Abstract

We demonstrate generation of high-purity photon pairs at 1560 nm in a single spatial mode from a periodically-poled KTiOPO4 (PPKTP) waveguide. With nearly lossless spectral filtering, the PPKTP waveguide source shows approximately 80 % single-mode fiber coupling efficiency and is well suited for high-dimensional time-energy entanglement-based quantum key distribution. Using high-count-rate self-differencing InGaAs single-photon avalanche photodiodes configured with either square or sinusoidal gating, we achieve > 1 Mbit/s raw key generation with 3 bits-per-photon encoding, and, to the best of our knowledge, the highest reported Franson quantum-interference visibility of 98.2 % without subtraction of accidental coincidences.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Ali-Khan and J. C. Howell, “Experimental demonstration of high two-photon time-energy entanglement,” Phys. Rev. A73, 031801(R) (2006).
  2. I. Ali-Khan, C. J. Broadbent, and J. C. Howell, “Large-alphabet quantum key distribution using energy-time entangled bipartite states,” Phys. Rev. Lett.98, 060503 (2007).
  3. M. Bourennane, A. Karlsson, G. Björk, N. Gisin, and N. J. Cerf, “Quantum key distribution using multilevel encoding: security analysis,” J. Phys. A: Math. Gen.35, 10065–10076 (2002).
  4. N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett.88, 127902 (2002).
  5. I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett.93, 180502 (2004).
  6. H. Takesue, “Long-distance distribution of time-bin entanglement generated in a cooled fiber,” Opt. Express14, 3453–3460 (2006).
  7. Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. M. Fejer, and Y. Yamamoto, “Distribution of time-energy entanglement over 100 km fiber using superconducting single-photon detectors,” Opt. Express16, 5776–5781 (2008).
  8. J. F. Dynes, H. Takesue, Z. L. Yuan, A. W. Sharpe, K. Harada, T. Honjo, H. Kamada, O. Tadanaga, Y. Nishida, M. Asobe, and A. J. Shields, “Efficient entanglement distribution over 200 kilometers,” Opt. Express17, 11440–11449 (2009).
  9. F. N. C. Wong, J. H. Shapiro, and T. Kim, “Efficient generation of polarization-entangled photons in a nonlinear crystal,” Laser Phys.16, 1517–1524 (2006).
  10. A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express15, 15377–15386 (2007).
  11. J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett.62, 2205–2208 (1989).
  12. F. Bussiéres, J. A. Slater, J. Jin, N. Godbout, and W. Tittel, “Testing nonlocality over 12.4 km of underground fiber with universal time-bin qubit analyzers,” Phys. Rev. A81, 052106 (2010).
  13. Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett.91, 041114 (2007).
  14. A. Restelli and J. C. Bienfang,“Avalanche discrimination and high-speed counting in periodically gated single-photon avalanche diodes,” Proc. SPIE8375, 83750Z, DOI: (2012).
    [CrossRef]
  15. A. Restelli, J. C. Bienfang, and A. L. Migdall, “Time-domain measurements of afterpulsing in InGaAs/InP SPAD gated with sub-nanosecond pulses,” J. Mod. Opt., DOI: (2012).
    [CrossRef]
  16. M. Fiorentino, S. M. Spillane, R. G. Beausoleil, T. D. Roberts, P. Battle, and M. W. Munro, “Spontaneous parametric down-conversion in periodically poled KTP waveguides and bulk crystals,” Opt. Express15, 7479–7488 (2007).
  17. A. Eckstein and C. Silberhorn, “Broadband frequency mode entanglement in waveguided parametric downconversion,” Opt. Lett.33, 1825–1827 (2008).
  18. T. Zhong, F. N. C. Wong, T. D. Roberts, and P. Battle, “High performance photon-pair source based on a fiber-coupled periodically poled KTiOPO4 waveguide,” Opt. Express17, 12019–12030 (2009); erratum, ibid.18, 20114 (2010).
  19. P. J. Mosley, A. Christ, A. Eckstein, and C. Silberhorn, “Direct measurement of spatial-spectral structure of waveguided parametric down-conversion,” Phys. Rev. Lett.103, 233901 (2009).
  20. Manufactured by AdvR Inc. The identification of any commercial product or trade name does not imply endorsement or recommendation by the National Institute of Standards and Technology.
  21. Goodrich SU320HX-1.7RT high sensitivity InGaAs SWIR camera. The identification of any commercial product or trade name does not imply endorsement or recommendation by the National Institute of Standards and Technology.
  22. N. Namekata, S. Adachi, and S. Inoue, “1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode,” Opt. Express17, 6275–6282 (2009).
  23. J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett.95, 091103 (2009).
  24. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B36, 143–147 (1985).
  25. I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A66, 062308 (2002).

