Abstract

Photon correlation spectroscopy is an effective method for measuring nanoparticle sizes and has several advantages over alternative methods. However, this method suffers from a disadvantage in that its measuring accuracy reduces in the presence of convective flows of fluid containing nanoparticles. In this paper, we propose a scheme based on attenuated total reflectance in order to reduce the influence of convection currents. The autocorrelation function for the light-scattering intensity was found for this case, and it was shown that this method afforded a significant decrease in the time required to measure the particle sizes and an increase in the measuring accuracy.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y.-C. Yeh, B. Creran, and V. M. Rotello, “Gold nanoparticles: preparation, properties, and applications in bionanotechnology,” Nanoscale4(6), 1871–1880 (2012).
    [CrossRef] [PubMed]
  2. Y. N. Kulchin, A. V. Bezverbny, O. A. Bukin, S. S. Voznesensky, S. S. Golik, A. Y. Mayor, Y. A. Shchipunov, and I. G. Nagorny, “Nonlinear optical properties of biomineral and biomimetical nanocomposite structures,” Laser Phys.21(3), 630–636 (2011).
    [CrossRef]
  3. M. De, P. S. Ghosh, and V. M. Rotello, “Applications of nanoparticles in biology,” Adv. Mater. (Deerfield Beach Fla.)20(22), 4225–4241 (2008).
    [CrossRef]
  4. V. Rotello, Nanoparticle: Building Blocks for Nanotechnology (Springer, 2004).
  5. F. Erogbogbo, K. T. Yong, I. Roy, R. Hu, W. C. Law, W. Zhao, H. Ding, F. Wu, R. Kumar, M. T. Swihart, and P. N. Prasad, “In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals,” ACS Nano5(1), 413–423 (2011).
    [CrossRef] [PubMed]
  6. L. Xiao, L. Gu, S. B. Howell, and M. J. Sailor, “Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells,” ACS Nano5(5), 3651–3659 (2011).
    [CrossRef] [PubMed]
  7. R. Intartaglia, K. Bagga, F. Brandi, G. Das, A. Genovese, E. Di Fabrizio, and A. Diaspro, “Optical properties of femtosecond laser-synthesized silicon nanoparticles in deionized water,” J. Phys. Chem. C115(12), 5102–5107 (2011).
    [CrossRef]
  8. D. Kovalev and M. Fujii, “Silicon nanocrystals: photosensitizers for oxygen molecules,” Adv. Mater. (Deerfield Beach Fla.)17(21), 2531–2544 (2005).
    [CrossRef]
  9. M. Rosso-Vasic, E. Spruijt, Z. Popovic, K. Overgaag, B. Van Lagen, B. Grandidier, D. Vanmaekelbergh, D. Dominguez-Gutierrez, L. De Cola, and H. Zuilhof, “Amine-terminated silicon nanoparticles: synthesis, optical properties and their use in bioimaging,” J. Mater. Chem.19(33), 5926–5933 (2009).
    [CrossRef]
  10. T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard, D. Scherman, M. Bessodes, K. Van den Eeckhout, D. Poelman, and P. F. Smet, “In vivo optical imaging with rare earth doped Ca2Si5N8 persistent luminescence nanoparticles,” Opt. Mater. Express2(3), 261–268 (2012).
    [CrossRef]
  11. R. Intartaglia, K. Bagga, M. Scotto, A. Diaspro, and F. Brandi, “Luminescent silicon nanoparticles prepared by ultra short pulsed laser ablation in liquid for imaging applications,” Opt. Mater. Express2(5), 510–518 (2012).
    [CrossRef]
  12. D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, and P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett.100(20), 201113 (2012).
    [CrossRef]
  13. H. Alaeian and J. A. Dionne, “Plasmon nanoparticle superlattices as optical-frequency magnetic metamaterials,” Opt. Express20(14), 15781–15796 (2012).
    [CrossRef] [PubMed]
  14. F. L. Yap, P. Thoniyot, S. Krishnan, and S. Krishnamoorthy, “Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers,” ACS Nano6(3), 2056–2070 (2012).
    [CrossRef] [PubMed]
  15. B. Carl Englert, “Nanomaterials and the environment: uses, methods and measurement,” J. Environ. Monit.9(11), 1154–1161 (2007).
    [CrossRef] [PubMed]
  16. N. A. Zharova, I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Nonlinear control of invisibility cloaking,” Opt. Express20(14), 14954–14959 (2012).
    [CrossRef] [PubMed]
  17. C.-H. Huang, H. Y. Lin, C. H. Lin, H. C. Chui, Y. C. Lan, and S. W. Chu, “The phase-response effect of size-dependent optical enhancement in a single nanoparticle,” Opt. Express16(13), 9580–9586 (2008).
    [CrossRef] [PubMed]
  18. J.-H. Park, C. Park, H. Yu, Y.-H. Cho, and Y. K. Park, “Dynamic active wave plate using random nanoparticles,” Opt. Express20(15), 17010–17016 (2012).
    [CrossRef]
  19. J. Qian, Z. Chen, J. Chen, Yu. Li, J. Xu, and Q. Sun, “Two-dimensional angularly selective optical properties of gold nanoshell with holes,” Opt. Express20(13), 14614–14620 (2012).
    [CrossRef] [PubMed]
  20. K. Maaz, The Transmission Electron Microscope (InTech, 2012).
  21. V. Bellitto, Atomic Force Microscopy - Imaging, Measuring and Manipulating Surfaces at the Atomic Scale (InTech, 2012)
  22. B. Ruozi, G. Tosi, M. Tonelli, L. Bondioli, A. Mucci, F. Forni, and M. A. Vandelli, “AFM phase imaging of soft-hydrated samples: A versatile tool to complete the chemical-physical study of liposomes,” J. Liposome Res.19(1), 59–67 (2009).
    [CrossRef] [PubMed]
  23. B. Apter, O. Guilatt, and U. Efron, “Ring-type plasmon resonance in metallic nanoshells,” Appl. Opt.50(28), 5457–5464 (2011).
    [CrossRef] [PubMed]
  24. K. Drozdowicz-Tomsia, H. T. Baltar, and E. M. Goldys, “Dense two-dimensional silver single and double nanoparticle arrays with plasmonic response in wide spectral range,” Langmuir28(24), 9071–9081 (2012).
    [CrossRef] [PubMed]
  25. S.-M. Guo, J. He, N. Monnier, G. Sun, T. Wohland, and M. Bathe, “Bayesian approach to the analysis of fluorescence correlation spectroscopy data II: Application to simulated and in vitro data,” Anal. Chem.84(9), 3880–3888 (2012).
    [CrossRef] [PubMed]
  26. W. Brown, Dynamic Light Scattering: The Method and Some Applications (Clarendon Press, 1993).
  27. E. R. Pike and J. B. Abbiss, Light Scattering and Photon Correlation Spectroscopy (Kluwer Academic Publishers, 1997).
  28. J. A. Seo, H.-J. Kwon, H. K. Kim, and Y.-H. Hwang, “Nano-particle size measurement by photon correlation spectroscopy and dielectric loss spectroscopy,” in FLOW DYNAMICS: The Second International Conference on Flow Dynamics,” AIP Conf. Proc.832, 229–233 (2006).
    [CrossRef]
  29. J.-A. Seo, H.-J. Kwon, H. K. Kim, and Y.-H. Hwang, “In-situ size measurement of nano-sized colloidal particles,” J. Korean Phys. Soc.49(5), 1972–1976 (2006).
  30. X. Liu, Q. Dai, L. Austin, J. Coutts, G. Knowles, J. Zou, H. Chen, and Q. Huo, “A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering,” J. Am. Chem. Soc.130(9), 2780–2782 (2008).
    [CrossRef] [PubMed]
  31. W. R. Burghardt, M. Sikorski, A. R. Sandy, and S. Narayanan, “X-ray photon correlation spectroscopy during homogenous shear flow,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.85(2), 021402 (2012).
    [CrossRef]
  32. D. Salerno, D. Brogioli, F. Croccolo, R. Ziano, and F. Mantegazza, “Photon correlation spectroscopy with incoherent light,” Opt. Express19(27), 26416–26422 (2011).
    [CrossRef] [PubMed]
  33. V. I. Ivanov and K. N. Okishev, “Thermodiffusion mechanism of dynamic amplitude hologram recording in a two-component medium,” Tech. Phys. Lett.32(11), 967–968 (2006).
    [CrossRef]
  34. K. Okishev and I. Doronin, “Application of photon correlation spectroscopy for investigation of silica nanospheres suspension,” Bull. Sci. Res. 14, edited by V. Stroganov, Khabarovsk, Russia, FESTU, 4–8 (2010).
  35. K. N. Okishev, V. I. Ivanov, S. V. Kliment'ev, A. A. Kuzin, and A. I. Livashvili, “The thermal diffusion mechanism of the nonlinear absorbing in nanoparticle suspensions,” Atmos. Oceanic Opt.23(2), 106–107 (2010).
  36. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999).
  37. K. H. Lan, N. Ostrowsky, and D. Sornette, “Brownian dynamics close to a wall studied by photon correlation spectroscopy from an evanescent wave,” Phys. Rev. Lett.57(1), 17–20 (1986).
    [CrossRef] [PubMed]
  38. M. I. M. Feitosa and O. N. Mesquita, “Wall-drag effect on diffusion of colloidal particles near surfaces: a photon correlation study,” Phys. Rev. A44(10), 6677–6685 (1991).
    [CrossRef] [PubMed]
  39. M. Hosoda, K. Sakai, and K. Takagi, “Measurement of anisotropic Brownian motion near an interface by evanescent light-scattering spectroscopy,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics58(5), 62756280–62756685 (1998).
    [CrossRef]
  40. G. Fytas, S. H. Anastasiadis, R. Seghrouchni, D. Vlassopoulos, J. Li, B. J. Factor, W. Theobald, and C. Toprakcioglu, “Probing collective motions of terminally anchored polymers,” Science274(5295), 2041–2044 (1996).
    [CrossRef] [PubMed]
  41. M. A. Plum, W. Steffen, G. Fytas, W. Knoll, and B. Menges, “Probing dynamics at interfaces: resonance enhanced dynamic light scattering,” Opt. Express17(12), 10364–10371 (2009).
    [CrossRef] [PubMed]
  42. H. Z. Cummins and E. R. Pike, “Photon correlation and light beating spectroscopy,” NATO Advanced Study Institute Series, Volume B3 (Plenum Press, New York, 1974).
  43. M. von Smoluchowski, “Zur kinetischen theorie der brownschen molekularbe-wegung und der suspensionen,” Ann. Physik (Leipzig)21(326), 756–780 (1906).
    [CrossRef]
  44. A. Einstein, Investigations on the Theory of the Brownian Movement, (Dover Publications, Inc., 1956).
  45. S. Chandrasekhar, “Stochastic problems in physics and astronomy,” Rev. Mod. Phys.15(1), 1–89 (1943).
    [CrossRef]

