Abstract

A novel fiber-optic bending sensor based upon the propagation of LP21 mode is demonstrated. The sensor, comprised of an S-bend fiber on an elastic film, measures LP21 mode specklegram rotation, which increments linearly with bending angle by the stress-optic effect. The sensor is capable of experimentally achieving a sensitivity as high as 4.13 rad/m−1. The theoretical analysis of the sensor, which is a combination of fiber coupled-mode theory and elastic-optic theory, validates the accuracy of the sensor. The sensor is also shown to be temperature-immune, and can detect both bending direction and bending angle with a large dynamic range. Furthermore, the sensor implementation incorporates inexpensive single-mode fiber at 650 nm for few-mode operation, enabling low-loss transmission and compatibility with existing interfaces.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Culshaw and A. Kersey, “Fiber-optic sensing: a historical perspective,” J. Lightwave Technol.26(9), 1064–1078 (2008).
    [CrossRef]
  2. G. M. H. Flockhart, W. N. MacPherson, J. S. Barton, J. D. C. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett.28(6), 387–389 (2003).
    [CrossRef] [PubMed]
  3. C. Y. Lin, L. A. Wang, and G. W. Chem, “Corrugated long-period fiber gratings as strain, torsion, and bending sensors,” J. Lightwave Technol.19(8), 1159–1168 (2001).
    [CrossRef]
  4. L.-Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun.283(13), 2690–2694 (2010).
    [CrossRef]
  5. A. Harhira, J. Lapointe, and Raman Kashyap, “A simple bend sensor using a twin core fiber Mach-Zehnder interferometer,” in Proceedings of Latin America Optics and Photonics Conference, Brazil, Paper Tuf3 (2010).
  6. L. Yuan, “Recent progress of multi-core fiber based integrated interferometers,” Proc. SPIE 7508, 2009 International Conference on Optical Instruments and Technology, 750802; doi:10.1117/12.837912.
    [CrossRef]
  7. M. G. Xu, J.-L. Archambault, L. Reekie, and J. P. Dakin, “Thermally-compensated Bending gauge using surface-mounted fibre gratings,” Int. J. Optoelectron.9(3), 281–283 (1994).
    [CrossRef]
  8. Y.-S. Yu, Z.-Y. Zhao, Z.-C. Zhuo, W. Zheng, Y. Qian, and Y.-S. Zhang, “Bend sensor using an embedded etched fiber Bragg grating,” Microw. Opt. Technol. Lett.43(5), 414–417 (2004).
    [CrossRef]
  9. Y. Yuan, G. Wu, X. Li, Y. Fan, and X. Wu, “Effects of twisting and bending on LP21 mode propagation in optical fiber,” Opt. Lett.36(21), 4248–4250 (2011).
    [CrossRef] [PubMed]
  10. R. Ulrich and A. Simon, “Polarization optics of twisted single-mode fibers,” Appl. Opt.18(13), 2241–2251 (1979).
    [CrossRef] [PubMed]
  11. N. F. Borrelli and R. A. Miller, “Determination of the Individual Strain-Optic Coefficients of Glass by an Ultrasonic Technique,” Appl. Opt.7(5), 745–750 (1968).
    [CrossRef] [PubMed]
  12. H. J. El-Khozondar, M. S. Müller, T. C. Buck, R. J. El-Khozondar, and A. W. Koch, “Experimental Investigation on Polarization Rotation in Twisted Optical Fiber Using Laboratory Coordinate System,” Fiber Integr. Opt.29(1), 1–9 (2009).
    [CrossRef]
  13. A. M. Smith, “Birefringence induced by bends and twists in single-mode optical fiber,” Appl. Opt.19(15), 2606–2611 (1980).
    [CrossRef] [PubMed]
  14. A. Gray, The Helix and Its Generalizations, 2nd ed. (CRC Press, 1997), pp. 198–200.
  15. A. J. Barlow and D. N. Payne, “The Stress-Optic Effect in optical fibers,” IEEE J. Quantum Electron.19(5), 834–839 (1983).
    [CrossRef]

2011

2010

L.-Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun.283(13), 2690–2694 (2010).
[CrossRef]

2009

H. J. El-Khozondar, M. S. Müller, T. C. Buck, R. J. El-Khozondar, and A. W. Koch, “Experimental Investigation on Polarization Rotation in Twisted Optical Fiber Using Laboratory Coordinate System,” Fiber Integr. Opt.29(1), 1–9 (2009).
[CrossRef]

2008

2004

Y.-S. Yu, Z.-Y. Zhao, Z.-C. Zhuo, W. Zheng, Y. Qian, and Y.-S. Zhang, “Bend sensor using an embedded etched fiber Bragg grating,” Microw. Opt. Technol. Lett.43(5), 414–417 (2004).
[CrossRef]

2003

2001

1994

M. G. Xu, J.-L. Archambault, L. Reekie, and J. P. Dakin, “Thermally-compensated Bending gauge using surface-mounted fibre gratings,” Int. J. Optoelectron.9(3), 281–283 (1994).
[CrossRef]

1983

A. J. Barlow and D. N. Payne, “The Stress-Optic Effect in optical fibers,” IEEE J. Quantum Electron.19(5), 834–839 (1983).
[CrossRef]

1980

1979

1968

Albert, J.

