Abstract

We demonstrate a Cs FADOF (Faraday anomalous dispersion optical filter) with a single transmission peak resonant with the 6S1/2, F = 4 → 7P3/2, F′ = 3, 4, 5 transition at 455 nm. The filter achieves a single peak transmission of 86%. With the technique of saturated absorption spectra, we obtain the bandwidth of the single peak, which is 1.5 GHz. While most of other FADOFs operate at frequencies far from absorption, the filter we have realized can provide light exactly resonant with atomic transitions with a high transmission. We also find that, at a particular temperature, we can achieve a single transmission peak rather than many peaks far from absorption by changing the strength of magnetic field. This technique can also be applied to other alkali atoms.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, M. Duan, J. Kong, and L. Zheng, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt.34, 2619–2622 (1995).
    [CrossRef]
  2. C. Fricke-Begemann, M. Alpers, and J. Höffner, “Daylight rejection with a new receiver for potassium resonance temperature lidars,” Opt. Lett.27, 1932–1934 (2002).
    [CrossRef]
  3. J. Höffner and C. Fricke-Begemann, “Accurate lidar temperatures with narrowband filters,” Opt. Lett.30, 890–892 (2005).
    [CrossRef] [PubMed]
  4. A. Popescu and T. Walther, “On an ESFADOF edge-filter for a range resolved Brillouin-lidar: The high vapor density and high pump intensity regime,” Appl. Phys. B98, 667–675 (2010).
    [CrossRef]
  5. A. Popescu, D. Walldorf, K. Schorstein, and T. Walther, “On an excited state Faraday anomalous dispersion optical filter at moderate pump powers for a Brillouin-lidar receiver system,” Opt. Commun.264, 475–481 (2006).
    [CrossRef]
  6. J. S. Neergaard-Nielsen, B. M. Nielsen, H. Takahashi, A. I. Vistnes, and E. S. Polzik, “High purity bright single photon source,” Opt. Express15, 7940–7949 (2007).
    [CrossRef] [PubMed]
  7. F. Wolfgramm, X. Xing, A. Cerè, A. Predojević, A. M. Steinberg, and M. W. Mitchell, “Bright filter-free source of indistinguishable photon pairs,” Opt. Express16, 18145–18151 (2008).
    [CrossRef] [PubMed]
  8. X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum.82, 086106 (2011).
    [CrossRef] [PubMed]
  9. X. Baillard, A. Gauguet, S. Bize, P. Lemonde, Ph. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun.266, 609–613 (2006).
    [CrossRef]
  10. B. Yin and T. M. Shay, “Theoretical model for a Faraday anomalous dispersion optical filter,” Opt. Lett.16, 1617–1619 (1991).
    [CrossRef] [PubMed]
  11. J. Menders, P. Searcy, K. Roff, and E. Korevaar, “Blue cesium Faraday and Voigt magneto-optic atomic line filters,” Opt. Lett.17, 1388–1390 (1992).
    [CrossRef] [PubMed]
  12. B. Yin and T. M. Shay, “Faraday anomalous dispersion optical filter for the Cs 455 nm transition,” IEEE Photon. Technol. Lett.4, 488–490 (1992).
    [CrossRef]
  13. X. Sun, S. Wang, A. Chen, M. Zhao, and X. Zeng, “A fast efficient passive cesium ARF,” Opt. Commun.111, 259–262 (1994).
    [CrossRef]
  14. Y. Wang, S. Zhang, D. Wang, Z. Tao, Y. Hong, and J. Chen, “Nonlinear optical filter with ultra-narrow bandwidth approaching the natural linewidth,” Opt. Lett.37, 4059–4061 (2012).
    [CrossRef] [PubMed]
