Abstract

We introduce an off-axis, wide-field, low-coherence and dual-channel interferometric imaging system, which is based on a simple-to-align, common-path interferometer. The system requires no optical-path-difference matching between the interferometric arms in order to obtain interference with low-coherence light source, and is capable of achieving two channels of off-axis interference with high spatial frequency. The two 180°-phase-shifted interferograms are acquired simultaneously using a single digital camera, and processed into a single, noise-reduced and DC-suppressed interferogram. We demonstrate using the proposed system for phase imaging of fingerprint templates. Due to the fact that conventional phase unwrapping algorithms cannot handle the complex and deep surface topography imposed by fingerprint templates, we experimentally implemented two-wavelength phase unwrapping using a supercontinuum laser coupled to acousto-optical tunable filter, together functioning as a low-coherence tunable light source. From the unwrapped phase map, we produced high quality depth profiles of fingerprint templates.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Mertz, Introduction to Optical Microscopy (Roberts and Company Publishers, 2010), Chap.11.
  2. F. Montfort, F. Charrière, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Purely numerical compensation for microscope objective phase curvature in digital holographic microscopy: influence of digital phase mask position,” J. Opt. Soc. Am. A23(11), 2944–2953 (2006).
    [CrossRef] [PubMed]
  3. N. T. Shaked, L. L. Satterwhite, M. T. Rinehart, and A. Wax, “Quantitative analysis of biological cells using digital holographic microscopy,” in Holography, Research and Technologies, J. Rosen Ed., (InTech, 2011), 219–236.
  4. G. C. Brown and R. Pryputniewicz, “Holographic microscope for measuring displacements of vibrating microbeams using time-averaged, electro-optic holography,” Opt. Eng.37(5), 1398–1405 (1998).
    [CrossRef]
  5. E. Bonnotte, P. Delobelle, L. Bornier, B. Trolard, and G. Tribillon, “Two interferometric methods for mechanical characterization of thin films by bulging tests. Application to single crystal of silicon,” J. Mater. Res.12(09), 2234–2248 (1997).
    [CrossRef]
  6. L. Xu, X. Peng, J. Miao, and A. K. Asundi, “Studies of digital microscopic holography with applications to microstructure testing,” Appl. Opt.40(28), 5046–5051 (2001).
    [CrossRef] [PubMed]
  7. P. Chavel, “Optical noise and temporal coherence,” J. Opt. Soc. Am.70(8), 935–943 (1980).
    [CrossRef]
  8. L. Martínez-León, G. Pedrini, and W. Osten, “Applications of short-coherence digital holography in microscopy,” Appl. Opt.44(19), 3977–3984 (2005).
    [CrossRef] [PubMed]
  9. Z. Monemhaghdoust, F. Montfort, Y. Emery, C. Depeursinge, and C. Moser, “Dual wavelength full field imaging in low coherence digital holographic microscopy,” Opt. Express19(24), 24005–24022 (2011).
    [CrossRef] [PubMed]
  10. A. A. Maznev, T. F. Crimmins, and K. A. Nelson, “How to make femtosecond pulses overlap,” Opt. Lett.23(17), 1378–1380 (1998).
    [CrossRef] [PubMed]
