G.
D. Marshall, P. Dekker, M. Ams, J.
A. Piper, and M.
J. Withford, “Directly written monolithic waveguide laser
incorporating a distributed feedback waveguide-Bragg grating,” Opt.
Lett. 33, 956–958 (2008).
[Crossref]
[PubMed]
G.
D. Marshall, M. Ams, and M.
J. Withford, “Direct laser written waveguide-Bragg
gratings in bulk fused silica,” Opt. Lett. 31, 2690–2691 (2006).
[Crossref]
[PubMed]
M. Ams, G. Marshall, D. Spence, and M. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric
waveguides in bulk glasses,” Opt. Express 13, 5676–5681 (2005).
[Crossref]
[PubMed]
M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in
bulk x-cut lithium niobate,” Appl. Phys. Lett. 93, 101111 (2008).
[Crossref]
V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R.
P. Salath, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in
bulk Ti3+:Sapphire,” Appl. Phys. Lett. 85, 1122–1124 (2004).
[Crossref]
D. Grobnic, S. Mihailov, C. Smelser, F. Genereux, G. Baldenberger, and R. Vallee, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a
femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett. 17, 1453–1455 (2005).
[Crossref]
G. Brown, R.
R. Thomson, A.
K. Kar, N.
D. Psaila, and H.
T. Bookey, “Ultrafast laser inscription of bragg-grating
waveguides using the multiscan technique,” Opt. Lett. 37, 491–493 (2012).
[Crossref]
[PubMed]
H.
T. Bookey, R.
R. Thomson, N.
D. Psaila, A.
K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-Cut lithium
niobate,” IEEE Photon. Technol. Lett. 19, 892–894 (2007).
[Crossref]
J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A. 89, 127–132 (2007).
[Crossref]
J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Waveguides in lithium niobate fabricated by focused ultrashort laser
pulses,” Appl. Surf. Sci. 253, 7899–7902 (2007).
[Crossref]
J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium
niobate,” Appl. Phys. Lett. 89, 081108 (2006).
[Crossref]
J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in
LiNbO3,” Appl. Phys. A. 86, 165–170 (2006).
[Crossref]
H.
T. Bookey, R.
R. Thomson, N.
D. Psaila, A.
K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-Cut lithium
niobate,” IEEE Photon. Technol. Lett. 19, 892–894 (2007).
[Crossref]
V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R.
P. Salath, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in
bulk Ti3+:Sapphire,” Appl. Phys. Lett. 85, 1122–1124 (2004).
[Crossref]
Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a
femtosecond laser,” Opt. Lett. 33, 2281–2283 (2008).
[Crossref]
[PubMed]
H.
T. Bookey, R.
R. Thomson, N.
D. Psaila, A.
K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-Cut lithium
niobate,” IEEE Photon. Technol. Lett. 19, 892–894 (2007).
[Crossref]
V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R.
P. Salath, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in
bulk Ti3+:Sapphire,” Appl. Phys. Lett. 85, 1122–1124 (2004).
[Crossref]
G. Della
Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A.-Pure Appl. Op. 11, 013001 (2009).
[Crossref]
V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R.
P. Salath, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in
bulk Ti3+:Sapphire,” Appl. Phys. Lett. 85, 1122–1124 (2004).
[Crossref]
M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in
bulk x-cut lithium niobate,” Appl. Phys. Lett. 93, 101111 (2008).
[Crossref]
M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in
bulk x-cut lithium niobate,” Appl. Phys. Lett. 93, 101111 (2008).
[Crossref]
J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the
lithium niobate platform,” phys. status solidi (a) 208, 276–283 (2011).
[Crossref]
H. Zhang, S.
M. Eaton, and P.
R. Herman, “Single-step writing of bragg grating
waveguides in fused silica with an externally modulated femtosecond fiber laser,” Opt. Lett. 32, 2559–2561 (2007).
[Crossref]
[PubMed]
H. Zhang, S.
M. Eaton, J. Li, A.
H. Nejadmalayeri, and P.
R. Herman, “Type II high-strength bragg grating
waveguides photowritten with ultrashort laser pulses,” Opt. Express 15, 4182–4191 (2007).
[Crossref]
[PubMed]
H. Zhang, S.
M. Eaton, J. Li, and P.
R. Herman, “Femtosecond laser direct writing of
multiwavelength bragg grating waveguides in glass,” Opt. Lett. 31, 3495–3497 (2006).
[Crossref]
[PubMed]
G.
J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium
niobate,” Opt. Quant. Electron. 16, 373–375 (1984).