  15. D. J. Dick and T. M. Shay, “Ultrahigh-noise rejection optical filter,” Opt. Lett.16, 867–869 (1991).
    [CrossRef] [PubMed]
  16. Z. Hu, X. Sun, X. Zeng, Y. Peng, J. Tang, L. Zhang, Q. Wang, and L. Zheng, “Rb 780 nm Faraday anomalous dispersion optical filter in a strong magnetic field,” Opt. Commun.101, 175–178 (1993).
    [CrossRef]
  17. M. Duan, Y. Li, J. Tang, and L. Zheng, “Excited state Faraday anomalous dispersion spectrum of rubidium,” Opt. Commun.127, 210–214 (1996).
    [CrossRef]
  18. Q. Sun, W. Zhuang, Z. Liu, and J. Chen, “Electrodeless-discharge-vapor-lamp-based Faraday anomalous-dispersion optical filter,” Opt. Lett.36, 4611–4613 (2011).
    [CrossRef] [PubMed]
  19. X. Xue, Z. Tao, Q. Sun, Y. Hong, W. Zhuang, B. Luo, J. Chen, and H. Guo, “Faraday anomalous dispersion optical filter with a single transmission peak using a buffer-gas-filled rubidium cell,” Opt. Lett.37, 2274–2276 (2012).
    [CrossRef] [PubMed]
  20. J. A. Zielińska, F. A. Beduini, N. Godbout, and M. W. Mitchell, “Ultranarrow Faraday rotation filter at the Rb D1 line,” Opt. Lett.37, 524–526 (2012).
    [CrossRef]
  21. B. Yin and T. M. Shay, “A potassium Faraday anomalous dispersion optical filter,” Opt. Commun.94, 30–32 (1992).
    [CrossRef]
  22. E. T. Dressler, A. E. Laux, and R. I. Billmers, “Theory and experiment for the anomalous Faraday effect in potassium,” J. Opt. Soc. Am. B13, 1849–1858 (1996).
    [CrossRef]
  23. Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristic of potassium Faraday optical filter,” IEEE J. Quantum Electron.37, 372–375 (2001).
    [CrossRef]
  24. Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun.194, 147–150 (2001).
    [CrossRef]
  25. S. D. Harrell, C. Y. She, T. Yuan, D. A. Krueger, H. Chen, S. S. Chen, and Z. L. Hu, “Sodium and potassium vapor Faraday filters revisited: theory and applications,” J. Opt. Soc. Am. B26, 659–670 (2009).
    [CrossRef]
  26. H. Chen, C. Y. She, P. Searcy, and E. Korevaar, “Sodium-vapor dispersive Faraday filter,” Opt. Lett.18, 1019–1021 (1993).
    [CrossRef] [PubMed]
  27. Y. C. Chan and J. Gelbwachs, “A Fraunhofer-wavelength magnetooptic atomic filter at 422.7 nm,” IEEE J. Quantum Electron.29, 2379–2384 (1993).
    [CrossRef]
  28. S. K. Gayen, R. I. Billmers, V. M. Contarino, M. F. Squicciarini, W. J. Scharpf, G. Yang, P. R. Herczfeld, and D. M. Allocca, “Induced-dichroism-excited atomic line filter at 532 nm,” Opt. Lett.20, 1427–1429 (1995).
    [CrossRef] [PubMed]
  29. L. D. Turner, V. Karaganov, P. J. O. Teubner, and R. E. Scholten, “Sub-Doppler bandwidth atomic optical filter,” Opt. Lett.27, 500–502 (2002).
    [CrossRef]
  30. A. Cerè, V. Parigi, M. Abad, F. Wolfgramm, A. Predojević, and M. W. Mitchell, “Narrowband tunable filter based on velocity-selective optical pumping in an atomic vapor,” Opt. Lett.34, 1012–1014 (2009).
    [CrossRef] [PubMed]
  31. S. Liu, Y. Zhang, H. Wu, and P. Yuan, “Ultra-narrow bandwidth atomic filter based on optical-pumping-induced dichroism realized by selectively saturated absorption,” Opt. Commun.285, 1181–1184 (2012).
    [CrossRef]
  32. J. T. Schultz, S. Abend, D. Döring, J. E. Debs, P. A. Altin, J. D. White, N. P. Robins, and J. D. Close, “Coherent 455 nm beam production in a cesium vapor,” Opt. Lett.34, 2321–2323 (2009).
    [CrossRef] [PubMed]