  11. J. A. Ferrari and E. M. Frins, “Single element interferometer,” Opt. Commun.279(2), 235–239 (2007).
    [CrossRef]
  12. A. B. Vakhtin, D. J. Kane, W. R. Wood, and K. A. Peterson, “Common-path interferometer for frequency-domain optical coherence tomography,” Appl. Opt.42(34), 6953–6958 (2003).
    [CrossRef] [PubMed]
  13. J. A. Ferrari, E. M. Frins, D. Perciante, and A. Dubra, “Robust one-beam interferometer with phase-delay control,” Opt. Lett.24(18), 1272–1274 (1999).
    [CrossRef] [PubMed]
  14. Q. Weijuan, Y. Yingjie, C. O. Choo, and A. Asundi, “Digital holographic microscopy with physical phase compensation,” Opt. Lett.34(8), 1276–1278 (2009).
    [CrossRef] [PubMed]
  15. Z. Weizman, O. Vardi, and M. Binsztok, “Dermatoglyphic (fingerprint) patterns in celiac disease,” J. Pediatr. Gastroenterol. Nutr.10(4), 451–453 (1990).
    [CrossRef] [PubMed]
  16. T. J. David, A. B. Ajdukiewicz, and A. E. Read, “Fingerprint changes in coeliac disease,” BMJ4(5735), 594–596 (1970).
    [CrossRef] [PubMed]
  17. H. J. Weinreb, “Fingerprint patterns in Alzheimer’s disease,” Arch. Neurol.42(1), 50–54 (1985).
    [CrossRef] [PubMed]
  18. B. Seltzer and I. Sherwin, “Fingerprint pattern differences in early- and late-onset primary degenerative dementia,” Arch. Neurol.43(7), 665–668 (1986).
    [CrossRef] [PubMed]
  19. D. Matloni, D. Maio, A. K. Jain, and S. Parabhakar, Handbook of Fingerprint Recognition (Springer-Verlag, 2009), Chap. 1.
  20. H. Faulds, “On the skin-furrows of the hand,” Nature22(574), 605 (1880).
    [CrossRef]
  21. M. C. Potcoava and M. K. Kim, “Fingerprint biometry applications of digital holography and low-coherence interferography,” Appl. Opt.48(34), H9–H15 (2009).
    [CrossRef] [PubMed]
  22. J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2pi ambiguity by multiwavelength digital holography,” Opt. Lett.28(13), 1141–1143 (2003).
    [CrossRef] [PubMed]
  23. T. Baumbach, E. Kolenovic, V. Kebbel, and W. Jüptner, “Improvement of accuracy in digital holography by use of multiple holograms,” Appl. Opt.45(24), 6077–6085 (2006).
    [CrossRef] [PubMed]
  24. X. Kang, “An effective method for reducing speckle noise in digital holography,” Chin. Opt. Lett.6(2), 100–103 (2008).
    [CrossRef]
  25. J. M. Huntley and H. Saldner, “Temporal phase-unwrapping algorithm for automated interferogram analysis,” Appl. Opt.32(17), 3047–3052 (1993).
    [CrossRef] [PubMed]
  26. N. Warnasooriya and M. K. Kim, “LED-based multi-wavelength phase imaging interference microscopy,” Opt. Express15(15), 9239–9247 (2007).
    [CrossRef] [PubMed]
  27. R. C. Jones, “A new calculus for the treatment of optical systems. I. Description and discussion of the calculus,” J. Opt. Soc. Am.31(7), 488–500 (1941).
    [CrossRef]
  28. P. Gaom, B. Yau, J. Min, R. Guom, J. Zheng, and T. Ye, “Parallel two-step phase shifting microscopic interferometry based on ac cube beamsplitter,” Opt. Commun.284, 4134–4140 (2011).
  29. N. T. Shaked, M. T. Rinehart, and A. Wax, “Dual-interference-channel quantitative-phase microscopy of live cell dynamics,” Opt. Lett.34(6), 767–769 (2009).
    [CrossRef] [PubMed]