2012 (12)

Y.-C. Yeh, B. Creran, and V. M. Rotello, “Gold nanoparticles: preparation, properties, and applications in bionanotechnology,” Nanoscale4(6), 1871–1880 (2012).
[CrossRef] [PubMed]

D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, and P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett.100(20), 201113 (2012).
[CrossRef]

F. L. Yap, P. Thoniyot, S. Krishnan, and S. Krishnamoorthy, “Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers,” ACS Nano6(3), 2056–2070 (2012).
[CrossRef] [PubMed]

K. Drozdowicz-Tomsia, H. T. Baltar, and E. M. Goldys, “Dense two-dimensional silver single and double nanoparticle arrays with plasmonic response in wide spectral range,” Langmuir28(24), 9071–9081 (2012).
[CrossRef] [PubMed]

S.-M. Guo, J. He, N. Monnier, G. Sun, T. Wohland, and M. Bathe, “Bayesian approach to the analysis of fluorescence correlation spectroscopy data II: Application to simulated and in vitro data,” Anal. Chem.84(9), 3880–3888 (2012).
[CrossRef] [PubMed]

W. R. Burghardt, M. Sikorski, A. R. Sandy, and S. Narayanan, “X-ray photon correlation spectroscopy during homogenous shear flow,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.85(2), 021402 (2012).
[CrossRef]

T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard, D. Scherman, M. Bessodes, K. Van den Eeckhout, D. Poelman, and P. F. Smet, “In vivo optical imaging with rare earth doped Ca2Si5N8 persistent luminescence nanoparticles,” Opt. Mater. Express2(3), 261–268 (2012).
[CrossRef]

R. Intartaglia, K. Bagga, M. Scotto, A. Diaspro, and F. Brandi, “Luminescent silicon nanoparticles prepared by ultra short pulsed laser ablation in liquid for imaging applications,” Opt. Mater. Express2(5), 510–518 (2012).
[CrossRef]

J. Qian, Z. Chen, J. Chen, Yu. Li, J. Xu, and Q. Sun, “Two-dimensional angularly selective optical properties of gold nanoshell with holes,” Opt. Express20(13), 14614–14620 (2012).
[CrossRef] [PubMed]

N. A. Zharova, I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Nonlinear control of invisibility cloaking,” Opt. Express20(14), 14954–14959 (2012).
[CrossRef] [PubMed]

H. Alaeian and J. A. Dionne, “Plasmon nanoparticle superlattices as optical-frequency magnetic metamaterials,” Opt. Express20(14), 15781–15796 (2012).
[CrossRef] [PubMed]

J.-H. Park, C. Park, H. Yu, Y.-H. Cho, and Y. K. Park, “Dynamic active wave plate using random nanoparticles,” Opt. Express20(15), 17010–17016 (2012).
[CrossRef]

2011 (6)

B. Apter, O. Guilatt, and U. Efron, “Ring-type plasmon resonance in metallic nanoshells,” Appl. Opt.50(28), 5457–5464 (2011).
[CrossRef] [PubMed]

D. Salerno, D. Brogioli, F. Croccolo, R. Ziano, and F. Mantegazza, “Photon correlation spectroscopy with incoherent light,” Opt. Express19(27), 26416–26422 (2011).
[CrossRef] [PubMed]

Y. N. Kulchin, A. V. Bezverbny, O. A. Bukin, S. S. Voznesensky, S. S. Golik, A. Y. Mayor, Y. A. Shchipunov, and I. G. Nagorny, “Nonlinear optical properties of biomineral and biomimetical nanocomposite structures,” Laser Phys.21(3), 630–636 (2011).
[CrossRef]

F. Erogbogbo, K. T. Yong, I. Roy, R. Hu, W. C. Law, W. Zhao, H. Ding, F. Wu, R. Kumar, M. T. Swihart, and P. N. Prasad, “In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals,” ACS Nano5(1), 413–423 (2011).
[CrossRef] [PubMed]

L. Xiao, L. Gu, S. B. Howell, and M. J. Sailor, “Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells,” ACS Nano5(5), 3651–3659 (2011).
[CrossRef] [PubMed]

R. Intartaglia, K. Bagga, F. Brandi, G. Das, A. Genovese, E. Di Fabrizio, and A. Diaspro, “Optical properties of femtosecond laser-synthesized silicon nanoparticles in deionized water,” J. Phys. Chem. C115(12), 5102–5107 (2011).
[CrossRef]

2010 (1)

K. N. Okishev, V. I. Ivanov, S. V. Kliment'ev, A. A. Kuzin, and A. I. Livashvili, “The thermal diffusion mechanism of the nonlinear absorbing in nanoparticle suspensions,” Atmos. Oceanic Opt.23(2), 106–107 (2010).