2012 (4)

2011 (2)

Q. Sun, W. Zhuang, Z. Liu, and J. Chen, “Electrodeless-discharge-vapor-lamp-based Faraday anomalous-dispersion optical filter,” Opt. Lett.36, 4611–4613 (2011).
[CrossRef] [PubMed]

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum.82, 086106 (2011).
[CrossRef] [PubMed]

2010 (1)

A. Popescu and T. Walther, “On an ESFADOF edge-filter for a range resolved Brillouin-lidar: The high vapor density and high pump intensity regime,” Appl. Phys. B98, 667–675 (2010).
[CrossRef]

2009 (3)

2008 (1)

2007 (1)

2006 (2)

A. Popescu, D. Walldorf, K. Schorstein, and T. Walther, “On an excited state Faraday anomalous dispersion optical filter at moderate pump powers for a Brillouin-lidar receiver system,” Opt. Commun.264, 475–481 (2006).
[CrossRef]

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, Ph. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun.266, 609–613 (2006).
[CrossRef]

2005 (1)

2002 (2)

2001 (2)

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristic of potassium Faraday optical filter,” IEEE J. Quantum Electron.37, 372–375 (2001).
[CrossRef]

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun.194, 147–150 (2001).
[CrossRef]

1996 (2)

E. T. Dressler, A. E. Laux, and R. I. Billmers, “Theory and experiment for the anomalous Faraday effect in potassium,” J. Opt. Soc. Am. B13, 1849–1858 (1996).
[CrossRef]

M. Duan, Y. Li, J. Tang, and L. Zheng, “Excited state Faraday anomalous dispersion spectrum of rubidium,” Opt. Commun.127, 210–214 (1996).
[CrossRef]

1995 (2)

1994 (1)

X. Sun, S. Wang, A. Chen, M. Zhao, and X. Zeng, “A fast efficient passive cesium ARF,” Opt. Commun.111, 259–262 (1994).
[CrossRef]

1993 (3)

Z. Hu, X. Sun, X. Zeng, Y. Peng, J. Tang, L. Zhang, Q. Wang, and L. Zheng, “Rb 780 nm Faraday anomalous dispersion optical filter in a strong magnetic field,” Opt. Commun.101, 175–178 (1993).
[CrossRef]

Y. C. Chan and J. Gelbwachs, “A Fraunhofer-wavelength magnetooptic atomic filter at 422.7 nm,” IEEE J. Quantum Electron.29, 2379–2384 (1993).
[CrossRef]

H. Chen, C. Y. She, P. Searcy, and E. Korevaar, “Sodium-vapor dispersive Faraday filter,” Opt. Lett.18, 1019–1021 (1993).
[CrossRef] [PubMed]

1992 (3)

J. Menders, P. Searcy, K. Roff, and E. Korevaar, “Blue cesium Faraday and Voigt magneto-optic atomic line filters,” Opt. Lett.17, 1388–1390 (1992).
[CrossRef] [PubMed]

B. Yin and T. M. Shay, “A potassium Faraday anomalous dispersion optical filter,” Opt. Commun.94, 30–32 (1992).
[CrossRef]

B. Yin and T. M. Shay, “Faraday anomalous dispersion optical filter for the Cs 455 nm transition,” IEEE Photon. Technol. Lett.4, 488–490 (1992).
[CrossRef]

1991 (2)

Abad, M.

Abend, S.

Allocca, D. M.

Alpers, M.

Altin, P. A.

Baillard, X.

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, Ph. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun.266, 609–613 (2006).
[CrossRef]

Beduini, F. A.

Billmers, R. I.

Bize, S.

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, Ph. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun.266, 609–613 (2006).
[CrossRef]

Cerè, A.

Chan, Y. C.

Y. C. Chan and J. Gelbwachs, “A Fraunhofer-wavelength magnetooptic atomic filter at 422.7 nm,” IEEE J. Quantum Electron.29, 2379–2384 (1993).
[CrossRef]

Chen, A.

X. Sun, S. Wang, A. Chen, M. Zhao, and X. Zeng, “A fast efficient passive cesium ARF,” Opt. Commun.111, 259–262 (1994).
[CrossRef]

Chen, H.

Chen, J.

Chen, S. S.

Clairon, A.

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, Ph. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun.266, 609–613 (2006).
[CrossRef]

Close, J. D.