2011 (2)

Z. Monemhaghdoust, F. Montfort, Y. Emery, C. Depeursinge, and C. Moser, “Dual wavelength full field imaging in low coherence digital holographic microscopy,” Opt. Express19(24), 24005–24022 (2011).
[CrossRef] [PubMed]

P. Gaom, B. Yau, J. Min, R. Guom, J. Zheng, and T. Ye, “Parallel two-step phase shifting microscopic interferometry based on ac cube beamsplitter,” Opt. Commun.284, 4134–4140 (2011).

2009 (3)

2008 (1)

2007 (2)

2006 (2)

2005 (1)

2003 (2)

2001 (1)

1999 (1)

1998 (2)

A. A. Maznev, T. F. Crimmins, and K. A. Nelson, “How to make femtosecond pulses overlap,” Opt. Lett.23(17), 1378–1380 (1998).
[CrossRef] [PubMed]

G. C. Brown and R. Pryputniewicz, “Holographic microscope for measuring displacements of vibrating microbeams using time-averaged, electro-optic holography,” Opt. Eng.37(5), 1398–1405 (1998).
[CrossRef]

1997 (1)

E. Bonnotte, P. Delobelle, L. Bornier, B. Trolard, and G. Tribillon, “Two interferometric methods for mechanical characterization of thin films by bulging tests. Application to single crystal of silicon,” J. Mater. Res.12(09), 2234–2248 (1997).
[CrossRef]

1993 (1)

1990 (1)

Z. Weizman, O. Vardi, and M. Binsztok, “Dermatoglyphic (fingerprint) patterns in celiac disease,” J. Pediatr. Gastroenterol. Nutr.10(4), 451–453 (1990).
[CrossRef] [PubMed]

1986 (1)

B. Seltzer and I. Sherwin, “Fingerprint pattern differences in early- and late-onset primary degenerative dementia,” Arch. Neurol.43(7), 665–668 (1986).
[CrossRef] [PubMed]

1985 (1)

H. J. Weinreb, “Fingerprint patterns in Alzheimer’s disease,” Arch. Neurol.42(1), 50–54 (1985).
[CrossRef] [PubMed]

1980 (1)

1970 (1)

T. J. David, A. B. Ajdukiewicz, and A. E. Read, “Fingerprint changes in coeliac disease,” BMJ4(5735), 594–596 (1970).
[CrossRef] [PubMed]

1941 (1)

1880 (1)

H. Faulds, “On the skin-furrows of the hand,” Nature22(574), 605 (1880).
[CrossRef]

Ajdukiewicz, A. B.

T. J. David, A. B. Ajdukiewicz, and A. E. Read, “Fingerprint changes in coeliac disease,” BMJ4(5735), 594–596 (1970).
[CrossRef] [PubMed]

Asundi, A.

Asundi, A. K.

Baumbach, T.

Binsztok, M.

Z. Weizman, O. Vardi, and M. Binsztok, “Dermatoglyphic (fingerprint) patterns in celiac disease,” J. Pediatr. Gastroenterol. Nutr.10(4), 451–453 (1990).
[CrossRef] [PubMed]

Bonnotte, E.

E. Bonnotte, P. Delobelle, L. Bornier, B. Trolard, and G. Tribillon, “Two interferometric methods for mechanical characterization of thin films by bulging tests. Application to single crystal of silicon,” J. Mater. Res.12(09), 2234–2248 (1997).
[CrossRef]

Bornier, L.

E. Bonnotte, P. Delobelle, L. Bornier, B. Trolard, and G. Tribillon, “Two interferometric methods for mechanical characterization of thin films by bulging tests. Application to single crystal of silicon,” J. Mater. Res.12(09), 2234–2248 (1997).
[CrossRef]

Brown, G. C.

G. C. Brown and R. Pryputniewicz, “Holographic microscope for measuring displacements of vibrating microbeams using time-averaged, electro-optic holography,” Opt. Eng.37(5), 1398–1405 (1998).
[CrossRef]

Charrière, F.

Chavel, P.

Choo, C. O.

Colomb, T.

Crimmins, T. F.

Cuche, E.

Dakoff, A.

David, T. J.

T. J. David, A. B. Ajdukiewicz, and A. E. Read, “Fingerprint changes in coeliac disease,” BMJ4(5735), 594–596 (1970).
[CrossRef] [PubMed]

Delobelle, P.

E. Bonnotte, P. Delobelle, L. Bornier, B. Trolard, and G. Tribillon, “Two interferometric methods for mechanical characterization of thin films by bulging tests. Application to single crystal of silicon,” J. Mater. Res.12(09), 2234–2248 (1997).
[CrossRef]

Depeursinge, C.

Dubra, A.

Emery, Y.

Faulds, H.

H. Faulds, “On the skin-furrows of the hand,” Nature22(574), 605 (1880).
[CrossRef]

Ferrari, J. A.

Frins, E. M.

Gaom, P.

P. Gaom, B. Yau, J. Min, R. Guom, J. Zheng, and T. Ye, “Parallel two-step phase shifting microscopic interferometry based on ac cube beamsplitter,” Opt. Commun.284, 4134–4140 (2011).

Gass, J.

Guom, R.

