Op.11, 013001 (2009).
[CrossRef]

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-Cut lithium niobate,” IEEE Photon. Technol. Lett.19, 892–894 (2007).
[CrossRef]

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salath, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85, 1122–1124 (2004).
[CrossRef]

Piper, J. A.

Pollnau, M.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salath, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85, 1122–1124 (2004).
[CrossRef]

Psaila, N. D.

G. Brown, R. R. Thomson, A. K. Kar, N. D. Psaila, and H. T. Bookey, “Ultrafast laser inscription of bragg-grating waveguides using the multiscan technique,” Opt. Lett.37, 491–493 (2012).
[CrossRef] [PubMed]

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-Cut lithium niobate,” IEEE Photon. Technol. Lett.19, 892–894 (2007).
[CrossRef]

Qiu, J.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71, 3329–3331 (1997).
[CrossRef]

Rademaker, K.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” phys. status solidi (a)208, 276–283 (2011).
[CrossRef]

Riedel, R.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” phys. status solidi (a)208, 276–283 (2011).
[CrossRef]

Ringleb, S.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” phys. status solidi (a)208, 276–283 (2011).
[CrossRef]

Ruske, J.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” phys. status solidi (a)208, 276–283 (2011).
[CrossRef]

Salath, R. P.

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salath, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85, 1122–1124 (2004).
[CrossRef]

Sanner, N.

Smelser, C.

D. Grobnic, S. Mihailov, C. Smelser, F. Genereux, G. Baldenberger, and R. Vallee, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett.17, 1453–1455 (2005).
[CrossRef]

Song, J.

Spence, D.

Steel, M. J.

Sugimoto, N.

Sugioka, K.

Sun, H.

Szameit, A.

M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate,” Appl. Phys. Lett.93, 101111 (2008).
[CrossRef]

Thomas, J.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” phys. status solidi (a)208, 276–283 (2011).
[CrossRef]

M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate,” Appl. Phys. Lett.93, 101111 (2008).
[CrossRef]

Thomson, R. R.

G. Brown, R. R. Thomson, A. K. Kar, N. D. Psaila, and H. T. Bookey, “Ultrafast laser inscription of bragg-grating waveguides using the multiscan technique,” Opt. Lett.37, 491–493 (2012).
[CrossRef] [PubMed]

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-Cut lithium niobate,” IEEE Photon. Technol. Lett.19, 892–894 (2007).
[CrossRef]

Tünnermann, A.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” phys. status solidi (a)208, 276–283 (2011).
[CrossRef]

M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate,” Appl. Phys. Lett.93, 101111 (2008).
[CrossRef]

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A.89, 127–132 (2007).
[CrossRef]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Waveguides in lithium niobate fabricated by focused ultrashort laser pulses,” Appl. Surf. Sci.253, 7899–7902 (2007).
[CrossRef]

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys. A.86, 165–170 (2006).
[CrossRef]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett.89, 081108 (2006).
[CrossRef]

Vallee, R.

D. Grobnic, S. Mihailov, C. Smelser, F. Genereux, G. Baldenberger, and R. Vallee, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett.17, 1453–1455 (2005).
[CrossRef]

Wang, X.

Williams, R. J.

Withford, M.

Withford, M. J.

Xu, J.

Xu, Z.

Zeil, P.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” phys. status solidi (a)208, 276–283 (2011).
[CrossRef]

Zhang, H.

Zhou, Z.