Contarino, V. M.

Dang, A.

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum.82, 086106 (2011).
[CrossRef] [PubMed]

Debs, J. E.

Dick, D. J.

Döring, D.

Dressler, E. T.

Duan, M.

Fricke-Begemann, C.

Gan, J.

Gauguet, A.

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, Ph. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun.266, 609–613 (2006).
[CrossRef]

Gayen, S. K.

Gelbwachs, J.

Y. C. Chan and J. Gelbwachs, “A Fraunhofer-wavelength magnetooptic atomic filter at 422.7 nm,” IEEE J. Quantum Electron.29, 2379–2384 (1993).
[CrossRef]

Godbout, N.

Guo, H.

X. Xue, Z. Tao, Q. Sun, Y. Hong, W. Zhuang, B. Luo, J. Chen, and H. Guo, “Faraday anomalous dispersion optical filter with a single transmission peak using a buffer-gas-filled rubidium cell,” Opt. Lett.37, 2274–2276 (2012).
[CrossRef] [PubMed]

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum.82, 086106 (2011).
[CrossRef] [PubMed]

Harrell, S. D.

Herczfeld, P. R.

Höffner, J.

Hong, Y.

Hu, Z.

Z. Hu, X. Sun, X. Zeng, Y. Peng, J. Tang, L. Zhang, Q. Wang, and L. Zheng, “Rb 780 nm Faraday anomalous dispersion optical filter in a strong magnetic field,” Opt. Commun.101, 175–178 (1993).
[CrossRef]

Hu, Z. L.

Jia, X.

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristic of potassium Faraday optical filter,” IEEE J. Quantum Electron.37, 372–375 (2001).
[CrossRef]

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun.194, 147–150 (2001).
[CrossRef]

Karaganov, V.

Kong, J.

Korevaar, E.

Krueger, D. A.

Laurent, Ph.

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, Ph. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun.266, 609–613 (2006).
[CrossRef]

Laux, A. E.

Lemonde, P.

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, Ph. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun.266, 609–613 (2006).
[CrossRef]

Li, Y.

Liu, S.

S. Liu, Y. Zhang, H. Wu, and P. Yuan, “Ultra-narrow bandwidth atomic filter based on optical-pumping-induced dichroism realized by selectively saturated absorption,” Opt. Commun.285, 1181–1184 (2012).
[CrossRef]

Liu, Z.

Luo, B.

X. Xue, Z. Tao, Q. Sun, Y. Hong, W. Zhuang, B. Luo, J. Chen, and H. Guo, “Faraday anomalous dispersion optical filter with a single transmission peak using a buffer-gas-filled rubidium cell,” Opt. Lett.37, 2274–2276 (2012).
[CrossRef] [PubMed]

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum.82, 086106 (2011).
[CrossRef] [PubMed]

Ma, Z.

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristic of potassium Faraday optical filter,” IEEE J. Quantum Electron.37, 372–375 (2001).
[CrossRef]

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun.194, 147–150 (2001).
[CrossRef]

Menders, J.

Miao, X.

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum.82, 086106 (2011).
[CrossRef] [PubMed]

Mitchell, M. W.

Neergaard-Nielsen, J. S.

Nielsen, B. M.

Parigi, V.

Peng, Y.

Z. Hu, X. Sun, X. Zeng, Y. Peng, J. Tang, L. Zhang, Q. Wang, and L. Zheng, “Rb 780 nm Faraday anomalous dispersion optical filter in a strong magnetic field,” Opt. Commun.101, 175–178 (1993).
[CrossRef]

Polzik, E. S.

Popescu, A.

A. Popescu and T. Walther, “On an ESFADOF edge-filter for a range resolved Brillouin-lidar: The high vapor density and high pump intensity regime,” Appl. Phys. B98, 667–675 (2010).
[CrossRef]

A. Popescu, D. Walldorf, K. Schorstein, and T. Walther, “On an excited state Faraday anomalous dispersion optical filter at moderate pump powers for a Brillouin-lidar receiver system,” Opt. Commun.264, 475–481 (2006).
[CrossRef]

Predojevic, A.

Robins, N. P.

Roff, K.