2009 (3)

M. A. Plum, W. Steffen, G. Fytas, W. Knoll, and B. Menges, “Probing dynamics at interfaces: resonance enhanced dynamic light scattering,” Opt. Express17(12), 10364–10371 (2009).
[CrossRef] [PubMed]

M. Rosso-Vasic, E. Spruijt, Z. Popovic, K. Overgaag, B. Van Lagen, B. Grandidier, D. Vanmaekelbergh, D. Dominguez-Gutierrez, L. De Cola, and H. Zuilhof, “Amine-terminated silicon nanoparticles: synthesis, optical properties and their use in bioimaging,” J. Mater. Chem.19(33), 5926–5933 (2009).
[CrossRef]

B. Ruozi, G. Tosi, M. Tonelli, L. Bondioli, A. Mucci, F. Forni, and M. A. Vandelli, “AFM phase imaging of soft-hydrated samples: A versatile tool to complete the chemical-physical study of liposomes,” J. Liposome Res.19(1), 59–67 (2009).
[CrossRef] [PubMed]

2008 (3)

M. De, P. S. Ghosh, and V. M. Rotello, “Applications of nanoparticles in biology,” Adv. Mater. (Deerfield Beach Fla.)20(22), 4225–4241 (2008).
[CrossRef]

X. Liu, Q. Dai, L. Austin, J. Coutts, G. Knowles, J. Zou, H. Chen, and Q. Huo, “A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering,” J. Am. Chem. Soc.130(9), 2780–2782 (2008).
[CrossRef] [PubMed]

C.-H. Huang, H. Y. Lin, C. H. Lin, H. C. Chui, Y. C. Lan, and S. W. Chu, “The phase-response effect of size-dependent optical enhancement in a single nanoparticle,” Opt. Express16(13), 9580–9586 (2008).
[CrossRef] [PubMed]

2007 (1)

B. Carl Englert, “Nanomaterials and the environment: uses, methods and measurement,” J. Environ. Monit.9(11), 1154–1161 (2007).
[CrossRef] [PubMed]

2006 (3)

V. I. Ivanov and K. N. Okishev, “Thermodiffusion mechanism of dynamic amplitude hologram recording in a two-component medium,” Tech. Phys. Lett.32(11), 967–968 (2006).
[CrossRef]

J. A. Seo, H.-J. Kwon, H. K. Kim, and Y.-H. Hwang, “Nano-particle size measurement by photon correlation spectroscopy and dielectric loss spectroscopy,” in FLOW DYNAMICS: The Second International Conference on Flow Dynamics,” AIP Conf. Proc.832, 229–233 (2006).
[CrossRef]

J.-A. Seo, H.-J. Kwon, H. K. Kim, and Y.-H. Hwang, “In-situ size measurement of nano-sized colloidal particles,” J. Korean Phys. Soc.49(5), 1972–1976 (2006).

2005 (1)

D. Kovalev and M. Fujii, “Silicon nanocrystals: photosensitizers for oxygen molecules,” Adv. Mater. (Deerfield Beach Fla.)17(21), 2531–2544 (2005).
[CrossRef]

1998 (1)

M. Hosoda, K. Sakai, and K. Takagi, “Measurement of anisotropic Brownian motion near an interface by evanescent light-scattering spectroscopy,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics58(5), 62756280–62756685 (1998).
[CrossRef]

1996 (1)

G. Fytas, S. H. Anastasiadis, R. Seghrouchni, D. Vlassopoulos, J. Li, B. J. Factor, W. Theobald, and C. Toprakcioglu, “Probing collective motions of terminally anchored polymers,” Science274(5295), 2041–2044 (1996).
[CrossRef] [PubMed]

1991 (1)

M. I. M. Feitosa and O. N. Mesquita, “Wall-drag effect on diffusion of colloidal particles near surfaces: a photon correlation study,” Phys. Rev. A44(10), 6677–6685 (1991).
[CrossRef] [PubMed]

1986 (1)

K. H. Lan, N. Ostrowsky, and D. Sornette, “Brownian dynamics close to a wall studied by photon correlation spectroscopy from an evanescent wave,” Phys. Rev. Lett.57(1), 17–20 (1986).
[CrossRef] [PubMed]

1943 (1)

S. Chandrasekhar, “Stochastic problems in physics and astronomy,” Rev. Mod. Phys.15(1), 1–89 (1943).
[CrossRef]

1906 (1)

M. von Smoluchowski, “Zur kinetischen theorie der brownschen molekularbe-wegung und der suspensionen,” Ann. Physik (Leipzig)21(326), 756–780 (1906).
[CrossRef]

Alaeian, H.

Anastasiadis, S. H.

G. Fytas, S. H. Anastasiadis, R. Seghrouchni, D. Vlassopoulos, J. Li, B. J. Factor, W. Theobald, and C. Toprakcioglu, “Probing collective motions of terminally anchored polymers,” Science274(5295), 2041–2044 (1996).
[CrossRef] [PubMed]

Apter, B.

Austin, L.

X. Liu, Q. Dai, L. Austin, J. Coutts, G. Knowles, J. Zou, H. Chen, and Q. Huo, “A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering,” J. Am. Chem. Soc.130(9), 2780–2782 (2008).
[CrossRef] [PubMed]

Bagga, K.

R. Intartaglia, K. Bagga, M. Scotto, A. Diaspro, and F. Brandi, “Luminescent silicon nanoparticles prepared by ultra short pulsed laser ablation in liquid for imaging applications,” Opt. Mater. Express2(5), 510–518 (2012).
[CrossRef]

R. Intartaglia, K. Bagga, F. Brandi, G. Das, A. Genovese, E. Di Fabrizio, and A. Diaspro, “Optical properties of femtosecond laser-synthesized silicon nanoparticles in deionized water,” J. Phys. Chem. C115(12), 5102–5107 (2011).
[CrossRef]

Baltar, H. T.

K. Drozdowicz-Tomsia, H. T. Baltar, and E. M. Goldys, “Dense two-dimensional silver single and double nanoparticle arrays with plasmonic response in wide spectral range,” Langmuir28(24), 9071–9081 (2012).
[CrossRef] [PubMed]

Bathe, M.

S.-M. Guo, J. He, N. Monnier, G. Sun, T. Wohland, and M. Bathe, “Bayesian approach to the analysis of fluorescence correlation spectroscopy data II: Application to simulated and in vitro data,” Anal. Chem.84(9), 3880–3888 (2012).
[CrossRef] [PubMed]

Belov, P. A.

D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, and P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett.100(20), 201113 (2012).
[CrossRef]

Bessodes, M.

Bezverbny, A. V.

Y. N. Kulchin, A. V. Bezverbny, O. A. Bukin, S. S. Voznesensky, S. S. Golik, A. Y. Mayor, Y. A. Shchipunov, and I. G. Nagorny, “Nonlinear optical properties of biomineral and biomimetical nanocomposite structures,” Laser Phys.21(3), 630–636 (2011).
[CrossRef]

Bondioli, L.

B. Ruozi, G. Tosi, M. Tonelli, L. Bondioli, A. Mucci, F. Forni, and M. A. Vandelli, “AFM phase imaging of soft-hydrated samples: A versatile tool to complete the chemical-physical study of liposomes,” J. Liposome Res.19(1), 59–67 (2009).
[CrossRef] [PubMed]

Brandi, F.

R. Intartaglia, K. Bagga, M. Scotto, A. Diaspro, and F. Brandi, “Luminescent silicon nanoparticles prepared by ultra short pulsed laser ablation in liquid for imaging applications,” Opt. Mater. Express2(5), 510–518 (2012).
[CrossRef]

R. Intartaglia, K. Bagga, F. Brandi, G. Das, A. Genovese, E. Di Fabrizio, and A. Diaspro, “Optical properties of femtosecond laser-synthesized silicon nanoparticles in deionized water,” J. Phys. Chem. C115(12), 5102–5107 (2011).
[CrossRef]

Brogioli, D.

Bukin, O. A.

Y. N. Kulchin, A. V. Bezverbny, O. A. Bukin, S. S. Voznesensky, S. S. Golik, A. Y. Mayor, Y. A. Shchipunov, and I. G. Nagorny, “Nonlinear optical properties of biomineral and biomimetical nanocomposite structures,” Laser Phys.21(3), 630–636 (2011).
[CrossRef]

Burghardt, W. R.

W. R. Burghardt, M. Sikorski, A. R. Sandy, and S. Narayanan, “X-ray photon correlation spectroscopy during homogenous shear flow,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.85(2), 021402 (2012).
[CrossRef]

Carl Englert, B.

B. Carl Englert, “Nanomaterials and the environment: uses, methods and measurement,” J. Environ. Monit.9(11), 1154–1161 (2007).
[CrossRef] [PubMed]

Chandrasekhar, S.

S. Chandrasekhar, “Stochastic problems in physics and astronomy,” Rev. Mod. Phys.15(1), 1–89 (1943).
[CrossRef]

Chen, H.

X. Liu, Q. Dai, L. Austin, J. Coutts, G. Knowles, J. Zou, H. Chen, and Q. Huo, “A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering,” J. Am. Chem. Soc.130(9), 2780–2782 (2008).
[CrossRef] [PubMed]

Chen, J.

Chen, Z.

Cho, Y.-H.

Chu, S. W.

Chui, H. C.

Coutts, J.

