Abstract

A novel fiber-optic bending sensor based upon the propagation of LP21 mode is demonstrated. The sensor, comprised of an S-bend fiber on an elastic film, measures LP21 mode specklegram rotation, which increments linearly with bending angle by the stress-optic effect. The sensor is capable of experimentally achieving a sensitivity as high as 4.13 rad/m−1. The theoretical analysis of the sensor, which is a combination of fiber coupled-mode theory and elastic-optic theory, validates the accuracy of the sensor. The sensor is also shown to be temperature-immune, and can detect both bending direction and bending angle with a large dynamic range. Furthermore, the sensor implementation incorporates inexpensive single-mode fiber at 650 nm for few-mode operation, enabling low-loss transmission and compatibility with existing interfaces.

© 2012 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Effects of twisting and bending on LP21 mode propagation in optical fiber

Yufeng Yuan, George Wu, Xian Li, Yuqiang Fan, and Xingkun Wu
Opt. Lett. 36(21) 4248-4250 (2011)

Photonic bandgap Bragg fiber sensors for bending/displacement detection

Hang Qu, Tiberius Brastaviceanu, Francois Bergeron, Jonathan Olesik, Ivan Pavlov, Takaaki Ishigure, and Maksim Skorobogatiy
Appl. Opt. 52(25) 6344-6349 (2013)

Ambient refractive index-independent bending vector sensor based on seven-core photonic crystal fiber using lateral offset splicing

Zhilong Ou, Yongqin Yu, Peiguang Yan, Jishun Wang, Quandong Huang, Xue Chen, Chenlin Du, and Huifeng Wei
Opt. Express 21(20) 23812-23821 (2013)

References

  • View by:
  • |
  • |
  • |

  1. B. Culshaw and A. Kersey, “Fiber-optic sensing: a historical perspective,” J. Lightwave Technol. 26(9), 1064–1078 (2008).
    [Crossref]
  2. G. M. H. Flockhart, W. N. MacPherson, J. S. Barton, J. D. C. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett. 28(6), 387–389 (2003).
    [Crossref] [PubMed]
  3. C. Y. Lin, L. A. Wang, and G. W. Chem, “Corrugated long-period fiber gratings as strain, torsion, and bending sensors,” J. Lightwave Technol. 19(8), 1159–1168 (2001).
    [Crossref]
  4. L.-Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
    [Crossref]
  5. A. Harhira, J. Lapointe, and Raman Kashyap, “A simple bend sensor using a twin core fiber Mach-Zehnder interferometer,” in Proceedings of Latin America Optics and Photonics Conference, Brazil, Paper Tuf3 (2010).
  6. L. Yuan, “Recent progress of multi-core fiber based integrated interferometers,” Proc. SPIE 7508, 2009 International Conference on Optical Instruments and Technology, 750802; doi:10.1117/12.837912.
    [Crossref]
  7. M. G. Xu, J.-L. Archambault, L. Reekie, and J. P. Dakin, “Thermally-compensated Bending gauge using surface-mounted fibre gratings,” Int. J. Optoelectron. 9(3), 281–283 (1994).
    [Crossref]
  8. Y.-S. Yu, Z.-Y. Zhao, Z.-C. Zhuo, W. Zheng, Y. Qian, and Y.-S. Zhang, “Bend sensor using an embedded etched fiber Bragg grating,” Microw. Opt. Technol. Lett. 43(5), 414–417 (2004).
    [Crossref]
  9. Y. Yuan, G. Wu, X. Li, Y. Fan, and X. Wu, “Effects of twisting and bending on LP21 mode propagation in optical fiber,” Opt. Lett. 36(21), 4248–4250 (2011).
    [Crossref] [PubMed]
  10. R. Ulrich and A. Simon, “Polarization optics of twisted single-mode fibers,” Appl. Opt. 18(13), 2241–2251 (1979).
    [Crossref] [PubMed]
  11. N. F. Borrelli and R. A. Miller, “Determination of the Individual Strain-Optic Coefficients of Glass by an Ultrasonic Technique,” Appl. Opt. 7(5), 745–750 (1968).
    [Crossref] [PubMed]
  12. H. J. El-Khozondar, M. S. Müller, T. C. Buck, R. J. El-Khozondar, and A. W. Koch, “Experimental Investigation on Polarization Rotation in Twisted Optical Fiber Using Laboratory Coordinate System,” Fiber Integr. Opt. 29(1), 1–9 (2009).
    [Crossref]
  13. A. M. Smith, “Birefringence induced by bends and twists in single-mode optical fiber,” Appl. Opt. 19(15), 2606–2611 (1980).
    [Crossref] [PubMed]
  14. A. Gray, The Helix and Its Generalizations, 2nd ed. (CRC Press, 1997), pp. 198–200.
  15. A. J. Barlow and D. N. Payne, “The Stress-Optic Effect in optical fibers,” IEEE J. Quantum Electron. 19(5), 834–839 (1983).
    [Crossref]