Rosenbusch, P.

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, Ph. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun.266, 609–613 (2006).
[CrossRef]

Scharpf, W. J.

Scholten, R. E.

Schorstein, K.

A. Popescu, D. Walldorf, K. Schorstein, and T. Walther, “On an excited state Faraday anomalous dispersion optical filter at moderate pump powers for a Brillouin-lidar receiver system,” Opt. Commun.264, 475–481 (2006).
[CrossRef]

Schultz, J. T.

Searcy, P.

Shay, T. M.

B. Yin and T. M. Shay, “A potassium Faraday anomalous dispersion optical filter,” Opt. Commun.94, 30–32 (1992).
[CrossRef]

B. Yin and T. M. Shay, “Faraday anomalous dispersion optical filter for the Cs 455 nm transition,” IEEE Photon. Technol. Lett.4, 488–490 (1992).
[CrossRef]

D. J. Dick and T. M. Shay, “Ultrahigh-noise rejection optical filter,” Opt. Lett.16, 867–869 (1991).
[CrossRef] [PubMed]

B. Yin and T. M. Shay, “Theoretical model for a Faraday anomalous dispersion optical filter,” Opt. Lett.16, 1617–1619 (1991).
[CrossRef] [PubMed]

She, C. Y.

Squicciarini, M. F.

Steinberg, A. M.

Sun, Q.

Sun, X.

X. Sun, S. Wang, A. Chen, M. Zhao, and X. Zeng, “A fast efficient passive cesium ARF,” Opt. Commun.111, 259–262 (1994).
[CrossRef]

Z. Hu, X. Sun, X. Zeng, Y. Peng, J. Tang, L. Zhang, Q. Wang, and L. Zheng, “Rb 780 nm Faraday anomalous dispersion optical filter in a strong magnetic field,” Opt. Commun.101, 175–178 (1993).
[CrossRef]

Takahashi, H.

Tang, J.

M. Duan, Y. Li, J. Tang, and L. Zheng, “Excited state Faraday anomalous dispersion spectrum of rubidium,” Opt. Commun.127, 210–214 (1996).
[CrossRef]

J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, M. Duan, J. Kong, and L. Zheng, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt.34, 2619–2622 (1995).
[CrossRef]

Z. Hu, X. Sun, X. Zeng, Y. Peng, J. Tang, L. Zhang, Q. Wang, and L. Zheng, “Rb 780 nm Faraday anomalous dispersion optical filter in a strong magnetic field,” Opt. Commun.101, 175–178 (1993).
[CrossRef]

Tao, Z.

Teubner, P. J. O.

Turner, L. D.

Vistnes, A. I.

Walldorf, D.

A. Popescu, D. Walldorf, K. Schorstein, and T. Walther, “On an excited state Faraday anomalous dispersion optical filter at moderate pump powers for a Brillouin-lidar receiver system,” Opt. Commun.264, 475–481 (2006).
[CrossRef]

Walther, T.

A. Popescu and T. Walther, “On an ESFADOF edge-filter for a range resolved Brillouin-lidar: The high vapor density and high pump intensity regime,” Appl. Phys. B98, 667–675 (2010).
[CrossRef]

A. Popescu, D. Walldorf, K. Schorstein, and T. Walther, “On an excited state Faraday anomalous dispersion optical filter at moderate pump powers for a Brillouin-lidar receiver system,” Opt. Commun.264, 475–481 (2006).
[CrossRef]

Wang, D.

Wang, Q.

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun.194, 147–150 (2001).
[CrossRef]

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristic of potassium Faraday optical filter,” IEEE J. Quantum Electron.37, 372–375 (2001).
[CrossRef]

J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, M. Duan, J. Kong, and L. Zheng, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt.34, 2619–2622 (1995).
[CrossRef]

Z. Hu, X. Sun, X. Zeng, Y. Peng, J. Tang, L. Zhang, Q. Wang, and L. Zheng, “Rb 780 nm Faraday anomalous dispersion optical filter in a strong magnetic field,” Opt. Commun.101, 175–178 (1993).
[CrossRef]

Wang, S.