X. Liu, Q. Dai, L. Austin, J. Coutts, G. Knowles, J. Zou, H. Chen, and Q. Huo, “A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering,” J. Am. Chem. Soc.130(9), 2780–2782 (2008).
[CrossRef] [PubMed]

Creran, B.

Y.-C. Yeh, B. Creran, and V. M. Rotello, “Gold nanoparticles: preparation, properties, and applications in bionanotechnology,” Nanoscale4(6), 1871–1880 (2012).
[CrossRef] [PubMed]

Croccolo, F.

Dai, Q.

X. Liu, Q. Dai, L. Austin, J. Coutts, G. Knowles, J. Zou, H. Chen, and Q. Huo, “A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering,” J. Am. Chem. Soc.130(9), 2780–2782 (2008).
[CrossRef] [PubMed]

Das, G.

R. Intartaglia, K. Bagga, F. Brandi, G. Das, A. Genovese, E. Di Fabrizio, and A. Diaspro, “Optical properties of femtosecond laser-synthesized silicon nanoparticles in deionized water,” J. Phys. Chem. C115(12), 5102–5107 (2011).
[CrossRef]

De, M.

M. De, P. S. Ghosh, and V. M. Rotello, “Applications of nanoparticles in biology,” Adv. Mater. (Deerfield Beach Fla.)20(22), 4225–4241 (2008).
[CrossRef]

De Cola, L.

M. Rosso-Vasic, E. Spruijt, Z. Popovic, K. Overgaag, B. Van Lagen, B. Grandidier, D. Vanmaekelbergh, D. Dominguez-Gutierrez, L. De Cola, and H. Zuilhof, “Amine-terminated silicon nanoparticles: synthesis, optical properties and their use in bioimaging,” J. Mater. Chem.19(33), 5926–5933 (2009).
[CrossRef]

Di Fabrizio, E.

R. Intartaglia, K. Bagga, F. Brandi, G. Das, A. Genovese, E. Di Fabrizio, and A. Diaspro, “Optical properties of femtosecond laser-synthesized silicon nanoparticles in deionized water,” J. Phys. Chem. C115(12), 5102–5107 (2011).
[CrossRef]

Diaspro, A.

R. Intartaglia, K. Bagga, M. Scotto, A. Diaspro, and F. Brandi, “Luminescent silicon nanoparticles prepared by ultra short pulsed laser ablation in liquid for imaging applications,” Opt. Mater. Express2(5), 510–518 (2012).
[CrossRef]

R. Intartaglia, K. Bagga, F. Brandi, G. Das, A. Genovese, E. Di Fabrizio, and A. Diaspro, “Optical properties of femtosecond laser-synthesized silicon nanoparticles in deionized water,” J. Phys. Chem. C115(12), 5102–5107 (2011).
[CrossRef]

Ding, H.

F. Erogbogbo, K. T. Yong, I. Roy, R. Hu, W. C. Law, W. Zhao, H. Ding, F. Wu, R. Kumar, M. T. Swihart, and P. N. Prasad, “In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals,” ACS Nano5(1), 413–423 (2011).
[CrossRef] [PubMed]

Dionne, J. A.

Dominguez-Gutierrez, D.

M. Rosso-Vasic, E. Spruijt, Z. Popovic, K. Overgaag, B. Van Lagen, B. Grandidier, D. Vanmaekelbergh, D. Dominguez-Gutierrez, L. De Cola, and H. Zuilhof, “Amine-terminated silicon nanoparticles: synthesis, optical properties and their use in bioimaging,” J. Mater. Chem.19(33), 5926–5933 (2009).
[CrossRef]

Drozdowicz-Tomsia, K.

K. Drozdowicz-Tomsia, H. T. Baltar, and E. M. Goldys, “Dense two-dimensional silver single and double nanoparticle arrays with plasmonic response in wide spectral range,” Langmuir28(24), 9071–9081 (2012).
[CrossRef] [PubMed]

Efron, U.

Erogbogbo, F.

F. Erogbogbo, K. T. Yong, I. Roy, R. Hu, W. C. Law, W. Zhao, H. Ding, F. Wu, R. Kumar, M. T. Swihart, and P. N. Prasad, “In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals,” ACS Nano5(1), 413–423 (2011).
[CrossRef] [PubMed]

Factor, B. J.

G. Fytas, S. H. Anastasiadis, R. Seghrouchni, D. Vlassopoulos, J. Li, B. J. Factor, W. Theobald, and C. Toprakcioglu, “Probing collective motions of terminally anchored polymers,” Science274(5295), 2041–2044 (1996).
[CrossRef] [PubMed]

Feitosa, M. I. M.

M. I. M. Feitosa and O. N. Mesquita, “Wall-drag effect on diffusion of colloidal particles near surfaces: a photon correlation study,” Phys. Rev. A44(10), 6677–6685 (1991).
[CrossRef] [PubMed]

Filonov, D. S.

D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, and P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett.100(20), 201113 (2012).
[CrossRef]

Forni, F.

B. Ruozi, G. Tosi, M. Tonelli, L. Bondioli, A. Mucci, F. Forni, and M. A. Vandelli, “AFM phase imaging of soft-hydrated samples: A versatile tool to complete the chemical-physical study of liposomes,” J. Liposome Res.19(1), 59–67 (2009).
[CrossRef] [PubMed]

Fujii, M.

D. Kovalev and M. Fujii, “Silicon nanocrystals: photosensitizers for oxygen molecules,” Adv. Mater. (Deerfield Beach Fla.)17(21), 2531–2544 (2005).
[CrossRef]

Fytas, G.

M. A. Plum, W. Steffen, G. Fytas, W. Knoll, and B. Menges, “Probing dynamics at interfaces: resonance enhanced dynamic light scattering,” Opt. Express17(12), 10364–10371 (2009).
[CrossRef] [PubMed]

G. Fytas, S. H. Anastasiadis, R. Seghrouchni, D. Vlassopoulos, J. Li, B. J. Factor, W. Theobald, and C. Toprakcioglu, “Probing collective motions of terminally anchored polymers,” Science274(5295), 2041–2044 (1996).
[CrossRef] [PubMed]

Genovese, A.

R. Intartaglia, K. Bagga, F. Brandi, G. Das, A. Genovese, E. Di Fabrizio, and A. Diaspro, “Optical properties of femtosecond laser-synthesized silicon nanoparticles in deionized water,” J. Phys. Chem. C115(12), 5102–5107 (2011).
[CrossRef]

Ghosh, P. S.

M. De, P. S. Ghosh, and V. M. Rotello, “Applications of nanoparticles in biology,” Adv. Mater. (Deerfield Beach Fla.)20(22), 4225–4241 (2008).
[CrossRef]

Goldys, E. M.

K. Drozdowicz-Tomsia, H. T. Baltar, and E. M. Goldys, “Dense two-dimensional silver single and double nanoparticle arrays with plasmonic response in wide spectral range,” Langmuir28(24), 9071–9081 (2012).
[CrossRef] [PubMed]

Golik, S. S.

Y. N. Kulchin, A. V. Bezverbny, O. A. Bukin, S. S. Voznesensky, S. S. Golik, A. Y. Mayor, Y. A. Shchipunov, and I. G. Nagorny, “Nonlinear optical properties of biomineral and biomimetical nanocomposite structures,” Laser Phys.21(3), 630–636 (2011).
[CrossRef]

Gourier, D.

Grandidier, B.

M. Rosso-Vasic, E. Spruijt, Z. Popovic, K. Overgaag, B. Van Lagen, B. Grandidier, D. Vanmaekelbergh, D. Dominguez-Gutierrez, L. De Cola, and H. Zuilhof, “Amine-terminated silicon nanoparticles: synthesis, optical properties and their use in bioimaging,” J. Mater. Chem.19(33), 5926–5933 (2009).
[CrossRef]

Gu, L.

L. Xiao, L. Gu, S. B. Howell, and M. J. Sailor, “Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells,” ACS Nano5(5), 3651–3659 (2011).
[CrossRef] [PubMed]

Guilatt, O.

Guo, S.-M.

S.-M. Guo, J. He, N. Monnier, G. Sun, T. Wohland, and M. Bathe, “Bayesian approach to the analysis of fluorescence correlation spectroscopy data II: Application to simulated and in vitro data,” Anal. Chem.84(9), 3880–3888 (2012).
[CrossRef] [PubMed]

He, J.