2011 (1)

2010 (1)

L.-Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
[Crossref]

2009 (1)

H. J. El-Khozondar, M. S. Müller, T. C. Buck, R. J. El-Khozondar, and A. W. Koch, “Experimental Investigation on Polarization Rotation in Twisted Optical Fiber Using Laboratory Coordinate System,” Fiber Integr. Opt. 29(1), 1–9 (2009).
[Crossref]

2008 (1)

2004 (1)

Y.-S. Yu, Z.-Y. Zhao, Z.-C. Zhuo, W. Zheng, Y. Qian, and Y.-S. Zhang, “Bend sensor using an embedded etched fiber Bragg grating,” Microw. Opt. Technol. Lett. 43(5), 414–417 (2004).
[Crossref]

2003 (1)

2001 (1)

1994 (1)

M. G. Xu, J.-L. Archambault, L. Reekie, and J. P. Dakin, “Thermally-compensated Bending gauge using surface-mounted fibre gratings,” Int. J. Optoelectron. 9(3), 281–283 (1994).
[Crossref]

1983 (1)

A. J. Barlow and D. N. Payne, “The Stress-Optic Effect in optical fibers,” IEEE J. Quantum Electron. 19(5), 834–839 (1983).
[Crossref]

1980 (1)

1979 (1)

1968 (1)

Albert, J.

L.-Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
[Crossref]

Archambault, J.-L.

M. G. Xu, J.-L. Archambault, L. Reekie, and J. P. Dakin, “Thermally-compensated Bending gauge using surface-mounted fibre gratings,” Int. J. Optoelectron. 9(3), 281–283 (1994).
[Crossref]

Barlow, A. J.

A. J. Barlow and D. N. Payne, “The Stress-Optic Effect in optical fibers,” IEEE J. Quantum Electron. 19(5), 834–839 (1983).
[Crossref]

Barton, J. S.

Bennion, I.

Bock, W. J.

L.-Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
[Crossref]

Borrelli, N. F.

Buck, T. C.

H. J. El-Khozondar, M. S. Müller, T. C. Buck, R. J. El-Khozondar, and A. W. Koch, “Experimental Investigation on Polarization Rotation in Twisted Optical Fiber Using Laboratory Coordinate System,” Fiber Integr. Opt. 29(1), 1–9 (2009).
[Crossref]

Chem, G. W.

Culshaw, B.

Dakin, J. P.

M. G. Xu, J.-L. Archambault, L. Reekie, and J. P. Dakin, “Thermally-compensated Bending gauge using surface-mounted fibre gratings,” Int. J. Optoelectron. 9(3), 281–283 (1994).
[Crossref]

El-Khozondar, H. J.

H. J. El-Khozondar, M. S. Müller, T. C. Buck, R. J. El-Khozondar, and A. W. Koch, “Experimental Investigation on Polarization Rotation in Twisted Optical Fiber Using Laboratory Coordinate System,” Fiber Integr. Opt. 29(1), 1–9 (2009).
[Crossref]

El-Khozondar, R. J.

H. J. El-Khozondar, M. S. Müller, T. C. Buck, R. J. El-Khozondar, and A. W. Koch, “Experimental Investigation on Polarization Rotation in Twisted Optical Fiber Using Laboratory Coordinate System,” Fiber Integr. Opt. 29(1), 1–9 (2009).
[Crossref]

Fan, Y.