X. Sun, S. Wang, A. Chen, M. Zhao, and X. Zeng, “A fast efficient passive cesium ARF,” Opt. Commun.111, 259–262 (1994).
[CrossRef]

Wang, Y.

White, J. D.

Wolfgramm, F.

Wu, H.

S. Liu, Y. Zhang, H. Wu, and P. Yuan, “Ultra-narrow bandwidth atomic filter based on optical-pumping-induced dichroism realized by selectively saturated absorption,” Opt. Commun.285, 1181–1184 (2012).
[CrossRef]

Xing, X.

Xue, X.

Yang, G.

Yin, B.

B. Yin and T. M. Shay, “A potassium Faraday anomalous dispersion optical filter,” Opt. Commun.94, 30–32 (1992).
[CrossRef]

B. Yin and T. M. Shay, “Faraday anomalous dispersion optical filter for the Cs 455 nm transition,” IEEE Photon. Technol. Lett.4, 488–490 (1992).
[CrossRef]

B. Yin and T. M. Shay, “Theoretical model for a Faraday anomalous dispersion optical filter,” Opt. Lett.16, 1617–1619 (1991).
[CrossRef] [PubMed]

Yin, L.

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum.82, 086106 (2011).
[CrossRef] [PubMed]

Yuan, P.

S. Liu, Y. Zhang, H. Wu, and P. Yuan, “Ultra-narrow bandwidth atomic filter based on optical-pumping-induced dichroism realized by selectively saturated absorption,” Opt. Commun.285, 1181–1184 (2012).
[CrossRef]

Yuan, T.

Zeng, X.

X. Sun, S. Wang, A. Chen, M. Zhao, and X. Zeng, “A fast efficient passive cesium ARF,” Opt. Commun.111, 259–262 (1994).
[CrossRef]

Z. Hu, X. Sun, X. Zeng, Y. Peng, J. Tang, L. Zhang, Q. Wang, and L. Zheng, “Rb 780 nm Faraday anomalous dispersion optical filter in a strong magnetic field,” Opt. Commun.101, 175–178 (1993).
[CrossRef]

Zhang, L.

J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, M. Duan, J. Kong, and L. Zheng, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt.34, 2619–2622 (1995).
[CrossRef]

Z. Hu, X. Sun, X. Zeng, Y. Peng, J. Tang, L. Zhang, Q. Wang, and L. Zheng, “Rb 780 nm Faraday anomalous dispersion optical filter in a strong magnetic field,” Opt. Commun.101, 175–178 (1993).
[CrossRef]

Zhang, S.

Zhang, Y.

S. Liu, Y. Zhang, H. Wu, and P. Yuan, “Ultra-narrow bandwidth atomic filter based on optical-pumping-induced dichroism realized by selectively saturated absorption,” Opt. Commun.285, 1181–1184 (2012).
[CrossRef]

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristic of potassium Faraday optical filter,” IEEE J. Quantum Electron.37, 372–375 (2001).
[CrossRef]

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun.194, 147–150 (2001).
[CrossRef]

Zhao, M.

X. Sun, S. Wang, A. Chen, M. Zhao, and X. Zeng, “A fast efficient passive cesium ARF,” Opt. Commun.111, 259–262 (1994).
[CrossRef]

Zheng, L.

M. Duan, Y. Li, J. Tang, and L. Zheng, “Excited state Faraday anomalous dispersion spectrum of rubidium,” Opt. Commun.127, 210–214 (1996).
[CrossRef]

J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, M. Duan, J. Kong, and L. Zheng, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt.34, 2619–2622 (1995).
[CrossRef]

Z. Hu, X. Sun, X. Zeng, Y. Peng, J. Tang, L. Zhang, Q. Wang, and L. Zheng, “Rb 780 nm Faraday anomalous dispersion optical filter in a strong magnetic field,” Opt. Commun.101, 175–178 (1993).
[CrossRef]

Zhuang, W.

Zielinska, J. A.