[Crossref]
D. Grobnic, S. Mihailov, C. Smelser, F. Genereux, G. Baldenberger, and R. Vallee, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a
femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett. 17, 1453–1455 (2005).
[Crossref]
J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Waveguides in lithium niobate fabricated by focused ultrashort laser
pulses,” Appl. Surf. Sci. 253, 7899–7902 (2007).
[Crossref]
J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium
niobate,” Appl. Phys. Lett. 89, 081108 (2006).
[Crossref]
D. Grobnic, S. Mihailov, C. Smelser, F. Genereux, G. Baldenberger, and R. Vallee, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a
femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett. 17, 1453–1455 (2005).
[Crossref]
J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in
LiNbO3,” Appl. Phys. A. 86, 165–170 (2006).
[Crossref]
Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a
femtosecond laser,” Opt. Lett. 33, 2281–2283 (2008).
[Crossref]
[PubMed]
J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the
lithium niobate platform,” phys. status solidi (a) 208, 276–283 (2011).
[Crossref]
M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in
bulk x-cut lithium niobate,” Appl. Phys. Lett. 93, 101111 (2008).
[Crossref]
H. Zhang, S.
M. Eaton, J. Li, A.
H. Nejadmalayeri, and P.
R. Herman, “Type II high-strength bragg grating
waveguides photowritten with ultrashort laser pulses,” Opt. Express 15, 4182–4191 (2007).
[Crossref]
[PubMed]
H. Zhang, S.
M. Eaton, and P.
R. Herman, “Single-step writing of bragg grating
waveguides in fused silica with an externally modulated femtosecond fiber laser,” Opt. Lett. 32, 2559–2561 (2007).
[Crossref]
[PubMed]
H. Zhang, S.
M. Eaton, J. Li, and P.
R. Herman, “Femtosecond laser direct writing of
multiwavelength bragg grating waveguides in glass,” Opt. Lett. 31, 3495–3497 (2006).
[Crossref]
[PubMed]
A.
H. Nejadmalayeri and P.
R. Herman, “Ultrafast laser waveguide writing: lithium
niobate and the role of circular polarization and picosecond pulse width,” Opt. Lett. 31, 2987–2989 (2006).
[Crossref]
[PubMed]
J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the
lithium niobate platform,” phys. status solidi (a) 208, 276–283 (2011).
[Crossref]
K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse
laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[Crossref]
K.
M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt.
Lett. 21, 1729–1731 (1996).
[Crossref]
[PubMed]
K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse
laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[Crossref]
G. Brown, R.
R. Thomson, A.
K. Kar, N.
D. Psaila, and H.
T. Bookey, “Ultrafast laser inscription of bragg-grating
waveguides using the multiscan technique,” Opt. Lett. 37, 491–493 (2012).
[Crossref]
[PubMed]
H.
T. Bookey, R.
R. Thomson, N.
D. Psaila, A.
K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-Cut lithium
niobate,” IEEE Photon. Technol. Lett. 19, 892–894 (2007).
[Crossref]
G. Della
Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A.-Pure Appl. Op. 11, 013001 (2009).
[Crossref]
V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R.
P. Salath, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in
bulk Ti3+:Sapphire,” Appl. Phys. Lett. 85, 1122–1124 (2004).
[Crossref]
V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R.
P. Salath, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in
bulk Ti3+:Sapphire,” Appl. Phys. Lett. 85, 1122–1124 (2004).
[Crossref]
G.
J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium
niobate,” Opt. Quant. Electron. 16, 373–375 (1984).
[Crossref]
H. Zhang, S.
M. Eaton, J. Li, A.
H. Nejadmalayeri, and P.
R. Herman, “Type II high-strength bragg grating
waveguides photowritten with ultrashort laser pulses,” Opt. Express 15, 4182–4191 (2007).
[Crossref]
[PubMed]
H. Zhang, S.
M. Eaton, J. Li, and P.
R. Herman, “Femtosecond laser direct writing of
multiwavelength bragg grating waveguides in glass,” Opt. Lett. 31, 3495–3497 (2006).
[Crossref]
[PubMed]
Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a
femtosecond laser,” Opt. Lett. 33, 2281–2283 (2008).
[Crossref]
[PubMed]
G.
D. Marshall, R.
J. Williams, N. Jovanovic, M.
J. Steel, and M.
J. Withford, “Point-by-point written fiber-Bragg gratings
and their application in complex grating designs,” Opt. Express 18, 19844–19859 (2010).