2012 (2)

A. Restelli and J. C. Bienfang,“Avalanche discrimination and high-speed counting in periodically gated single-photon avalanche diodes,” Proc. SPIE8375, 83750Z, DOI: (2012).
[CrossRef]

A. Restelli, J. C. Bienfang, and A. L. Migdall, “Time-domain measurements of afterpulsing in InGaAs/InP SPAD gated with sub-nanosecond pulses,” J. Mod. Opt., DOI: (2012).
[CrossRef]

2010 (1)

F. Bussiéres, J. A. Slater, J. Jin, N. Godbout, and W. Tittel, “Testing nonlocality over 12.4 km of underground fiber with universal time-bin qubit analyzers,” Phys. Rev. A81, 052106 (2010).

2009 (5)

2008 (2)

2007 (4)

M. Fiorentino, S. M. Spillane, R. G. Beausoleil, T. D. Roberts, P. Battle, and M. W. Munro, “Spontaneous parametric down-conversion in periodically poled KTP waveguides and bulk crystals,” Opt. Express15, 7479–7488 (2007).

I. Ali-Khan, C. J. Broadbent, and J. C. Howell, “Large-alphabet quantum key distribution using energy-time entangled bipartite states,” Phys. Rev. Lett.98, 060503 (2007).

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett.91, 041114 (2007).

A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express15, 15377–15386 (2007).

2006 (3)

I. Ali-Khan and J. C. Howell, “Experimental demonstration of high two-photon time-energy entanglement,” Phys. Rev. A73, 031801(R) (2006).

H. Takesue, “Long-distance distribution of time-bin entanglement generated in a cooled fiber,” Opt. Express14, 3453–3460 (2006).

F. N. C. Wong, J. H. Shapiro, and T. Kim, “Efficient generation of polarization-entangled photons in a nonlinear crystal,” Laser Phys.16, 1517–1524 (2006).

2004 (1)

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett.93, 180502 (2004).

2002 (3)

M. Bourennane, A. Karlsson, G. Björk, N. Gisin, and N. J. Cerf, “Quantum key distribution using multilevel encoding: security analysis,” J. Phys. A: Math. Gen.35, 10065–10076 (2002).

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett.88, 127902 (2002).

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A66, 062308 (2002).

1989 (1)

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett.62, 2205–2208 (1989).

1985 (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B36, 143–147 (1985).

Adachi, S.

Ali-Khan, I.

I. Ali-Khan, C. J. Broadbent, and J. C. Howell, “Large-alphabet quantum key distribution using energy-time entangled bipartite states,” Phys. Rev. Lett.98, 060503 (2007).

I. Ali-Khan and J. C. Howell, “Experimental demonstration of high two-photon time-energy entanglement,” Phys. Rev. A73, 031801(R) (2006).

Asobe, M.

Baek, B.

Barreiro, C.

J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett.95, 091103 (2009).

Battle, P.

Beausoleil, R. G.

Bienfang, J. C.

A. Restelli and J. C. Bienfang,“Avalanche discrimination and high-speed counting in periodically gated single-photon avalanche diodes,” Proc. SPIE8375, 83750Z, DOI: (2012).
[CrossRef]

A. Restelli, J. C. Bienfang, and A. L. Migdall, “Time-domain measurements of afterpulsing in InGaAs/InP SPAD gated with sub-nanosecond pulses,” J. Mod. Opt., DOI: (2012).
[CrossRef]

Björk, G.

M. Bourennane, A. Karlsson, G. Björk, N. Gisin, and N. J. Cerf, “Quantum key distribution using multilevel encoding: security analysis,” J. Phys. A: Math. Gen.35, 10065–10076 (2002).

Bourennane, M.

M. Bourennane, A. Karlsson, G. Björk, N. Gisin, and N. J. Cerf, “Quantum key distribution using multilevel encoding: security analysis,” J. Phys. A: Math. Gen.35, 10065–10076 (2002).

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett.88, 127902 (2002).

Broadbent, C. J.