S.-M. Guo, J. He, N. Monnier, G. Sun, T. Wohland, and M. Bathe, “Bayesian approach to the analysis of fluorescence correlation spectroscopy data II: Application to simulated and in vitro data,” Anal. Chem.84(9), 3880–3888 (2012).
[CrossRef] [PubMed]

Hosoda, M.

M. Hosoda, K. Sakai, and K. Takagi, “Measurement of anisotropic Brownian motion near an interface by evanescent light-scattering spectroscopy,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics58(5), 62756280–62756685 (1998).
[CrossRef]

Howell, S. B.

L. Xiao, L. Gu, S. B. Howell, and M. J. Sailor, “Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells,” ACS Nano5(5), 3651–3659 (2011).
[CrossRef] [PubMed]

Hu, R.

F. Erogbogbo, K. T. Yong, I. Roy, R. Hu, W. C. Law, W. Zhao, H. Ding, F. Wu, R. Kumar, M. T. Swihart, and P. N. Prasad, “In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals,” ACS Nano5(1), 413–423 (2011).
[CrossRef] [PubMed]

Huang, C.-H.

Huo, Q.

X. Liu, Q. Dai, L. Austin, J. Coutts, G. Knowles, J. Zou, H. Chen, and Q. Huo, “A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering,” J. Am. Chem. Soc.130(9), 2780–2782 (2008).
[CrossRef] [PubMed]

Hwang, Y.-H.

J. A. Seo, H.-J. Kwon, H. K. Kim, and Y.-H. Hwang, “Nano-particle size measurement by photon correlation spectroscopy and dielectric loss spectroscopy,” in FLOW DYNAMICS: The Second International Conference on Flow Dynamics,” AIP Conf. Proc.832, 229–233 (2006).
[CrossRef]

J.-A. Seo, H.-J. Kwon, H. K. Kim, and Y.-H. Hwang, “In-situ size measurement of nano-sized colloidal particles,” J. Korean Phys. Soc.49(5), 1972–1976 (2006).

Intartaglia, R.

R. Intartaglia, K. Bagga, M. Scotto, A. Diaspro, and F. Brandi, “Luminescent silicon nanoparticles prepared by ultra short pulsed laser ablation in liquid for imaging applications,” Opt. Mater. Express2(5), 510–518 (2012).
[CrossRef]

R. Intartaglia, K. Bagga, F. Brandi, G. Das, A. Genovese, E. Di Fabrizio, and A. Diaspro, “Optical properties of femtosecond laser-synthesized silicon nanoparticles in deionized water,” J. Phys. Chem. C115(12), 5102–5107 (2011).
[CrossRef]

Ivanov, V. I.

K. N. Okishev, V. I. Ivanov, S. V. Kliment'ev, A. A. Kuzin, and A. I. Livashvili, “The thermal diffusion mechanism of the nonlinear absorbing in nanoparticle suspensions,” Atmos. Oceanic Opt.23(2), 106–107 (2010).

V. I. Ivanov and K. N. Okishev, “Thermodiffusion mechanism of dynamic amplitude hologram recording in a two-component medium,” Tech. Phys. Lett.32(11), 967–968 (2006).
[CrossRef]

Kapitanova, P. V.

D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, and P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett.100(20), 201113 (2012).
[CrossRef]

Kim, H. K.

J.-A. Seo, H.-J. Kwon, H. K. Kim, and Y.-H. Hwang, “In-situ size measurement of nano-sized colloidal particles,” J. Korean Phys. Soc.49(5), 1972–1976 (2006).

J. A. Seo, H.-J. Kwon, H. K. Kim, and Y.-H. Hwang, “Nano-particle size measurement by photon correlation spectroscopy and dielectric loss spectroscopy,” in FLOW DYNAMICS: The Second International Conference on Flow Dynamics,” AIP Conf. Proc.832, 229–233 (2006).
[CrossRef]

Kivshar, Y. S.

D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, and P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett.100(20), 201113 (2012).
[CrossRef]

N. A. Zharova, I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Nonlinear control of invisibility cloaking,” Opt. Express20(14), 14954–14959 (2012).
[CrossRef] [PubMed]

Kliment'ev, S. V.

K. N. Okishev, V. I. Ivanov, S. V. Kliment'ev, A. A. Kuzin, and A. I. Livashvili, “The thermal diffusion mechanism of the nonlinear absorbing in nanoparticle suspensions,” Atmos. Oceanic Opt.23(2), 106–107 (2010).

Knoll, W.

Knowles, G.

X. Liu, Q. Dai, L. Austin, J. Coutts, G. Knowles, J. Zou, H. Chen, and Q. Huo, “A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering,” J. Am. Chem. Soc.130(9), 2780–2782 (2008).
[CrossRef] [PubMed]

Kovalev, D.

D. Kovalev and M. Fujii, “Silicon nanocrystals: photosensitizers for oxygen molecules,” Adv. Mater. (Deerfield Beach Fla.)17(21), 2531–2544 (2005).
[CrossRef]

Krasnok, A. E.

D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, and P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett.100(20), 201113 (2012).
[CrossRef]

Krishnamoorthy, S.

F. L. Yap, P. Thoniyot, S. Krishnan, and S. Krishnamoorthy, “Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers,” ACS Nano6(3), 2056–2070 (2012).
[CrossRef] [PubMed]

Krishnan, S.

F. L. Yap, P. Thoniyot, S. Krishnan, and S. Krishnamoorthy, “Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers,” ACS Nano6(3), 2056–2070 (2012).
[CrossRef] [PubMed]

Kulchin, Y. N.

Y. N. Kulchin, A. V. Bezverbny, O. A. Bukin, S. S. Voznesensky, S. S. Golik, A. Y. Mayor, Y. A. Shchipunov, and I. G. Nagorny, “Nonlinear optical properties of biomineral and biomimetical nanocomposite structures,” Laser Phys.21(3), 630–636 (2011).
[CrossRef]

Kumar, R.

F. Erogbogbo, K. T. Yong, I. Roy, R. Hu, W. C. Law, W. Zhao, H. Ding, F. Wu, R. Kumar, M. T. Swihart, and P. N. Prasad, “In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals,” ACS Nano5(1), 413–423 (2011).
[CrossRef] [PubMed]

Kuzin, A. A.

K. N. Okishev, V. I. Ivanov, S. V. Kliment'ev, A. A. Kuzin, and A. I. Livashvili, “The thermal diffusion mechanism of the nonlinear absorbing in nanoparticle suspensions,” Atmos. Oceanic Opt.23(2), 106–107 (2010).

Kwon, H.-J.

J. A. Seo, H.-J. Kwon, H. K. Kim, and Y.-H. Hwang, “Nano-particle size measurement by photon correlation spectroscopy and dielectric loss spectroscopy,” in FLOW DYNAMICS: The Second International Conference on Flow Dynamics,” AIP Conf. Proc.832, 229–233 (2006).
[CrossRef]

J.-A. Seo, H.-J. Kwon, H. K. Kim, and Y.-H. Hwang, “In-situ size measurement of nano-sized colloidal particles,” J. Korean Phys. Soc.49(5), 1972–1976 (2006).

Lan, K. H.

K. H. Lan, N. Ostrowsky, and D. Sornette, “Brownian dynamics close to a wall studied by photon correlation spectroscopy from an evanescent wave,” Phys. Rev. Lett.57(1), 17–20 (1986).
[CrossRef] [PubMed]

Lan, Y. C.

Law, W. C.

F. Erogbogbo, K. T. Yong, I. Roy, R. Hu, W. C. Law, W. Zhao, H. Ding, F. Wu, R. Kumar, M. T. Swihart, and P. N. Prasad, “In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals,” ACS Nano5(1), 413–423 (2011).
[CrossRef] [PubMed]

Li, J.

G. Fytas, S. H. Anastasiadis, R. Seghrouchni, D. Vlassopoulos, J. Li, B. J. Factor, W. Theobald, and C. Toprakcioglu, “Probing collective motions of terminally anchored polymers,” Science274(5295), 2041–2044 (1996).
[CrossRef] [PubMed]

Li, Yu.

Lin, C. H.

Lin, H. Y.

Liu, X.

X. Liu, Q. Dai, L. Austin, J. Coutts, G. Knowles, J. Zou, H. Chen, and Q. Huo, “A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering,” J. Am. Chem. Soc.130(9), 2780–2782 (2008).
[CrossRef] [PubMed]

Livashvili, A. I.