[Crossref]
[PubMed]
G.
D. Marshall, P. Dekker, M. Ams, J.
A. Piper, and M.
J. Withford, “Directly written monolithic waveguide laser
incorporating a distributed feedback waveguide-Bragg grating,” Opt.
Lett. 33, 956–958 (2008).
[Crossref]
[PubMed]
G.
D. Marshall, M. Ams, and M.
J. Withford, “Direct laser written waveguide-Bragg
gratings in bulk fused silica,” Opt. Lett. 31, 2690–2691 (2006).
[Crossref]
[PubMed]
Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a
femtosecond laser,” Opt. Lett. 33, 2281–2283 (2008).
[Crossref]
[PubMed]
D. Grobnic, S. Mihailov, C. Smelser, F. Genereux, G. Baldenberger, and R. Vallee, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a
femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett. 17, 1453–1455 (2005).
[Crossref]
K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse
laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[Crossref]
K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse
laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[Crossref]
K.
M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt.
Lett. 21, 1729–1731 (1996).
[Crossref]
[PubMed]
H. Zhang, S.
M. Eaton, J. Li, A.
H. Nejadmalayeri, and P.
R. Herman, “Type II high-strength bragg grating
waveguides photowritten with ultrashort laser pulses,” Opt. Express 15, 4182–4191 (2007).
[Crossref]
[PubMed]
A.
H. Nejadmalayeri and P.
R. Herman, “Ultrafast laser waveguide writing: lithium
niobate and the role of circular polarization and picosecond pulse width,” Opt. Lett. 31, 2987–2989 (2006).
[Crossref]
[PubMed]
J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the
lithium niobate platform,” phys. status solidi (a) 208, 276–283 (2011).
[Crossref]
M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in
bulk x-cut lithium niobate,” Appl. Phys. Lett. 93, 101111 (2008).
[Crossref]
J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Waveguides in lithium niobate fabricated by focused ultrashort laser
pulses,” Appl. Surf. Sci. 253, 7899–7902 (2007).
[Crossref]
J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A. 89, 127–132 (2007).
[Crossref]
J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium
niobate,” Appl. Phys. Lett. 89, 081108 (2006).
[Crossref]
J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in
LiNbO3,” Appl. Phys. A. 86, 165–170 (2006).
[Crossref]
G. Della
Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A.-Pure Appl. Op. 11, 013001 (2009).
[Crossref]
H.
T. Bookey, R.
R. Thomson, N.
D. Psaila, A.
K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-Cut lithium
niobate,” IEEE Photon. Technol. Lett. 19, 892–894 (2007).
[Crossref]
V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R.
P. Salath, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in
bulk Ti3+:Sapphire,” Appl. Phys. Lett. 85, 1122–1124 (2004).
[Crossref]
V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R.
P. Salath, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in
bulk Ti3+:Sapphire,” Appl. Phys. Lett. 85, 1122–1124 (2004).
[Crossref]
G. Brown, R.
R. Thomson, A.
K. Kar, N.
D. Psaila, and H.
T. Bookey, “Ultrafast laser inscription of bragg-grating
waveguides using the multiscan technique,” Opt. Lett. 37, 491–493 (2012).
[Crossref]
[PubMed]
H.
T. Bookey, R.
R. Thomson, N.
D. Psaila, A.
K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-Cut lithium
niobate,” IEEE Photon. Technol. Lett. 19, 892–894 (2007).
[Crossref]
K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse
laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[Crossref]
J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the
lithium niobate platform,” phys. status solidi (a) 208, 276–283 (2011).
[Crossref]
J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the
lithium niobate platform,” phys. status solidi (a) 208, 276–283 (2011).
[Crossref]
J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the
lithium niobate platform,” phys. status solidi (a) 208, 276–283 (2011).
[Crossref]
J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the
lithium niobate platform,” phys. status solidi (a) 208, 276–283 (2011).
[Crossref]
V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R.
P. Salath, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in
bulk Ti3+:Sapphire,” Appl. Phys. Lett. 85, 1122–1124 (2004).
[Crossref]
D. Grobnic, S. Mihailov, C. Smelser, F. Genereux, G. Baldenberger, and R. Vallee, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a
femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett. 17, 1453–1455 (2005).
[Crossref]
Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a
femtosecond laser,” Opt. Lett. 33, 2281–2283 (2008).
[Crossref]
[PubMed]
Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a
femtosecond laser,” Opt. Lett. 33, 2281–2283 (2008).