I. Ali-Khan, C. J. Broadbent, and J. C. Howell, “Large-alphabet quantum key distribution using energy-time entangled bipartite states,” Phys. Rev. Lett.98, 060503 (2007).

Bussiéres, F.

F. Bussiéres, J. A. Slater, J. Jin, N. Godbout, and W. Tittel, “Testing nonlocality over 12.4 km of underground fiber with universal time-bin qubit analyzers,” Phys. Rev. A81, 052106 (2010).

Cerf, N. J.

M. Bourennane, A. Karlsson, G. Björk, N. Gisin, and N. J. Cerf, “Quantum key distribution using multilevel encoding: security analysis,” J. Phys. A: Math. Gen.35, 10065–10076 (2002).

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett.88, 127902 (2002).

Christ, A.

P. J. Mosley, A. Christ, A. Eckstein, and C. Silberhorn, “Direct measurement of spatial-spectral structure of waveguided parametric down-conversion,” Phys. Rev. Lett.103, 233901 (2009).

de Riedmatten, H.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett.93, 180502 (2004).

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A66, 062308 (2002).

Dynes, J. F.

Eckstein, A.

P. J. Mosley, A. Christ, A. Eckstein, and C. Silberhorn, “Direct measurement of spatial-spectral structure of waveguided parametric down-conversion,” Phys. Rev. Lett.103, 233901 (2009).

A. Eckstein and C. Silberhorn, “Broadband frequency mode entanglement in waveguided parametric downconversion,” Opt. Lett.33, 1825–1827 (2008).

Fedrizzi, A.

Fejer, M. M.

Fiorentino, M.

Franson, J. D.

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett.62, 2205–2208 (1989).

Gisin, N.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett.93, 180502 (2004).

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett.88, 127902 (2002).

M. Bourennane, A. Karlsson, G. Björk, N. Gisin, and N. J. Cerf, “Quantum key distribution using multilevel encoding: security analysis,” J. Phys. A: Math. Gen.35, 10065–10076 (2002).

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A66, 062308 (2002).

Godbout, N.

F. Bussiéres, J. A. Slater, J. Jin, N. Godbout, and W. Tittel, “Testing nonlocality over 12.4 km of underground fiber with universal time-bin qubit analyzers,” Phys. Rev. A81, 052106 (2010).

Harada, K.

Herbst, T.

Honjo, T.

Howell, J. C.

I. Ali-Khan, C. J. Broadbent, and J. C. Howell, “Large-alphabet quantum key distribution using energy-time entangled bipartite states,” Phys. Rev. Lett.98, 060503 (2007).

I. Ali-Khan and J. C. Howell, “Experimental demonstration of high two-photon time-energy entanglement,” Phys. Rev. A73, 031801(R) (2006).

Inoue, S.

Jennewein, T.

Jin, J.

F. Bussiéres, J. A. Slater, J. Jin, N. Godbout, and W. Tittel, “Testing nonlocality over 12.4 km of underground fiber with universal time-bin qubit analyzers,” Phys. Rev. A81, 052106 (2010).

Kamada, H.

Kardynal, B. E.

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett.91, 041114 (2007).

Karlsson, A.

M. Bourennane, A. Karlsson, G. Björk, N. Gisin, and N. J. Cerf, “Quantum key distribution using multilevel encoding: security analysis,” J. Phys. A: Math. Gen.35, 10065–10076 (2002).

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett.88, 127902 (2002).

Kim, T.

F. N. C. Wong, J. H. Shapiro, and T. Kim, “Efficient generation of polarization-entangled photons in a nonlinear crystal,” Laser Phys.16, 1517–1524 (2006).

Langrock, C.

Legré, M.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett.93, 180502 (2004).

Marcikic, I.

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett.93, 180502 (2004).

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A66, 062308 (2002).

Migdall, A. L.

A. Restelli, J. C. Bienfang, and A. L. Migdall, “Time-domain measurements of afterpulsing in InGaAs/InP SPAD gated with sub-nanosecond pulses,” J. Mod. Opt., DOI: (2012).
[CrossRef]

Mosley, P. J.

P. J. Mosley, A. Christ, A. Eckstein, and C. Silberhorn, “Direct measurement of spatial-spectral structure of waveguided parametric down-conversion,” Phys. Rev. Lett.103, 233901 (2009).

Munro, M. W.

Nam, S. W.

Namekata, N.

Nishida, Y.

Poppe, A.

Regener, R.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B36, 143–147 (1985).