Flockhart, G. M. H.

Jones, J. D. C.

Kersey, A.

Koch, A. W.

H. J. El-Khozondar, M. S. Müller, T. C. Buck, R. J. El-Khozondar, and A. W. Koch, “Experimental Investigation on Polarization Rotation in Twisted Optical Fiber Using Laboratory Coordinate System,” Fiber Integr. Opt. 29(1), 1–9 (2009).
[Crossref]

Laronche, A.

L.-Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
[Crossref]

Li, X.

Lin, C. Y.

MacPherson, W. N.

Mikulic, P.

L.-Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
[Crossref]

Miller, R. A.

Müller, M. S.

H. J. El-Khozondar, M. S. Müller, T. C. Buck, R. J. El-Khozondar, and A. W. Koch, “Experimental Investigation on Polarization Rotation in Twisted Optical Fiber Using Laboratory Coordinate System,” Fiber Integr. Opt. 29(1), 1–9 (2009).
[Crossref]

Payne, D. N.

A. J. Barlow and D. N. Payne, “The Stress-Optic Effect in optical fibers,” IEEE J. Quantum Electron. 19(5), 834–839 (1983).
[Crossref]

Qian, Y.

Y.-S. Yu, Z.-Y. Zhao, Z.-C. Zhuo, W. Zheng, Y. Qian, and Y.-S. Zhang, “Bend sensor using an embedded etched fiber Bragg grating,” Microw. Opt. Technol. Lett. 43(5), 414–417 (2004).
[Crossref]

Reekie, L.

M. G. Xu, J.-L. Archambault, L. Reekie, and J. P. Dakin, “Thermally-compensated Bending gauge using surface-mounted fibre gratings,” Int. J. Optoelectron. 9(3), 281–283 (1994).
[Crossref]

Shao, L.-Y.

L.-Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
[Crossref]

Simon, A.

Smietana, M.

L.-Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
[Crossref]

Smith, A. M.

Ulrich, R.

Wang, L. A.

Wu, G.

Wu, X.

Xu, M. G.

M. G. Xu, J.-L. Archambault, L. Reekie, and J. P. Dakin, “Thermally-compensated Bending gauge using surface-mounted fibre gratings,” Int. J. Optoelectron. 9(3), 281–283 (1994).
[Crossref]

Yu, Y.-S.

Y.-S. Yu, Z.-Y. Zhao, Z.-C. Zhuo, W. Zheng, Y. Qian, and Y.-S. Zhang, “Bend sensor using an embedded etched fiber Bragg grating,” Microw. Opt. Technol. Lett. 43(5), 414–417 (2004).
[Crossref]

Yuan, Y.

Zhang, L.

Zhang, Y.-S.

Y.-S. Yu, Z.-Y. Zhao, Z.-C. Zhuo, W. Zheng, Y. Qian, and Y.-S. Zhang, “Bend sensor using an embedded etched fiber Bragg grating,” Microw. Opt. Technol. Lett. 43(5), 414–417 (2004).
[Crossref]

Zhao, Z.-Y.

Y.-S. Yu, Z.-Y. Zhao, Z.-C. Zhuo, W. Zheng, Y. Qian, and Y.-S. Zhang, “Bend sensor using an embedded etched fiber Bragg grating,” Microw. Opt. Technol. Lett. 43(5), 414–417 (2004).
[Crossref]

Zheng, W.

Y.-S. Yu, Z.-Y. Zhao, Z.-C. Zhuo, W. Zheng, Y. Qian, and Y.-S. Zhang, “Bend sensor using an embedded etched fiber Bragg grating,” Microw. Opt. Technol. Lett. 43(5), 414–417 (2004).
[Crossref]

Zhuo, Z.-C.