K. N. Okishev, V. I. Ivanov, S. V. Kliment'ev, A. A. Kuzin, and A. I. Livashvili, “The thermal diffusion mechanism of the nonlinear absorbing in nanoparticle suspensions,” Atmos. Oceanic Opt.23(2), 106–107 (2010).

Maldiney, T.

Mantegazza, F.

Mayor, A. Y.

Y. N. Kulchin, A. V. Bezverbny, O. A. Bukin, S. S. Voznesensky, S. S. Golik, A. Y. Mayor, Y. A. Shchipunov, and I. G. Nagorny, “Nonlinear optical properties of biomineral and biomimetical nanocomposite structures,” Laser Phys.21(3), 630–636 (2011).
[CrossRef]

Menges, B.

Mesquita, O. N.

M. I. M. Feitosa and O. N. Mesquita, “Wall-drag effect on diffusion of colloidal particles near surfaces: a photon correlation study,” Phys. Rev. A44(10), 6677–6685 (1991).
[CrossRef] [PubMed]

Monnier, N.

S.-M. Guo, J. He, N. Monnier, G. Sun, T. Wohland, and M. Bathe, “Bayesian approach to the analysis of fluorescence correlation spectroscopy data II: Application to simulated and in vitro data,” Anal. Chem.84(9), 3880–3888 (2012).
[CrossRef] [PubMed]

Mucci, A.

B. Ruozi, G. Tosi, M. Tonelli, L. Bondioli, A. Mucci, F. Forni, and M. A. Vandelli, “AFM phase imaging of soft-hydrated samples: A versatile tool to complete the chemical-physical study of liposomes,” J. Liposome Res.19(1), 59–67 (2009).
[CrossRef] [PubMed]

Nagorny, I. G.

Y. N. Kulchin, A. V. Bezverbny, O. A. Bukin, S. S. Voznesensky, S. S. Golik, A. Y. Mayor, Y. A. Shchipunov, and I. G. Nagorny, “Nonlinear optical properties of biomineral and biomimetical nanocomposite structures,” Laser Phys.21(3), 630–636 (2011).
[CrossRef]

Narayanan, S.

W. R. Burghardt, M. Sikorski, A. R. Sandy, and S. Narayanan, “X-ray photon correlation spectroscopy during homogenous shear flow,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.85(2), 021402 (2012).
[CrossRef]

Nenasheva, E. A.

D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, and P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett.100(20), 201113 (2012).
[CrossRef]

Okishev, K. N.

K. N. Okishev, V. I. Ivanov, S. V. Kliment'ev, A. A. Kuzin, and A. I. Livashvili, “The thermal diffusion mechanism of the nonlinear absorbing in nanoparticle suspensions,” Atmos. Oceanic Opt.23(2), 106–107 (2010).

V. I. Ivanov and K. N. Okishev, “Thermodiffusion mechanism of dynamic amplitude hologram recording in a two-component medium,” Tech. Phys. Lett.32(11), 967–968 (2006).
[CrossRef]

Ostrowsky, N.

K. H. Lan, N. Ostrowsky, and D. Sornette, “Brownian dynamics close to a wall studied by photon correlation spectroscopy from an evanescent wave,” Phys. Rev. Lett.57(1), 17–20 (1986).
[CrossRef] [PubMed]

Overgaag, K.

M. Rosso-Vasic, E. Spruijt, Z. Popovic, K. Overgaag, B. Van Lagen, B. Grandidier, D. Vanmaekelbergh, D. Dominguez-Gutierrez, L. De Cola, and H. Zuilhof, “Amine-terminated silicon nanoparticles: synthesis, optical properties and their use in bioimaging,” J. Mater. Chem.19(33), 5926–5933 (2009).
[CrossRef]

Park, C.

Park, J.-H.

Park, Y. K.

Plum, M. A.

Poelman, D.

Popovic, Z.

M. Rosso-Vasic, E. Spruijt, Z. Popovic, K. Overgaag, B. Van Lagen, B. Grandidier, D. Vanmaekelbergh, D. Dominguez-Gutierrez, L. De Cola, and H. Zuilhof, “Amine-terminated silicon nanoparticles: synthesis, optical properties and their use in bioimaging,” J. Mater. Chem.19(33), 5926–5933 (2009).
[CrossRef]

Prasad, P. N.

F. Erogbogbo, K. T. Yong, I. Roy, R. Hu, W. C. Law, W. Zhao, H. Ding, F. Wu, R. Kumar, M. T. Swihart, and P. N. Prasad, “In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals,” ACS Nano5(1), 413–423 (2011).
[CrossRef] [PubMed]

Qian, J.

Richard, C.

Rosso-Vasic, M.

M. Rosso-Vasic, E. Spruijt, Z. Popovic, K. Overgaag, B. Van Lagen, B. Grandidier, D. Vanmaekelbergh, D. Dominguez-Gutierrez, L. De Cola, and H. Zuilhof, “Amine-terminated silicon nanoparticles: synthesis, optical properties and their use in bioimaging,” J. Mater. Chem.19(33), 5926–5933 (2009).
[CrossRef]

Rotello, V. M.

Y.-C. Yeh, B. Creran, and V. M. Rotello, “Gold nanoparticles: preparation, properties, and applications in bionanotechnology,” Nanoscale4(6), 1871–1880 (2012).
[CrossRef] [PubMed]

M. De, P. S. Ghosh, and V. M. Rotello, “Applications of nanoparticles in biology,” Adv. Mater. (Deerfield Beach Fla.)20(22), 4225–4241 (2008).
[CrossRef]

Roy, I.

F. Erogbogbo, K. T. Yong, I. Roy, R. Hu, W. C. Law, W. Zhao, H. Ding, F. Wu, R. Kumar, M. T. Swihart, and P. N. Prasad, “In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals,” ACS Nano5(1), 413–423 (2011).
[CrossRef] [PubMed]

Ruozi, B.

B. Ruozi, G. Tosi, M. Tonelli, L. Bondioli, A. Mucci, F. Forni, and M. A. Vandelli, “AFM phase imaging of soft-hydrated samples: A versatile tool to complete the chemical-physical study of liposomes,” J. Liposome Res.19(1), 59–67 (2009).
[CrossRef] [PubMed]

Sailor, M. J.

L. Xiao, L. Gu, S. B. Howell, and M. J. Sailor, “Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells,” ACS Nano5(5), 3651–3659 (2011).
[CrossRef] [PubMed]

Sakai, K.

M. Hosoda, K. Sakai, and K. Takagi, “Measurement of anisotropic Brownian motion near an interface by evanescent light-scattering spectroscopy,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics58(5), 62756280–62756685 (1998).
[CrossRef]

Salerno, D.

Sandy, A. R.

W. R. Burghardt, M. Sikorski, A. R. Sandy, and S. Narayanan, “X-ray photon correlation spectroscopy during homogenous shear flow,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.85(2), 021402 (2012).
[CrossRef]

Scherman, D.

Scotto, M.

Seghrouchni, R.

G. Fytas, S. H. Anastasiadis, R. Seghrouchni, D. Vlassopoulos, J. Li, B. J. Factor, W. Theobald, and C. Toprakcioglu, “Probing collective motions of terminally anchored polymers,” Science274(5295), 2041–2044 (1996).
[CrossRef] [PubMed]

Seo, J. A.

J. A. Seo, H.-J. Kwon, H. K. Kim, and Y.-H. Hwang, “Nano-particle size measurement by photon correlation spectroscopy and dielectric loss spectroscopy,” in FLOW DYNAMICS: The Second International Conference on Flow Dynamics,” AIP Conf. Proc.832, 229–233 (2006).
[CrossRef]

Seo, J.-A.

J.-A. Seo, H.-J. Kwon, H. K. Kim, and Y.-H. Hwang, “In-situ size measurement of nano-sized colloidal particles,” J. Korean Phys. Soc.49(5), 1972–1976 (2006).

Shadrivov, I. V.

Shchipunov, Y. A.

Y. N. Kulchin, A. V. Bezverbny, O. A. Bukin, S. S. Voznesensky, S. S. Golik, A. Y. Mayor, Y. A. Shchipunov, and I. G. Nagorny, “Nonlinear optical properties of biomineral and biomimetical nanocomposite structures,” Laser Phys.21(3), 630–636 (2011).
[CrossRef]

Sikorski, M.