Restelli, A.

A. Restelli and J. C. Bienfang,“Avalanche discrimination and high-speed counting in periodically gated single-photon avalanche diodes,” Proc. SPIE8375, 83750Z, DOI: (2012).
[CrossRef]

A. Restelli, J. C. Bienfang, and A. L. Migdall, “Time-domain measurements of afterpulsing in InGaAs/InP SPAD gated with sub-nanosecond pulses,” J. Mod. Opt., DOI: (2012).
[CrossRef]

Roberts, T. D.

Scarani, V.

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A66, 062308 (2002).

Shapiro, J. H.

F. N. C. Wong, J. H. Shapiro, and T. Kim, “Efficient generation of polarization-entangled photons in a nonlinear crystal,” Laser Phys.16, 1517–1524 (2006).

Sharpe, A. W.

J. F. Dynes, H. Takesue, Z. L. Yuan, A. W. Sharpe, K. Harada, T. Honjo, H. Kamada, O. Tadanaga, Y. Nishida, M. Asobe, and A. J. Shields, “Efficient entanglement distribution over 200 kilometers,” Opt. Express17, 11440–11449 (2009).

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett.91, 041114 (2007).

Shields, A. J.

J. F. Dynes, H. Takesue, Z. L. Yuan, A. W. Sharpe, K. Harada, T. Honjo, H. Kamada, O. Tadanaga, Y. Nishida, M. Asobe, and A. J. Shields, “Efficient entanglement distribution over 200 kilometers,” Opt. Express17, 11440–11449 (2009).

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett.91, 041114 (2007).

Silberhorn, C.

P. J. Mosley, A. Christ, A. Eckstein, and C. Silberhorn, “Direct measurement of spatial-spectral structure of waveguided parametric down-conversion,” Phys. Rev. Lett.103, 233901 (2009).

A. Eckstein and C. Silberhorn, “Broadband frequency mode entanglement in waveguided parametric downconversion,” Opt. Lett.33, 1825–1827 (2008).

Slater, J. A.

F. Bussiéres, J. A. Slater, J. Jin, N. Godbout, and W. Tittel, “Testing nonlocality over 12.4 km of underground fiber with universal time-bin qubit analyzers,” Phys. Rev. A81, 052106 (2010).

Sohler, W.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B36, 143–147 (1985).

Spillane, S. M.

Tadanaga, O.

Takesue, H.

Thew, R.

J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett.95, 091103 (2009).

Tittel, W.

F. Bussiéres, J. A. Slater, J. Jin, N. Godbout, and W. Tittel, “Testing nonlocality over 12.4 km of underground fiber with universal time-bin qubit analyzers,” Phys. Rev. A81, 052106 (2010).

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett.93, 180502 (2004).

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A66, 062308 (2002).

Wong, F. N. C.

T. Zhong, F. N. C. Wong, T. D. Roberts, and P. Battle, “High performance photon-pair source based on a fiber-coupled periodically poled KTiOPO4 waveguide,” Opt. Express17, 12019–12030 (2009); erratum, ibid.18, 20114 (2010).

F. N. C. Wong, J. H. Shapiro, and T. Kim, “Efficient generation of polarization-entangled photons in a nonlinear crystal,” Laser Phys.16, 1517–1524 (2006).

Xie, X.

Yamamoto, Y.

Yuan, Z. L.

J. F. Dynes, H. Takesue, Z. L. Yuan, A. W. Sharpe, K. Harada, T. Honjo, H. Kamada, O. Tadanaga, Y. Nishida, M. Asobe, and A. J. Shields, “Efficient entanglement distribution over 200 kilometers,” Opt. Express17, 11440–11449 (2009).

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett.91, 041114 (2007).

Zbinden, H.

J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett.95, 091103 (2009).

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett.93, 180502 (2004).

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A66, 062308 (2002).

Zeilinger, A.

Zhang, J.

J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett.95, 091103 (2009).

Zhang, Q.

Zhong, T.

Appl. Phys. B (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B36, 143–147 (1985).

Appl. Phys. Lett. (2)

J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett.95, 091103 (2009).

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett.91, 041114 (2007).