Y.-S. Yu, Z.-Y. Zhao, Z.-C. Zhuo, W. Zheng, Y. Qian, and Y.-S. Zhang, “Bend sensor using an embedded etched fiber Bragg grating,” Microw. Opt. Technol. Lett. 43(5), 414–417 (2004).
[Crossref]

Appl. Opt. (3)

Fiber Integr. Opt. (1)

H. J. El-Khozondar, M. S. Müller, T. C. Buck, R. J. El-Khozondar, and A. W. Koch, “Experimental Investigation on Polarization Rotation in Twisted Optical Fiber Using Laboratory Coordinate System,” Fiber Integr. Opt. 29(1), 1–9 (2009).
[Crossref]

IEEE J. Quantum Electron. (1)

A. J. Barlow and D. N. Payne, “The Stress-Optic Effect in optical fibers,” IEEE J. Quantum Electron. 19(5), 834–839 (1983).
[Crossref]

Int. J. Optoelectron. (1)

M. G. Xu, J.-L. Archambault, L. Reekie, and J. P. Dakin, “Thermally-compensated Bending gauge using surface-mounted fibre gratings,” Int. J. Optoelectron. 9(3), 281–283 (1994).
[Crossref]

J. Lightwave Technol. (2)

Microw. Opt. Technol. Lett. (1)

Y.-S. Yu, Z.-Y. Zhao, Z.-C. Zhuo, W. Zheng, Y. Qian, and Y.-S. Zhang, “Bend sensor using an embedded etched fiber Bragg grating,” Microw. Opt. Technol. Lett. 43(5), 414–417 (2004).
[Crossref]

Opt. Commun. (1)

L.-Y. Shao, A. Laronche, M. Smietana, P. Mikulic, W. J. Bock, and J. Albert, “Highly sensitive bend sensor with hybrid long-period and tilted fiber Bragg grating,” Opt. Commun. 283(13), 2690–2694 (2010).
[Crossref]

Opt. Lett. (2)

Other (3)

A. Harhira, J. Lapointe, and Raman Kashyap, “A simple bend sensor using a twin core fiber Mach-Zehnder interferometer,” in Proceedings of Latin America Optics and Photonics Conference, Brazil, Paper Tuf3 (2010).

L. Yuan, “Recent progress of multi-core fiber based integrated interferometers,” Proc. SPIE 7508, 2009 International Conference on Optical Instruments and Technology, 750802; doi:10.1117/12.837912.
[Crossref]

A. Gray, The Helix and Its Generalizations, 2nd ed. (CRC Press, 1997), pp. 198–200.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of experimental setup

Fig. 2
Fig. 2

Structure of the fiber bend sensor

Fig. 3
Fig. 3

(Upper) Measured specklegram as bending angle varied from 0°to 90° (α = 40°, r = 10 mm), (Lower) Typical intensity distribution of LP21 after processing of Matlab algorithm

Fig. 4
Fig. 4

Specklegram rotation angle versus sensor bending angle at different fiber arc angle ψ.

Fig. 5
Fig. 5

Specklegram rotation angle versus temperature

Tables (1)

Tables Icon

Table 1 Experimental result of bending sensor at different fiber arc angles and errors due to different working temperatures

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E xL P 21 = E xH E 31 + E xE H 11 =0 E yL P 21 = E yH E 31 + E yE H 11 = 2iβa u 2 r [ 2a J 1 ( ur a )+ur J 0 ( ur a ) ]sin(2φ+ θ 0 ) E zL P 21 = E zH E 31 + E zE H 11 = J 3 ( ur a )cos(3φ+ θ 0 )+ J 1 ( ur a )cos(φ+ θ 0 )
d c 1 / dz = K odd-odd c 1 + K odd-even c 2 , c 1 (0)=1, d c 2 / dz = K even-odd c 1 + K even-even c 2 , c 2 (0)=m.
K αβ = ω ε 0 4i P β D i,j=1-3 ( E α i * Δ n 2 ij E β j ) dxdy ,
K ππ = ω ε 0 4i P j D ( E y * π Δ n 2 2 E y π + E z * π Δ n 3 2 E z π )dxdy ,
Ω=2 0 ψ τds =2 0 ψ ρ R sinψ'cosψ'dψ'= ρ R sin 2 ψ= 1 2 Θsinψ,

Metrics