P. Gaom, B. Yau, J. Min, R. Guom, J. Zheng, and T. Ye, “Parallel two-step phase shifting microscopic interferometry based on ac cube beamsplitter,” Opt. Commun.284, 4134–4140 (2011).

Huntley, J. M.

Jones, R. C.

Jüptner, W.

Kane, D. J.

Kang, X.

Kebbel, V.

Kim, M. K.

Kolenovic, E.

Marquet, P.

Martínez-León, L.

Maznev, A. A.

Miao, J.

Min, J.

P. Gaom, B. Yau, J. Min, R. Guom, J. Zheng, and T. Ye, “Parallel two-step phase shifting microscopic interferometry based on ac cube beamsplitter,” Opt. Commun.284, 4134–4140 (2011).

Monemhaghdoust, Z.

Montfort, F.

Moser, C.

Nelson, K. A.

Osten, W.

Pedrini, G.

Peng, X.

Perciante, D.

Peterson, K. A.

Potcoava, M. C.

Pryputniewicz, R.

G. C. Brown and R. Pryputniewicz, “Holographic microscope for measuring displacements of vibrating microbeams using time-averaged, electro-optic holography,” Opt. Eng.37(5), 1398–1405 (1998).
[CrossRef]

Read, A. E.

T. J. David, A. B. Ajdukiewicz, and A. E. Read, “Fingerprint changes in coeliac disease,” BMJ4(5735), 594–596 (1970).
[CrossRef] [PubMed]

Rinehart, M. T.

Saldner, H.

Seltzer, B.

B. Seltzer and I. Sherwin, “Fingerprint pattern differences in early- and late-onset primary degenerative dementia,” Arch. Neurol.43(7), 665–668 (1986).
[CrossRef] [PubMed]

Shaked, N. T.

Sherwin, I.

B. Seltzer and I. Sherwin, “Fingerprint pattern differences in early- and late-onset primary degenerative dementia,” Arch. Neurol.43(7), 665–668 (1986).
[CrossRef] [PubMed]

Tribillon, G.

E. Bonnotte, P. Delobelle, L. Bornier, B. Trolard, and G. Tribillon, “Two interferometric methods for mechanical characterization of thin films by bulging tests. Application to single crystal of silicon,” J. Mater. Res.12(09), 2234–2248 (1997).
[CrossRef]

Trolard, B.

E. Bonnotte, P. Delobelle, L. Bornier, B. Trolard, and G. Tribillon, “Two interferometric methods for mechanical characterization of thin films by bulging tests. Application to single crystal of silicon,” J. Mater. Res.12(09), 2234–2248 (1997).
[CrossRef]

Vakhtin, A. B.

Vardi, O.

Z. Weizman, O. Vardi, and M. Binsztok, “Dermatoglyphic (fingerprint) patterns in celiac disease,” J. Pediatr. Gastroenterol. Nutr.10(4), 451–453 (1990).
[CrossRef] [PubMed]

Warnasooriya, N.

Wax, A.

Weijuan, Q.

Weinreb, H. J.

H. J. Weinreb, “Fingerprint patterns in Alzheimer’s disease,” Arch. Neurol.42(1), 50–54 (1985).
[CrossRef] [PubMed]

Weizman, Z.

Z. Weizman, O. Vardi, and M. Binsztok, “Dermatoglyphic (fingerprint) patterns in celiac disease,” J. Pediatr. Gastroenterol. Nutr.10(4), 451–453 (1990).
[CrossRef] [PubMed]

Wood, W. R.

Xu, L.

Yau, B.

P. Gaom, B. Yau, J. Min, R. Guom, J. Zheng, and T. Ye, “Parallel two-step phase shifting microscopic interferometry based on ac cube beamsplitter,” Opt. Commun.284, 4134–4140 (2011).

Ye, T.

P. Gaom, B. Yau, J. Min, R. Guom, J. Zheng, and T. Ye, “Parallel two-step phase shifting microscopic interferometry based on ac cube beamsplitter,” Opt. Commun.284, 4134–4140 (2011).

Yingjie, Y.

Zheng, J.