J. Mod. Opt. (1)

A. Restelli, J. C. Bienfang, and A. L. Migdall, “Time-domain measurements of afterpulsing in InGaAs/InP SPAD gated with sub-nanosecond pulses,” J. Mod. Opt., DOI: (2012).
[CrossRef]

J. Phys. A: Math. Gen. (1)

M. Bourennane, A. Karlsson, G. Björk, N. Gisin, and N. J. Cerf, “Quantum key distribution using multilevel encoding: security analysis,” J. Phys. A: Math. Gen.35, 10065–10076 (2002).

Laser Phys. (1)

F. N. C. Wong, J. H. Shapiro, and T. Kim, “Efficient generation of polarization-entangled photons in a nonlinear crystal,” Laser Phys.16, 1517–1524 (2006).

Opt. Express (7)

Opt. Lett. (1)

Phys. Rev. A (3)

I. Ali-Khan and J. C. Howell, “Experimental demonstration of high two-photon time-energy entanglement,” Phys. Rev. A73, 031801(R) (2006).

F. Bussiéres, J. A. Slater, J. Jin, N. Godbout, and W. Tittel, “Testing nonlocality over 12.4 km of underground fiber with universal time-bin qubit analyzers,” Phys. Rev. A81, 052106 (2010).

I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A66, 062308 (2002).

Phys. Rev. Lett. (5)

I. Ali-Khan, C. J. Broadbent, and J. C. Howell, “Large-alphabet quantum key distribution using energy-time entangled bipartite states,” Phys. Rev. Lett.98, 060503 (2007).

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” Phys. Rev. Lett.88, 127902 (2002).

I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, “Distribution of time-bin entangled qubits over 50 km of optical fiber,” Phys. Rev. Lett.93, 180502 (2004).

J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett.62, 2205–2208 (1989).

P. J. Mosley, A. Christ, A. Eckstein, and C. Silberhorn, “Direct measurement of spatial-spectral structure of waveguided parametric down-conversion,” Phys. Rev. Lett.103, 233901 (2009).

Proc. SPIE (1)

A. Restelli and J. C. Bienfang,“Avalanche discrimination and high-speed counting in periodically gated single-photon avalanche diodes,” Proc. SPIE8375, 83750Z, DOI: (2012).
[CrossRef]

Other (2)

Manufactured by AdvR Inc. The identification of any commercial product or trade name does not imply endorsement or recommendation by the National Institute of Standards and Technology.

Goodrich SU320HX-1.7RT high sensitivity InGaAs SWIR camera. The identification of any commercial product or trade name does not imply endorsement or recommendation by the National Institute of Standards and Technology.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Spatial and spectral properties of waveguide SPDC. (a) Multimode waveguided SPDC output. Red dashes outline the approximate area of the fundamental mode of 4 μm × 4 μm, which covers a 30 × 30 pixel area on the InGaAs infrared camera. (b) Fundamental-mode waveguided SPDC after 10 nm band-pass spectral filtering, with transverse mode profiles. Optical spectrum of signal (c), and idler (d), after 10 nm band-pass filtered and coupled into a single-mode fiber. Both are fitted using sinc2 functions. The signal and idler phase-matching bandwidth is 1.6 nm.

Fig. 2
Fig. 2

Detected coincidences of correlated photon pairs versus the relative gate delay between two SPADs with 500 ps square gating (filled square) and 900 ps sinusoidal gating (open square). After deconvolution, the effective gate widths are found to be 110 ps and 395 ps for square gating and sinusoidal gating, respectively. The error bars are based on 5 % estimated measurement uncertainty.

Fig. 3
Fig. 3

Schematic of experimental setup. Upper branch of the switch is for key generation where the SPADs used sinusoidal gating for higher coincidence rates. Lower branch of the switch is for Franson interferometry where narrow square-wave gating was used for better visibility. The Franson interferometer consists of two unbalanced Mach-Zehnder interferometers, which are constructed using 50:50 fiber beam splitters. BPF: band-pass filter, PBS: polarizing beam splitter, TDC: time-to-digital converter.

Fig. 4
Fig. 4

Measured coincidence rates at different pump powers using InGaAs SPADs sinusoidally gated at 628.5 MHz and 1.257 GHz. Accidental coincidences (open squares and open circles) are used to obtain the accidentals-subtracted rates (solid squares and solid circles). Straight lines show the linear extrapolation. The error bars are based on one standard deviation.

Fig. 5
Fig. 5

(a) Franson quantum interference fringes measured with narrow square gating at pair generation number per gate α = 3.1%. (b) Measured Franson visibilities (without subtraction of accidentals) versus α. The error bars are based on one standard deviation.

Metrics