L.-Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun.283(13), 2690–2694 (2010).
[CrossRef]

Archambault, J.-L.

M. G. Xu, J.-L. Archambault, L. Reekie, and J. P. Dakin, “Thermally-compensated Bending gauge using surface-mounted fibre gratings,” Int. J. Optoelectron.9(3), 281–283 (1994).
[CrossRef]

Barlow, A. J.

A. J. Barlow and D. N. Payne, “The Stress-Optic Effect in optical fibers,” IEEE J. Quantum Electron.19(5), 834–839 (1983).
[CrossRef]

Barton, J. S.

Bennion, I.

Bock, W. J.

L.-Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun.283(13), 2690–2694 (2010).
[CrossRef]

Borrelli, N. F.

Buck, T. C.

H. J. El-Khozondar, M. S. Müller, T. C. Buck, R. J. El-Khozondar, and A. W. Koch, “Experimental Investigation on Polarization Rotation in Twisted Optical Fiber Using Laboratory Coordinate System,” Fiber Integr. Opt.29(1), 1–9 (2009).
[CrossRef]

Chem, G. W.

Culshaw, B.

Dakin, J. P.

M. G. Xu, J.-L. Archambault, L. Reekie, and J. P. Dakin, “Thermally-compensated Bending gauge using surface-mounted fibre gratings,” Int. J. Optoelectron.9(3), 281–283 (1994).
[CrossRef]

El-Khozondar, H. J.

H. J. El-Khozondar, M. S. Müller, T. C. Buck, R. J. El-Khozondar, and A. W. Koch, “Experimental Investigation on Polarization Rotation in Twisted Optical Fiber Using Laboratory Coordinate System,” Fiber Integr. Opt.29(1), 1–9 (2009).
[CrossRef]

El-Khozondar, R. J.

H. J. El-Khozondar, M. S. Müller, T. C. Buck, R. J. El-Khozondar, and A. W. Koch, “Experimental Investigation on Polarization Rotation in Twisted Optical Fiber Using Laboratory Coordinate System,” Fiber Integr. Opt.29(1), 1–9 (2009).
[CrossRef]

Fan, Y.

Flockhart, G. M. H.

Jones, J. D. C.

Kersey, A.

Koch, A. W.

H. J. El-Khozondar, M. S. Müller, T. C. Buck, R. J. El-Khozondar, and A. W. Koch, “Experimental Investigation on Polarization Rotation in Twisted Optical Fiber Using Laboratory Coordinate System,” Fiber Integr. Opt.29(1), 1–9 (2009).
[CrossRef]

Laronche, A.

L.-Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun.283(13), 2690–2694 (2010).
[CrossRef]

Li, X.

Lin, C. Y.

MacPherson, W. N.

Mikulic, P.

L.-Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun.283(13), 2690–2694 (2010).
[CrossRef]

Miller, R. A.

Müller, M. S.

H. J. El-Khozondar, M. S. Müller, T. C. Buck, R. J. El-Khozondar, and A. W. Koch, “Experimental Investigation on Polarization Rotation in Twisted Optical Fiber Using Laboratory Coordinate System,” Fiber Integr. Opt.29(1), 1–9 (2009).
[CrossRef]

Payne, D. N.

A. J. Barlow and D. N. Payne, “The Stress-Optic Effect in optical fibers,” IEEE J. Quantum Electron.19(5), 834–839 (1983).
[CrossRef]

Qian, Y.

Y.-S. Yu, Z.-Y. Zhao, Z.-C. Zhuo, W. Zheng, Y. Qian, and Y.-S. Zhang, “Bend sensor using an embedded etched fiber Bragg grating,” Microw. Opt. Technol. Lett.43(5), 414–417 (2004).
[CrossRef]

Reekie, L.

M. G. Xu, J.-L. Archambault, L. Reekie, and J. P. Dakin, “Thermally-compensated Bending gauge using surface-mounted fibre gratings,” Int. J. Optoelectron.9(3), 281–283 (1994).
[CrossRef]

Shao, L.-Y.

L.-Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun.283(13), 2690–2694 (2010).
[CrossRef]

Simon, A.

Smietana, M.

L.-Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun.283(13), 2690–2694 (2010).
[CrossRef]

Smith, A. M.

Ulrich, R.

Wang, L. A.

Wu, G.

Wu, X.

Xu, M. G.

M. G. Xu, J.-L. Archambault, L. Reekie, and J. P. Dakin, “Thermally-compensated Bending gauge using surface-mounted fibre gratings,” Int. J. Optoelectron.9(3), 281–283 (1994).
[CrossRef]

Yu, Y.-S.