Appl. Opt. (1)

Appl. Phys. B (1)

A. Popescu and T. Walther, “On an ESFADOF edge-filter for a range resolved Brillouin-lidar: The high vapor density and high pump intensity regime,” Appl. Phys. B98, 667–675 (2010).
[CrossRef]

IEEE J. Quantum Electron. (2)

Y. C. Chan and J. Gelbwachs, “A Fraunhofer-wavelength magnetooptic atomic filter at 422.7 nm,” IEEE J. Quantum Electron.29, 2379–2384 (1993).
[CrossRef]

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristic of potassium Faraday optical filter,” IEEE J. Quantum Electron.37, 372–375 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. Yin and T. M. Shay, “Faraday anomalous dispersion optical filter for the Cs 455 nm transition,” IEEE Photon. Technol. Lett.4, 488–490 (1992).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (8)

X. Baillard, A. Gauguet, S. Bize, P. Lemonde, Ph. Laurent, A. Clairon, and P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun.266, 609–613 (2006).
[CrossRef]

A. Popescu, D. Walldorf, K. Schorstein, and T. Walther, “On an excited state Faraday anomalous dispersion optical filter at moderate pump powers for a Brillouin-lidar receiver system,” Opt. Commun.264, 475–481 (2006).
[CrossRef]

X. Sun, S. Wang, A. Chen, M. Zhao, and X. Zeng, “A fast efficient passive cesium ARF,” Opt. Commun.111, 259–262 (1994).
[CrossRef]

Z. Hu, X. Sun, X. Zeng, Y. Peng, J. Tang, L. Zhang, Q. Wang, and L. Zheng, “Rb 780 nm Faraday anomalous dispersion optical filter in a strong magnetic field,” Opt. Commun.101, 175–178 (1993).
[CrossRef]

M. Duan, Y. Li, J. Tang, and L. Zheng, “Excited state Faraday anomalous dispersion spectrum of rubidium,” Opt. Commun.127, 210–214 (1996).
[CrossRef]

B. Yin and T. M. Shay, “A potassium Faraday anomalous dispersion optical filter,” Opt. Commun.94, 30–32 (1992).
[CrossRef]

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun.194, 147–150 (2001).
[CrossRef]

S. Liu, Y. Zhang, H. Wu, and P. Yuan, “Ultra-narrow bandwidth atomic filter based on optical-pumping-induced dichroism realized by selectively saturated absorption,” Opt. Commun.285, 1181–1184 (2012).
[CrossRef]

Opt. Express (2)

Opt. Lett. (14)

A. Cerè, V. Parigi, M. Abad, F. Wolfgramm, A. Predojević, and M. W. Mitchell, “Narrowband tunable filter based on velocity-selective optical pumping in an atomic vapor,” Opt. Lett.34, 1012–1014 (2009).
[CrossRef] [PubMed]

J. T. Schultz, S. Abend, D. Döring, J. E. Debs, P. A. Altin, J. D. White, N. P. Robins, and J. D. Close, “Coherent 455 nm beam production in a cesium vapor,” Opt. Lett.34, 2321–2323 (2009).
[CrossRef] [PubMed]

Q. Sun, W. Zhuang, Z. Liu, and J. Chen, “Electrodeless-discharge-vapor-lamp-based Faraday anomalous-dispersion optical filter,” Opt. Lett.36, 4611–4613 (2011).
[CrossRef] [PubMed]

J. A. Zielińska, F. A. Beduini, N. Godbout, and M. W. Mitchell, “Ultranarrow Faraday rotation filter at the Rb D1 line,” Opt. Lett.37, 524–526 (2012).
[CrossRef]

X. Xue, Z. Tao, Q. Sun, Y. Hong, W. Zhuang, B. Luo, J. Chen, and H. Guo, “Faraday anomalous dispersion optical filter with a single transmission peak using a buffer-gas-filled rubidium cell,” Opt. Lett.37, 2274–2276 (2012).
[CrossRef] [PubMed]

Y. Wang, S. Zhang, D. Wang, Z. Tao, Y. Hong, and J. Chen, “Nonlinear optical filter with ultra-narrow bandwidth approaching the natural linewidth,” Opt. Lett.37, 4059–4061 (2012).
[CrossRef] [PubMed]

L. D. Turner, V. Karaganov, P. J. O. Teubner, and R. E. Scholten, “Sub-Doppler bandwidth atomic optical filter,” Opt. Lett.27, 500–502 (2002).
[CrossRef]

