Abstract

We reported the wafer-scale highly-transparent and superhydrophilic sapphires with antireflective subwavelength structures (SWSs) which were fabricated by dry etching using thermally dewetted gold (Au) nanomasks. Their optical transmittance properties were experimentally and theoretically investigated. The density, size, and period of the thermally dewetted Au nanopatterns can be controlled by the Au film thickness. For the sapphire with both-side SWSs at 5 nm of Au film, the average total transmittance (Tavg) of ~96.5% at 350-800 nm was obtained, indicating a higher value than those of the flat sapphire (Tavg~85.6%) and the sapphire with one-side SWSs (Tavg~91%), and the less angle-dependent transmittance property was observed. The calculated transmittance results also showed a similar tendency to the measured data. The SWSs enhanced significantly the surface hydrophilicity of sapphires, exhibiting a water contact angle (θc) of < 5° for Au film of 5 nm compared to θc~37° of the flat sapphire.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Jeong, D. W. Kim, J. W. Bae, Y. J. Sung, J. S. Kwak, Y. J. Park, and G. Y. Yeom, “Dry etching of sapphire substrate for device separation in chlorine-based inductively coupled plasmas,” Mater. Sci. Eng. B93(1–3), 60–63 (2002).
    [CrossRef]
  2. B. S. Patel and Z. H. Zaidi, “The suitability of sapphire for laser windows,” Meas. Sci. Technol.10(3), 146–151 (1999).
    [CrossRef]
  3. K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater. (Deerfield Beach Fla.)22(33), 3713–3718 (2010).
    [CrossRef] [PubMed]
  4. J. W. Leem, Y. Yeh, and J. S. Yu, “Enhanced transmittance and hydrophilicity of nanostructured glass substrates with antireflective properties using disordered gold nanopatterns,” Opt. Express20(4), 4056–4066 (2012).
    [CrossRef] [PubMed]
  5. P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature244(5414), 281–282 (1973).
    [CrossRef]
  6. D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci.273(1587), 661–667 (2006).
    [CrossRef] [PubMed]
  7. J. W. Leem, Y. M. Song, and J. S. Yu, “Broadband antireflective germanium surfaces based on subwavelength structures for photovoltaic cell applications,” Opt. Express19(27), 26308–26317 (2011).
    [CrossRef] [PubMed]
  8. Y. S. Lin, W. C. Hsu, K. C. Huang, and J. A. Yeh, “Wafer-level fabrication and optical characterization of nanoscale patterned sapphire substrates,” Appl. Surf. Sci.258(1), 2–6 (2011).
    [CrossRef]
  9. J. A. Howarter and J. P. Youngblood, “Self-cleaning and next generation anti-fog surfaces and coating,” Macromol. Rapid Commun.29(6), 455–466 (2008).
    [CrossRef]
  10. J. M. Lee and B. I. Kim, “Thermal dewetting of Pt thin film: Etch-masks for the fabrication of semiconductor nanostructures,” Mater. Sci. Eng. A449–451, 769–773 (2007).
    [CrossRef]
  11. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am.71(7), 811–818 (1981).
    [CrossRef]
  12. Y. H. Ko and J. S. Yu, “Design of hemi-urchin shaped ZnO nanostructures for broadband and wide-angle antireflection coatings,” Opt. Express19(1), 297–305 (2011).
    [CrossRef] [PubMed]

2012 (1)

2011 (3)

2010 (1)

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater. (Deerfield Beach Fla.)22(33), 3713–3718 (2010).
[CrossRef] [PubMed]

2008 (1)

J. A. Howarter and J. P. Youngblood, “Self-cleaning and next generation anti-fog surfaces and coating,” Macromol. Rapid Commun.29(6), 455–466 (2008).
[CrossRef]

2007 (1)

J. M. Lee and B. I. Kim, “Thermal dewetting of Pt thin film: Etch-masks for the fabrication of semiconductor nanostructures,” Mater. Sci. Eng. A449–451, 769–773 (2007).
[CrossRef]

2006 (1)

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci.273(1587), 661–667 (2006).
[CrossRef] [PubMed]

2002 (1)

C. H. Jeong, D. W. Kim, J. W. Bae, Y. J. Sung, J. S. Kwak, Y. J. Park, and G. Y. Yeom, “Dry etching of sapphire substrate for device separation in chlorine-based inductively coupled plasmas,” Mater. Sci. Eng. B93(1–3), 60–63 (2002).
[CrossRef]

1999 (1)

B. S. Patel and Z. H. Zaidi, “The suitability of sapphire for laser windows,” Meas. Sci. Technol.10(3), 146–151 (1999).
[CrossRef]

1981 (1)

1973 (1)

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature244(5414), 281–282 (1973).
[CrossRef]

Arikawa, K.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci.273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Bae, J. W.