Y.-S. Yu, Z.-Y. Zhao, Z.-C. Zhuo, W. Zheng, Y. Qian, and Y.-S. Zhang, “Bend sensor using an embedded etched fiber Bragg grating,” Microw. Opt. Technol. Lett.43(5), 414–417 (2004).
[CrossRef]

Yuan, Y.

Zhang, L.

Zhang, Y.-S.

Y.-S. Yu, Z.-Y. Zhao, Z.-C. Zhuo, W. Zheng, Y. Qian, and Y.-S. Zhang, “Bend sensor using an embedded etched fiber Bragg grating,” Microw. Opt. Technol. Lett.43(5), 414–417 (2004).
[CrossRef]

Zhao, Z.-Y.

Y.-S. Yu, Z.-Y. Zhao, Z.-C. Zhuo, W. Zheng, Y. Qian, and Y.-S. Zhang, “Bend sensor using an embedded etched fiber Bragg grating,” Microw. Opt. Technol. Lett.43(5), 414–417 (2004).
[CrossRef]

Zheng, W.

Y.-S. Yu, Z.-Y. Zhao, Z.-C. Zhuo, W. Zheng, Y. Qian, and Y.-S. Zhang, “Bend sensor using an embedded etched fiber Bragg grating,” Microw. Opt. Technol. Lett.43(5), 414–417 (2004).
[CrossRef]

Zhuo, Z.-C.

Y.-S. Yu, Z.-Y. Zhao, Z.-C. Zhuo, W. Zheng, Y. Qian, and Y.-S. Zhang, “Bend sensor using an embedded etched fiber Bragg grating,” Microw. Opt. Technol. Lett.43(5), 414–417 (2004).
[CrossRef]

Appl. Opt.

Fiber Integr. Opt.

H. J. El-Khozondar, M. S. Müller, T. C. Buck, R. J. El-Khozondar, and A. W. Koch, “Experimental Investigation on Polarization Rotation in Twisted Optical Fiber Using Laboratory Coordinate System,” Fiber Integr. Opt.29(1), 1–9 (2009).
[CrossRef]

IEEE J. Quantum Electron.

A. J. Barlow and D. N. Payne, “The Stress-Optic Effect in optical fibers,” IEEE J. Quantum Electron.19(5), 834–839 (1983).
[CrossRef]

Int. J. Optoelectron.

M. G. Xu, J.-L. Archambault, L. Reekie, and J. P. Dakin, “Thermally-compensated Bending gauge using surface-mounted fibre gratings,” Int. J. Optoelectron.9(3), 281–283 (1994).
[CrossRef]

J. Lightwave Technol.

Microw. Opt. Technol. Lett.

Y.-S. Yu, Z.-Y. Zhao, Z.-C. Zhuo, W. Zheng, Y. Qian, and Y.-S. Zhang, “Bend sensor using an embedded etched fiber Bragg grating,” Microw. Opt. Technol. Lett.43(5), 414–417 (2004).
[CrossRef]

Opt. Commun.

L.-Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun.283(13), 2690–2694 (2010).
[CrossRef]

Opt. Lett.

Other

A. Gray, The Helix and Its Generalizations, 2nd ed. (CRC Press, 1997), pp. 198–200.

A. Harhira, J. Lapointe, and Raman Kashyap, “A simple bend sensor using a twin core fiber Mach-Zehnder interferometer,” in Proceedings of Latin America Optics and Photonics Conference, Brazil, Paper Tuf3 (2010).

L. Yuan, “Recent progress of multi-core fiber based integrated interferometers,” Proc. SPIE 7508, 2009 International Conference on Optical Instruments and Technology, 750802; doi:10.1117/12.837912.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of experimental setup

Fig. 2
Fig. 2

Structure of the fiber bend sensor

Fig. 3
Fig. 3

(Upper) Measured specklegram as bending angle varied from 0°to 90° (α = 40°, r = 10 mm), (Lower) Typical intensity distribution of LP21 after processing of Matlab algorithm

Fig. 4
Fig. 4

Specklegram rotation angle versus sensor bending angle at different fiber arc angle ψ.

Fig. 5
Fig. 5

Specklegram rotation angle versus temperature

Tables (1)

Tables Icon

Table 1 Experimental result of bending sensor at different fiber arc angles and errors due to different working temperatures

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E xL P 21 = E xH E 31 + E xE H 11 =0 E yL P 21 = E yH E 31 + E yE H 11 = 2iβa u 2 r [ 2a J 1 ( ur a )+ur J 0 ( ur a ) ]sin(2φ+ θ 0 ) E zL P 21 = E zH E 31 + E zE H 11 = J 3 ( ur a )cos(3φ+ θ 0 )+ J 1 ( ur a )cos(φ+ θ 0 )
d c 1 / dz = K odd-odd c 1 + K odd-even c 2 , c 1 (0)=1, d c 2 / dz = K even-odd c 1 + K even-even c 2 , c 2 (0)=m.

Metrics