[Crossref]
[PubMed]
Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a
femtosecond laser,” Opt. Lett. 33, 2281–2283 (2008).
[Crossref]
[PubMed]
M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in
bulk x-cut lithium niobate,” Appl. Phys. Lett. 93, 101111 (2008).
[Crossref]
J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the
lithium niobate platform,” phys. status solidi (a) 208, 276–283 (2011).
[Crossref]
M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in
bulk x-cut lithium niobate,” Appl. Phys. Lett. 93, 101111 (2008).
[Crossref]
G. Brown, R.
R. Thomson, A.
K. Kar, N.
D. Psaila, and H.
T. Bookey, “Ultrafast laser inscription of bragg-grating
waveguides using the multiscan technique,” Opt. Lett. 37, 491–493 (2012).
[Crossref]
[PubMed]
H.
T. Bookey, R.
R. Thomson, N.
D. Psaila, A.
K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-Cut lithium
niobate,” IEEE Photon. Technol. Lett. 19, 892–894 (2007).
[Crossref]
J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the
lithium niobate platform,” phys. status solidi (a) 208, 276–283 (2011).
[Crossref]
M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in
bulk x-cut lithium niobate,” Appl. Phys. Lett. 93, 101111 (2008).
[Crossref]
J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Waveguides in lithium niobate fabricated by focused ultrashort laser
pulses,” Appl. Surf. Sci. 253, 7899–7902 (2007).
[Crossref]
J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys. A. 89, 127–132 (2007).
[Crossref]
J. Burghoff, C. Grebing, S. Nolte, and A. Tünnermann, “Efficient frequency doubling in femtosecond laser-written waveguides in lithium
niobate,” Appl. Phys. Lett. 89, 081108 (2006).
[Crossref]
J. Burghoff, H. Hartung, S. Nolte, and A. Tünnermann, “Structural properties of femtosecond laser-induced modifications in
LiNbO3,” Appl. Phys. A. 86, 165–170 (2006).
[Crossref]
D. Grobnic, S. Mihailov, C. Smelser, F. Genereux, G. Baldenberger, and R. Vallee, “Bragg gratings made in reverse proton exchange lithium niobate waveguides with a
femtosecond IR laser and a phase mask,” IEEE Photon. Technol. Lett. 17, 1453–1455 (2005).
[Crossref]
Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a
femtosecond laser,” Opt. Lett. 33, 2281–2283 (2008).
[Crossref]
[PubMed]
G.
D. Marshall, R.
J. Williams, N. Jovanovic, M.
J. Steel, and M.
J. Withford, “Point-by-point written fiber-Bragg gratings
and their application in complex grating designs,” Opt. Express 18, 19844–19859 (2010).
[Crossref]
[PubMed]
G.
D. Marshall, P. Dekker, M. Ams, J.
A. Piper, and M.
J. Withford, “Directly written monolithic waveguide laser
incorporating a distributed feedback waveguide-Bragg grating,” Opt.
Lett. 33, 956–958 (2008).
[Crossref]
[PubMed]
G.
D. Marshall, M. Ams, and M.
J. Withford, “Direct laser written waveguide-Bragg
gratings in bulk fused silica,” Opt. Lett. 31, 2690–2691 (2006).
[Crossref]
[PubMed]
Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a
femtosecond laser,” Opt. Lett. 33, 2281–2283 (2008).
[Crossref]
[PubMed]
Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a
femtosecond laser,” Opt. Lett. 33, 2281–2283 (2008).
[Crossref]
[PubMed]
J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the
lithium niobate platform,” phys. status solidi (a) 208, 276–283 (2011).
[Crossref]
H. Zhang, S.
M. Eaton, and P.
R. Herman, “Single-step writing of bragg grating
waveguides in fused silica with an externally modulated femtosecond fiber laser,” Opt. Lett. 32, 2559–2561 (2007).
[Crossref]
[PubMed]
H. Zhang, S.
M. Eaton, J. Li, A.
H. Nejadmalayeri, and P.
R. Herman, “Type II high-strength bragg grating
waveguides photowritten with ultrashort laser pulses,” Opt. Express 15, 4182–4191 (2007).
[Crossref]
[PubMed]
H. Zhang, S.
M. Eaton, J. Li, and P.
R. Herman, “Femtosecond laser direct writing of
multiwavelength bragg grating waveguides in glass,” Opt. Lett. 31, 3495–3497 (2006).
[Crossref]
[PubMed]
Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a
femtosecond laser,” Opt. Lett. 33, 2281–2283 (2008).
[Crossref]
[PubMed]