W. R. Burghardt, M. Sikorski, A. R. Sandy, and S. Narayanan, “X-ray photon correlation spectroscopy during homogenous shear flow,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.85(2), 021402 (2012).
[CrossRef]

Slobozhanyuk, A. P.

D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, and P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett.100(20), 201113 (2012).
[CrossRef]

Smet, P. F.

Sornette, D.

K. H. Lan, N. Ostrowsky, and D. Sornette, “Brownian dynamics close to a wall studied by photon correlation spectroscopy from an evanescent wave,” Phys. Rev. Lett.57(1), 17–20 (1986).
[CrossRef] [PubMed]

Spruijt, E.

M. Rosso-Vasic, E. Spruijt, Z. Popovic, K. Overgaag, B. Van Lagen, B. Grandidier, D. Vanmaekelbergh, D. Dominguez-Gutierrez, L. De Cola, and H. Zuilhof, “Amine-terminated silicon nanoparticles: synthesis, optical properties and their use in bioimaging,” J. Mater. Chem.19(33), 5926–5933 (2009).
[CrossRef]

Sraiki, G.

Steffen, W.

Sun, G.

S.-M. Guo, J. He, N. Monnier, G. Sun, T. Wohland, and M. Bathe, “Bayesian approach to the analysis of fluorescence correlation spectroscopy data II: Application to simulated and in vitro data,” Anal. Chem.84(9), 3880–3888 (2012).
[CrossRef] [PubMed]

Sun, Q.

Swihart, M. T.

F. Erogbogbo, K. T. Yong, I. Roy, R. Hu, W. C. Law, W. Zhao, H. Ding, F. Wu, R. Kumar, M. T. Swihart, and P. N. Prasad, “In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals,” ACS Nano5(1), 413–423 (2011).
[CrossRef] [PubMed]

Takagi, K.

M. Hosoda, K. Sakai, and K. Takagi, “Measurement of anisotropic Brownian motion near an interface by evanescent light-scattering spectroscopy,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics58(5), 62756280–62756685 (1998).
[CrossRef]

Theobald, W.

G. Fytas, S. H. Anastasiadis, R. Seghrouchni, D. Vlassopoulos, J. Li, B. J. Factor, W. Theobald, and C. Toprakcioglu, “Probing collective motions of terminally anchored polymers,” Science274(5295), 2041–2044 (1996).
[CrossRef] [PubMed]

Thoniyot, P.

F. L. Yap, P. Thoniyot, S. Krishnan, and S. Krishnamoorthy, “Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers,” ACS Nano6(3), 2056–2070 (2012).
[CrossRef] [PubMed]

Tonelli, M.

B. Ruozi, G. Tosi, M. Tonelli, L. Bondioli, A. Mucci, F. Forni, and M. A. Vandelli, “AFM phase imaging of soft-hydrated samples: A versatile tool to complete the chemical-physical study of liposomes,” J. Liposome Res.19(1), 59–67 (2009).
[CrossRef] [PubMed]

Toprakcioglu, C.

G. Fytas, S. H. Anastasiadis, R. Seghrouchni, D. Vlassopoulos, J. Li, B. J. Factor, W. Theobald, and C. Toprakcioglu, “Probing collective motions of terminally anchored polymers,” Science274(5295), 2041–2044 (1996).
[CrossRef] [PubMed]

Tosi, G.

B. Ruozi, G. Tosi, M. Tonelli, L. Bondioli, A. Mucci, F. Forni, and M. A. Vandelli, “AFM phase imaging of soft-hydrated samples: A versatile tool to complete the chemical-physical study of liposomes,” J. Liposome Res.19(1), 59–67 (2009).
[CrossRef] [PubMed]

Van den Eeckhout, K.

Van Lagen, B.

M. Rosso-Vasic, E. Spruijt, Z. Popovic, K. Overgaag, B. Van Lagen, B. Grandidier, D. Vanmaekelbergh, D. Dominguez-Gutierrez, L. De Cola, and H. Zuilhof, “Amine-terminated silicon nanoparticles: synthesis, optical properties and their use in bioimaging,” J. Mater. Chem.19(33), 5926–5933 (2009).
[CrossRef]

Vandelli, M. A.

B. Ruozi, G. Tosi, M. Tonelli, L. Bondioli, A. Mucci, F. Forni, and M. A. Vandelli, “AFM phase imaging of soft-hydrated samples: A versatile tool to complete the chemical-physical study of liposomes,” J. Liposome Res.19(1), 59–67 (2009).
[CrossRef] [PubMed]

Vanmaekelbergh, D.

M. Rosso-Vasic, E. Spruijt, Z. Popovic, K. Overgaag, B. Van Lagen, B. Grandidier, D. Vanmaekelbergh, D. Dominguez-Gutierrez, L. De Cola, and H. Zuilhof, “Amine-terminated silicon nanoparticles: synthesis, optical properties and their use in bioimaging,” J. Mater. Chem.19(33), 5926–5933 (2009).
[CrossRef]

Viana, B.

Vlassopoulos, D.

G. Fytas, S. H. Anastasiadis, R. Seghrouchni, D. Vlassopoulos, J. Li, B. J. Factor, W. Theobald, and C. Toprakcioglu, “Probing collective motions of terminally anchored polymers,” Science274(5295), 2041–2044 (1996).
[CrossRef] [PubMed]

von Smoluchowski, M.

M. von Smoluchowski, “Zur kinetischen theorie der brownschen molekularbe-wegung und der suspensionen,” Ann. Physik (Leipzig)21(326), 756–780 (1906).
[CrossRef]

Voznesensky, S. S.

Y. N. Kulchin, A. V. Bezverbny, O. A. Bukin, S. S. Voznesensky, S. S. Golik, A. Y. Mayor, Y. A. Shchipunov, and I. G. Nagorny, “Nonlinear optical properties of biomineral and biomimetical nanocomposite structures,” Laser Phys.21(3), 630–636 (2011).
[CrossRef]

Wohland, T.

S.-M. Guo, J. He, N. Monnier, G. Sun, T. Wohland, and M. Bathe, “Bayesian approach to the analysis of fluorescence correlation spectroscopy data II: Application to simulated and in vitro data,” Anal. Chem.84(9), 3880–3888 (2012).
[CrossRef] [PubMed]

Wu, F.

F. Erogbogbo, K. T. Yong, I. Roy, R. Hu, W. C. Law, W. Zhao, H. Ding, F. Wu, R. Kumar, M. T. Swihart, and P. N. Prasad, “In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals,” ACS Nano5(1), 413–423 (2011).
[CrossRef] [PubMed]

Xiao, L.

L. Xiao, L. Gu, S. B. Howell, and M. J. Sailor, “Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells,” ACS Nano5(5), 3651–3659 (2011).
[CrossRef] [PubMed]

Xu, J.

Yap, F. L.

F. L. Yap, P. Thoniyot, S. Krishnan, and S. Krishnamoorthy, “Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers,” ACS Nano6(3), 2056–2070 (2012).
[CrossRef] [PubMed]

Yeh, Y.-C.

Y.-C. Yeh, B. Creran, and V. M. Rotello, “Gold nanoparticles: preparation, properties, and applications in bionanotechnology,” Nanoscale4(6), 1871–1880 (2012).
[CrossRef] [PubMed]

Yong, K. T.

F. Erogbogbo, K. T. Yong, I. Roy, R. Hu, W. C. Law, W. Zhao, H. Ding, F. Wu, R. Kumar, M. T. Swihart, and P. N. Prasad, “In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals,” ACS Nano5(1), 413–423 (2011).
[CrossRef] [PubMed]

Yu, H.

Zhao, W.

F. Erogbogbo, K. T. Yong, I. Roy, R. Hu, W. C. Law, W. Zhao, H. Ding, F. Wu, R. Kumar, M. T. Swihart, and P. N. Prasad, “In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals,” ACS Nano5(1), 413–423 (2011).
[CrossRef] [PubMed]

Zharov, A. A.

Zharova, N. A.

Ziano, R.

Zou, J.

X. Liu, Q. Dai, L. Austin, J. Coutts, G. Knowles, J. Zou, H. Chen, and Q. Huo, “A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering,” J. Am. Chem. Soc.130(9), 2780–2782 (2008).
[CrossRef] [PubMed]

Zuilhof, H.