C. H. Jeong, D. W. Kim, J. W. Bae, Y. J. Sung, J. S. Kwak, Y. J. Park, and G. Y. Yeom, “Dry etching of sapphire substrate for device separation in chlorine-based inductively coupled plasmas,” Mater. Sci. Eng. B93(1–3), 60–63 (2002).
[CrossRef]

Choi, K.

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater. (Deerfield Beach Fla.)22(33), 3713–3718 (2010).
[CrossRef] [PubMed]

Clapham, P. B.

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature244(5414), 281–282 (1973).
[CrossRef]

Foletti, S.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci.273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Gaylord, T. K.

Howarter, J. A.

J. A. Howarter and J. P. Youngblood, “Self-cleaning and next generation anti-fog surfaces and coating,” Macromol. Rapid Commun.29(6), 455–466 (2008).
[CrossRef]

Hsu, W. C.

Y. S. Lin, W. C. Hsu, K. C. Huang, and J. A. Yeh, “Wafer-level fabrication and optical characterization of nanoscale patterned sapphire substrates,” Appl. Surf. Sci.258(1), 2–6 (2011).
[CrossRef]

Huang, K. C.

Y. S. Lin, W. C. Hsu, K. C. Huang, and J. A. Yeh, “Wafer-level fabrication and optical characterization of nanoscale patterned sapphire substrates,” Appl. Surf. Sci.258(1), 2–6 (2011).
[CrossRef]

Hutley, M. C.

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature244(5414), 281–282 (1973).
[CrossRef]

Hwangbo, C. K.

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater. (Deerfield Beach Fla.)22(33), 3713–3718 (2010).
[CrossRef] [PubMed]

Jeong, C. H.

C. H. Jeong, D. W. Kim, J. W. Bae, Y. J. Sung, J. S. Kwak, Y. J. Park, and G. Y. Yeom, “Dry etching of sapphire substrate for device separation in chlorine-based inductively coupled plasmas,” Mater. Sci. Eng. B93(1–3), 60–63 (2002).
[CrossRef]

Kim, B. I.

J. M. Lee and B. I. Kim, “Thermal dewetting of Pt thin film: Etch-masks for the fabrication of semiconductor nanostructures,” Mater. Sci. Eng. A449–451, 769–773 (2007).
[CrossRef]

Kim, D. W.

C. H. Jeong, D. W. Kim, J. W. Bae, Y. J. Sung, J. S. Kwak, Y. J. Park, and G. Y. Yeom, “Dry etching of sapphire substrate for device separation in chlorine-based inductively coupled plasmas,” Mater. Sci. Eng. B93(1–3), 60–63 (2002).
[CrossRef]

Ko, Y. H.

Kwak, J. S.

C. H. Jeong, D. W. Kim, J. W. Bae, Y. J. Sung, J. S. Kwak, Y. J. Park, and G. Y. Yeom, “Dry etching of sapphire substrate for device separation in chlorine-based inductively coupled plasmas,” Mater. Sci. Eng. B93(1–3), 60–63 (2002).
[CrossRef]

Lee, H. S.

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater. (Deerfield Beach Fla.)22(33), 3713–3718 (2010).
[CrossRef] [PubMed]

Lee, J. M.

J. M. Lee and B. I. Kim, “Thermal dewetting of Pt thin film: Etch-masks for the fabrication of semiconductor nanostructures,” Mater. Sci. Eng. A449–451, 769–773 (2007).
[CrossRef]

Lee, Y. T.

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater. (Deerfield Beach Fla.)22(33), 3713–3718 (2010).
[CrossRef] [PubMed]

Leem, J. W.

Lin, Y. S.

Y. S. Lin, W. C. Hsu, K. C. Huang, and J. A. Yeh, “Wafer-level fabrication and optical characterization of nanoscale patterned sapphire substrates,” Appl. Surf. Sci.258(1), 2–6 (2011).
[CrossRef]

Moharam, M. G.

Palasantzas, G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci.273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Park, S. H.

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater. (Deerfield Beach Fla.)22(33), 3713–3718 (2010).
[CrossRef] [PubMed]

Park, Y. J.

C. H. Jeong, D. W. Kim, J. W. Bae, Y. J. Sung, J. S. Kwak, Y. J. Park, and G. Y. Yeom, “Dry etching of sapphire substrate for device separation in chlorine-based inductively coupled plasmas,” Mater. Sci. Eng. B93(1–3), 60–63 (2002).
[CrossRef]

Patel, B. S.

B. S. Patel and Z. H. Zaidi, “The suitability of sapphire for laser windows,” Meas. Sci. Technol.10(3), 146–151 (1999).
[CrossRef]

Song, Y. M.

J. W. Leem, Y. M. Song, and J. S. Yu, “Broadband antireflective germanium surfaces based on subwavelength structures for photovoltaic cell applications,” Opt. Express19(27), 26308–26317 (2011).
[CrossRef] [PubMed]

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater. (Deerfield Beach Fla.)22(33), 3713–3718 (2010).
[CrossRef] [PubMed]

Stavenga, D. G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci.273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Sung, Y. J.