P. Gaom, B. Yau, J. Min, R. Guom, J. Zheng, and T. Ye, “Parallel two-step phase shifting microscopic interferometry based on ac cube beamsplitter,” Opt. Commun.284, 4134–4140 (2011).

Appl. Opt. (6)

Arch. Neurol. (2)

H. J. Weinreb, “Fingerprint patterns in Alzheimer’s disease,” Arch. Neurol.42(1), 50–54 (1985).
[CrossRef] [PubMed]

B. Seltzer and I. Sherwin, “Fingerprint pattern differences in early- and late-onset primary degenerative dementia,” Arch. Neurol.43(7), 665–668 (1986).
[CrossRef] [PubMed]

BMJ (1)

T. J. David, A. B. Ajdukiewicz, and A. E. Read, “Fingerprint changes in coeliac disease,” BMJ4(5735), 594–596 (1970).
[CrossRef] [PubMed]

Chin. Opt. Lett. (1)

J. Mater. Res. (1)

E. Bonnotte, P. Delobelle, L. Bornier, B. Trolard, and G. Tribillon, “Two interferometric methods for mechanical characterization of thin films by bulging tests. Application to single crystal of silicon,” J. Mater. Res.12(09), 2234–2248 (1997).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

J. Pediatr. Gastroenterol. Nutr. (1)

Z. Weizman, O. Vardi, and M. Binsztok, “Dermatoglyphic (fingerprint) patterns in celiac disease,” J. Pediatr. Gastroenterol. Nutr.10(4), 451–453 (1990).
[CrossRef] [PubMed]

Nature (1)

H. Faulds, “On the skin-furrows of the hand,” Nature22(574), 605 (1880).
[CrossRef]

Opt. Commun. (2)

P. Gaom, B. Yau, J. Min, R. Guom, J. Zheng, and T. Ye, “Parallel two-step phase shifting microscopic interferometry based on ac cube beamsplitter,” Opt. Commun.284, 4134–4140 (2011).

J. A. Ferrari and E. M. Frins, “Single element interferometer,” Opt. Commun.279(2), 235–239 (2007).
[CrossRef]

Opt. Eng. (1)

G. C. Brown and R. Pryputniewicz, “Holographic microscope for measuring displacements of vibrating microbeams using time-averaged, electro-optic holography,” Opt. Eng.37(5), 1398–1405 (1998).
[CrossRef]

Opt. Express (2)

Opt. Lett. (5)

Other (3)

D. Matloni, D. Maio, A. K. Jain, and S. Parabhakar, Handbook of Fingerprint Recognition (Springer-Verlag, 2009), Chap. 1.

J. Mertz, Introduction to Optical Microscopy (Roberts and Company Publishers, 2010), Chap.11.

N. T. Shaked, L. L. Satterwhite, M. T. Rinehart, and A. Wax, “Quantitative analysis of biological cells using digital holographic microscopy,” in Holography, Research and Technologies, J. Rosen Ed., (InTech, 2011), 219–236.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Low-coherence, dual-channel common-path interferometric imaging system, used for fingerprint templates imaging. L0-5 - achromatic lenses, P - 25 μm, pinhole, S - sample, BS - beamsplitter. Blue lines - sample arm, red lines - references arm. Solid lines - left channel, dashed lines - right channel. CMOS - CMOS digital camera which is synchronized with the light source by a computer. (b) Schematic of the interference creation upon one channel, where θ is the angle between the optical axis and the semi-transparent surface of the BS.

Fig. 2
Fig. 2

(a) Dual-channel, off-axis interference pattern with 4.2 pixels per cycle (1000 × 443 pixels per channel). (b) Cross-section of the interference channels in the location marked by a white dashed line in (a). (c) Intensity spectrum in logarithmic scale of the left interferogram (left), the right interferogram (middle), and the new interferogram (right). The DC term is significantly suppressed and the blurring around the cross-correlation terms is reduced.

Fig. 3
Fig. 3

(a) Two 180°-phase-shifted interferograms of the FPT, acquired simultaneously. The dashed white square indicates on the scar location. (b) Depth profile distorted by blurring (in blue). Significant distortion can be seen in the upper-right part of the image. (c) Final result with improved contrast. (d) Final result in three-dimensional view.

Metrics