C. Fricke-Begemann, M. Alpers, and J. Höffner, “Daylight rejection with a new receiver for potassium resonance temperature lidars,” Opt. Lett.27, 1932–1934 (2002).
[CrossRef]

J. Höffner and C. Fricke-Begemann, “Accurate lidar temperatures with narrowband filters,” Opt. Lett.30, 890–892 (2005).
[CrossRef] [PubMed]

D. J. Dick and T. M. Shay, “Ultrahigh-noise rejection optical filter,” Opt. Lett.16, 867–869 (1991).
[CrossRef] [PubMed]

B. Yin and T. M. Shay, “Theoretical model for a Faraday anomalous dispersion optical filter,” Opt. Lett.16, 1617–1619 (1991).
[CrossRef] [PubMed]

J. Menders, P. Searcy, K. Roff, and E. Korevaar, “Blue cesium Faraday and Voigt magneto-optic atomic line filters,” Opt. Lett.17, 1388–1390 (1992).
[CrossRef] [PubMed]

H. Chen, C. Y. She, P. Searcy, and E. Korevaar, “Sodium-vapor dispersive Faraday filter,” Opt. Lett.18, 1019–1021 (1993).
[CrossRef] [PubMed]

S. K. Gayen, R. I. Billmers, V. M. Contarino, M. F. Squicciarini, W. J. Scharpf, G. Yang, P. R. Herczfeld, and D. M. Allocca, “Induced-dichroism-excited atomic line filter at 532 nm,” Opt. Lett.20, 1427–1429 (1995).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum.82, 086106 (2011).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Relevant Cs energy levels.

Fig. 2
Fig. 2

Experimental schematics. ECDL, 455 nm external cavity diode laser; BS, beam splitter; P, Glan-Taylor prism; M, high reflection mirror for 455 nm; PD, photodiode.

Fig. 3
Fig. 3

Transmission of the FADOF with multi-peaks at 100 G and 250°C. The upper line is saturated absorption signal and the bottom line is the transmitted signal of the FADOF. The inset is the magnified reference saturated absorption signal.

Fig. 4
Fig. 4

Multi-peaks transforming into a single peak corresponding to F = 4 → F′ = 3, 4, 5 transitions. The temperature of Cs cell is 190°C. The upper line is the reference saturated absorption signal. The inset is the magnified saturated absorption signal. The three bottom lines are the transmitted signals of the FADOF at 200 G (blue), 700 G (green), and 900 G (red), respectively.

Fig. 5
Fig. 5

Multi-peaks transforming into a single peak corresponding to F = 3 → F′ = 2, 3, 4 transitions. The temperature of Cs cell is 190°C. The upper line is the reference saturated absorption signal. The inset is the magnified reference saturated absorption signal. The three bottom lines are the transmitted signals of the FADOF at 200 G (blue), 600 G (green), and 700 G (red), respectively.

Fig. 6
Fig. 6

Transmission peaks corresponding to F = 3 → F′ = 2, 3, 4 transitions and F = 4 → F′ = 3, 4, 5 transitions in a full spectrum region. The temperature of Cs cell is 190°C. The magnetic field is 800 G. The upper line is the reference saturated absorption signal and the bottom line is the transmitted signal of the FADOF.

Fig. 7
Fig. 7

Transmitted signals at different magnetic fields. The temperature of Cs cell is 130°C. The upper line is reference saturated absorption signal. The inset is the magnified reference saturated absorption signal. The three bottom lines are the transmitted signals of the FADOF at 300 G (blue), 700 G (green), and 1000 G (red), respectively.

Fig. 8
Fig. 8

Transmission of the single peak as a function of magnetic field. The temperature of Cs cell is 130°C.

Fig. 9
Fig. 9

Transmitted signals at different temperature. The magnetic field is 900 G. The upper line is the reference saturated absorption signal. The inset is the magnified reference saturated absorption signal. The three bottom lines are the transmitted signals of the FADOF at 110°C (blue), 190°C (green), and 210°C (red), respectively.

Fig. 10
Fig. 10

Transmission of the single peak as a function of temperature. The magnetic field is 900 G.

Metrics