C. H. Jeong, D. W. Kim, J. W. Bae, Y. J. Sung, J. S. Kwak, Y. J. Park, and G. Y. Yeom, “Dry etching of sapphire substrate for device separation in chlorine-based inductively coupled plasmas,” Mater. Sci. Eng. B93(1–3), 60–63 (2002).
[CrossRef]

Yang, H.

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater. (Deerfield Beach Fla.)22(33), 3713–3718 (2010).
[CrossRef] [PubMed]

Yeh, J. A.

Y. S. Lin, W. C. Hsu, K. C. Huang, and J. A. Yeh, “Wafer-level fabrication and optical characterization of nanoscale patterned sapphire substrates,” Appl. Surf. Sci.258(1), 2–6 (2011).
[CrossRef]

Yeh, Y.

Yeom, G. Y.

C. H. Jeong, D. W. Kim, J. W. Bae, Y. J. Sung, J. S. Kwak, Y. J. Park, and G. Y. Yeom, “Dry etching of sapphire substrate for device separation in chlorine-based inductively coupled plasmas,” Mater. Sci. Eng. B93(1–3), 60–63 (2002).
[CrossRef]

Youngblood, J. P.

J. A. Howarter and J. P. Youngblood, “Self-cleaning and next generation anti-fog surfaces and coating,” Macromol. Rapid Commun.29(6), 455–466 (2008).
[CrossRef]

Yu, J. S.

Zaidi, Z. H.

B. S. Patel and Z. H. Zaidi, “The suitability of sapphire for laser windows,” Meas. Sci. Technol.10(3), 146–151 (1999).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, “Nano-tailoring the surface structure for the monolithic high-performance antireflection polymer film,” Adv. Mater. (Deerfield Beach Fla.)22(33), 3713–3718 (2010).
[CrossRef] [PubMed]

Appl. Surf. Sci. (1)

Y. S. Lin, W. C. Hsu, K. C. Huang, and J. A. Yeh, “Wafer-level fabrication and optical characterization of nanoscale patterned sapphire substrates,” Appl. Surf. Sci.258(1), 2–6 (2011).
[CrossRef]

J. Opt. Soc. Am. (1)

Macromol. Rapid Commun. (1)

J. A. Howarter and J. P. Youngblood, “Self-cleaning and next generation anti-fog surfaces and coating,” Macromol. Rapid Commun.29(6), 455–466 (2008).
[CrossRef]

Mater. Sci. Eng. A (1)

J. M. Lee and B. I. Kim, “Thermal dewetting of Pt thin film: Etch-masks for the fabrication of semiconductor nanostructures,” Mater. Sci. Eng. A449–451, 769–773 (2007).
[CrossRef]

Mater. Sci. Eng. B (1)

C. H. Jeong, D. W. Kim, J. W. Bae, Y. J. Sung, J. S. Kwak, Y. J. Park, and G. Y. Yeom, “Dry etching of sapphire substrate for device separation in chlorine-based inductively coupled plasmas,” Mater. Sci. Eng. B93(1–3), 60–63 (2002).
[CrossRef]

Meas. Sci. Technol. (1)

B. S. Patel and Z. H. Zaidi, “The suitability of sapphire for laser windows,” Meas. Sci. Technol.10(3), 146–151 (1999).
[CrossRef]

Nature (1)

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature244(5414), 281–282 (1973).
[CrossRef]

Opt. Express (3)

Proc. Biol. Sci. (1)

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci.273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic illustration of process steps for the fabrication of SWSs on sapphire substrates using the thermally dewetted Au nanopatterns. The top-view SEM images of the thermally dewetted Au nanoparticles for 5, 7, and 9 nm of Au films are also shown.

Fig. 2
Fig. 2

(a) Measured total transmittance spectra of the sapphires with one-side SWSs for different Au film thicknesses and (b) contour plot of calculated total transmittance variations as a function of period of SWSs. The insets of (a) show the 30°-tilted and side-view SEM images of the corresponding structures.

Fig. 3
Fig. 3

Photographs of the (a) water droplets on the surface of the flat sapphire and the sapphires with one-side SWSs for Au films of 5, 7, and 9 nm and (b) DI-water sprayed (left) flat sapphire and (right) sapphire with one-side SWSs for Au film of 5 nm.

Fig. 4
Fig. 4

(a) Measured (solid lines) and calculated (dashed lines) total transmittance spectra of the flat sapphire and the sapphires with one- and both-side SWSs for Au film of 5 nm and (b) photographs of the corresponding samples exposed to a fluorescent lamp.

Fig. 5
Fig. 5

(a) Measured specular transmittance of the flat sapphire and sapphires with one- and both-side SWSs for Au film of 5 nm as a function of incident angle for unpolarized light at λ = 525 nm and (b) contour plots of variations of calculated incident angle-dependent total transmittance spectra of (i) the flat sapphire and the sapphires with (ii) one- and (iii) both-side SWSs for unpolarized light.

Metrics