Appl. Phys. A. (2)

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A.89, 127–132 (2007).
[CrossRef]

J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys. A.86, 165–170 (2006).
[CrossRef]

Appl. Phys. Lett. (4)

V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salath, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:Sapphire,” Appl. Phys. Lett.85, 1122–1124 (2004).
[CrossRef]

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium niobate,” Appl. Phys. Lett.89, 081108 (2006).
[CrossRef]

M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate,” Appl. Phys. Lett.93, 101111 (2008).
[CrossRef]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett.71, 3329–3331 (1997).
[CrossRef]

Appl. Surf. Sci. (1)

J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Waveguides in lithium niobate fabricated by focused ultrashort laser pulses,” Appl. Surf. Sci.253, 7899–7902 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-Cut lithium niobate,” IEEE Photon. Technol. Lett.19, 892–894 (2007).
[CrossRef]

D. Grobnic, S. Mihailov, C. Smelser, F. Genereux, G. Baldenberger, and R. Vallee, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett.17, 1453–1455 (2005).
[CrossRef]

J. Opt. A.-Pure Appl. Op. (1)

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A.-Pure Appl. Op.11, 013001 (2009).
[CrossRef]

Opt. Express (3)

Opt. Lett. (9)

G. Brown, R. R. Thomson, A. K. Kar, N. D. Psaila, and H. T. Bookey, “Ultrafast laser inscription of bragg-grating waveguides using the multiscan technique,” Opt. Lett.37, 491–493 (2012).
[CrossRef] [PubMed]

N. Sanner, N. Huot, E. Audouard, C. Larat, J. Huignard, and B. Loiseaux, “Programmable focal spot shaping of amplified femtosecond laser pulses,” Opt. Lett.30, 1479–1481 (2005).
[CrossRef] [PubMed]

H. Zhang, S. M. Eaton, and P. R. Herman, “Single-step writing of bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser,” Opt. Lett.32, 2559–2561 (2007).
[CrossRef] [PubMed]

G. D. Marshall, P. Dekker, M. Ams, J. A. Piper, and M. J. Withford, “Directly written monolithic waveguide laser incorporating a distributed feedback waveguide-Bragg grating,” Opt. Lett.33, 956–958 (2008).
[CrossRef] [PubMed]

G. D. Marshall, M. Ams, and M. J. Withford, “Direct laser written waveguide-Bragg gratings in bulk fused silica,” Opt. Lett.31, 2690–2691 (2006).
[CrossRef] [PubMed]

H. Zhang, S. M. Eaton, J. Li, and P. R. Herman, “Femtosecond laser direct writing of multiwavelength bragg grating waveguides in glass,” Opt. Lett.31, 3495–3497 (2006).
[CrossRef] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21, 1729–1731 (1996).
[CrossRef] [PubMed]

A. H. Nejadmalayeri and P. R. Herman, “Ultrafast laser waveguide writing: lithium niobate and the role of circular polarization and picosecond pulse width,” Opt. Lett.31, 2987–2989 (2006).
[CrossRef] [PubMed]

Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser,” Opt. Lett.33, 2281–2283 (2008).
[CrossRef] [PubMed]

Opt. Quant. Electron. (1)

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quant. Electron.16, 373–375 (1984).
[CrossRef]

phys. status solidi (a) (1)

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” phys. status solidi (a)208, 276–283 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic experimental setup (a). Type-II waveguide gratings are written transversal and perpendicular to the c-axis. The samples are butt-coupled to a tunable laser source or a broadband emitting diode and read out in reflection through a circulator. The near field mode profiles are imaged from the back facet by a microscope objective. MO:microscope objective, TLS:tunable laser source, OSA:optical spectrum analyzer, CAM:InGaAs camera; Schematic representation of a WBG consisting of two modulated tracks forming a type-II WBG (b).

Fig. 2
Fig. 2

Front face microscope image of the waveguide with a line distance of 15 μm (a). Near field mode output in transmission at 1550 nm wavelength with a drawn overlay of the laser modification (b).

Fig. 3
Fig. 3

Grating reflection spectra for different design wavelengths and s-polarized input light. One grating and one guiding line was written into 250 μm depth using a pulse energy of 450 nJ.

Fig. 4
Fig. 4

Electro-optic tuning of the central reflection maximum by an applied external electric field normalized to the central reflection wavelength without the external field. The effective electro-optic coefficient reff = 3.69 pm/V was calculated from linear regression (solid line).

Metrics