M. Rosso-Vasic, E. Spruijt, Z. Popovic, K. Overgaag, B. Van Lagen, B. Grandidier, D. Vanmaekelbergh, D. Dominguez-Gutierrez, L. De Cola, and H. Zuilhof, “Amine-terminated silicon nanoparticles: synthesis, optical properties and their use in bioimaging,” J. Mater. Chem.19(33), 5926–5933 (2009).
[CrossRef]

ACS Nano (3)

F. Erogbogbo, K. T. Yong, I. Roy, R. Hu, W. C. Law, W. Zhao, H. Ding, F. Wu, R. Kumar, M. T. Swihart, and P. N. Prasad, “In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals,” ACS Nano5(1), 413–423 (2011).
[CrossRef] [PubMed]

L. Xiao, L. Gu, S. B. Howell, and M. J. Sailor, “Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells,” ACS Nano5(5), 3651–3659 (2011).
[CrossRef] [PubMed]

F. L. Yap, P. Thoniyot, S. Krishnan, and S. Krishnamoorthy, “Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers,” ACS Nano6(3), 2056–2070 (2012).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (2)

D. Kovalev and M. Fujii, “Silicon nanocrystals: photosensitizers for oxygen molecules,” Adv. Mater. (Deerfield Beach Fla.)17(21), 2531–2544 (2005).
[CrossRef]

M. De, P. S. Ghosh, and V. M. Rotello, “Applications of nanoparticles in biology,” Adv. Mater. (Deerfield Beach Fla.)20(22), 4225–4241 (2008).
[CrossRef]

AIP Conf. Proc. (1)

J. A. Seo, H.-J. Kwon, H. K. Kim, and Y.-H. Hwang, “Nano-particle size measurement by photon correlation spectroscopy and dielectric loss spectroscopy,” in FLOW DYNAMICS: The Second International Conference on Flow Dynamics,” AIP Conf. Proc.832, 229–233 (2006).
[CrossRef]

Anal. Chem. (1)

S.-M. Guo, J. He, N. Monnier, G. Sun, T. Wohland, and M. Bathe, “Bayesian approach to the analysis of fluorescence correlation spectroscopy data II: Application to simulated and in vitro data,” Anal. Chem.84(9), 3880–3888 (2012).
[CrossRef] [PubMed]

Ann. Physik (Leipzig) (1)

M. von Smoluchowski, “Zur kinetischen theorie der brownschen molekularbe-wegung und der suspensionen,” Ann. Physik (Leipzig)21(326), 756–780 (1906).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. S. Filonov, A. E. Krasnok, A. P. Slobozhanyuk, P. V. Kapitanova, E. A. Nenasheva, Y. S. Kivshar, and P. A. Belov, “Experimental verification of the concept of all-dielectric nanoantennas,” Appl. Phys. Lett.100(20), 201113 (2012).
[CrossRef]

Atmos. Oceanic Opt. (1)

K. N. Okishev, V. I. Ivanov, S. V. Kliment'ev, A. A. Kuzin, and A. I. Livashvili, “The thermal diffusion mechanism of the nonlinear absorbing in nanoparticle suspensions,” Atmos. Oceanic Opt.23(2), 106–107 (2010).

J. Am. Chem. Soc. (1)

X. Liu, Q. Dai, L. Austin, J. Coutts, G. Knowles, J. Zou, H. Chen, and Q. Huo, “A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering,” J. Am. Chem. Soc.130(9), 2780–2782 (2008).
[CrossRef] [PubMed]

J. Environ. Monit. (1)

B. Carl Englert, “Nanomaterials and the environment: uses, methods and measurement,” J. Environ. Monit.9(11), 1154–1161 (2007).
[CrossRef] [PubMed]

J. Korean Phys. Soc. (1)

J.-A. Seo, H.-J. Kwon, H. K. Kim, and Y.-H. Hwang, “In-situ size measurement of nano-sized colloidal particles,” J. Korean Phys. Soc.49(5), 1972–1976 (2006).

J. Liposome Res. (1)

B. Ruozi, G. Tosi, M. Tonelli, L. Bondioli, A. Mucci, F. Forni, and M. A. Vandelli, “AFM phase imaging of soft-hydrated samples: A versatile tool to complete the chemical-physical study of liposomes,” J. Liposome Res.19(1), 59–67 (2009).
[CrossRef] [PubMed]

J. Mater. Chem. (1)

M. Rosso-Vasic, E. Spruijt, Z. Popovic, K. Overgaag, B. Van Lagen, B. Grandidier, D. Vanmaekelbergh, D. Dominguez-Gutierrez, L. De Cola, and H. Zuilhof, “Amine-terminated silicon nanoparticles: synthesis, optical properties and their use in bioimaging,” J. Mater. Chem.19(33), 5926–5933 (2009).
[CrossRef]

J. Phys. Chem. C (1)

R. Intartaglia, K. Bagga, F. Brandi, G. Das, A. Genovese, E. Di Fabrizio, and A. Diaspro, “Optical properties of femtosecond laser-synthesized silicon nanoparticles in deionized water,” J. Phys. Chem. C115(12), 5102–5107 (2011).
[CrossRef]

Langmuir (1)

K. Drozdowicz-Tomsia, H. T. Baltar, and E. M. Goldys, “Dense two-dimensional silver single and double nanoparticle arrays with plasmonic response in wide spectral range,” Langmuir28(24), 9071–9081 (2012).
[CrossRef] [PubMed]

Laser Phys. (1)

Y. N. Kulchin, A. V. Bezverbny, O. A. Bukin, S. S. Voznesensky, S. S. Golik, A. Y. Mayor, Y. A. Shchipunov, and I. G. Nagorny, “Nonlinear optical properties of biomineral and biomimetical nanocomposite structures,” Laser Phys.21(3), 630–636 (2011).
[CrossRef]

Nanoscale (1)

Y.-C. Yeh, B. Creran, and V. M. Rotello, “Gold nanoparticles: preparation, properties, and applications in bionanotechnology,” Nanoscale4(6), 1871–1880 (2012).
[CrossRef] [PubMed]

Opt. Express (7)

Opt. Mater. Express (2)

Phys. Rev. A (1)

M. I. M. Feitosa and O. N. Mesquita, “Wall-drag effect on diffusion of colloidal particles near surfaces: a photon correlation study,” Phys. Rev. A44(10), 6677–6685 (1991).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

W. R. Burghardt, M. Sikorski, A. R. Sandy, and S. Narayanan, “X-ray photon correlation spectroscopy during homogenous shear flow,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.85(2), 021402 (2012).
[CrossRef]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

M. Hosoda, K. Sakai, and K. Takagi, “Measurement of anisotropic Brownian motion near an interface by evanescent light-scattering spectroscopy,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics58(5), 62756280–62756685 (1998).
[CrossRef]

Phys. Rev. Lett. (1)

K. H. Lan, N. Ostrowsky, and D. Sornette, “Brownian dynamics close to a wall studied by photon correlation spectroscopy from an evanescent wave,” Phys. Rev. Lett.57(1), 17–20 (1986).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

S. Chandrasekhar, “Stochastic problems in physics and astronomy,” Rev. Mod. Phys.15(1), 1–89 (1943).
[CrossRef]

Science (1)

G. Fytas, S. H. Anastasiadis, R. Seghrouchni, D. Vlassopoulos, J. Li, B. J. Factor, W. Theobald, and C. Toprakcioglu, “Probing collective motions of terminally anchored polymers,” Science274(5295), 2041–2044 (1996).
[CrossRef] [PubMed]

Tech. Phys. Lett. (1)

V. I. Ivanov and K. N. Okishev, “Thermodiffusion mechanism of dynamic amplitude hologram recording in a two-component medium,” Tech. Phys. Lett.32(11), 967–968 (2006).
[CrossRef]

Other (9)

K. Okishev and I. Doronin, “Application of photon correlation spectroscopy for investigation of silica nanospheres suspension,” Bull. Sci. Res. 14, edited by V. Stroganov, Khabarovsk, Russia, FESTU, 4–8 (2010).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999).

H. Z. Cummins and E. R. Pike, “Photon correlation and light beating spectroscopy,” NATO Advanced Study Institute Series, Volume B3 (Plenum Press, New York, 1974).

A. Einstein, Investigations on the Theory of the Brownian Movement, (Dover Publications, Inc., 1956).

V. Rotello, Nanoparticle: Building Blocks for Nanotechnology (Springer, 2004).

W. Brown, Dynamic Light Scattering: The Method and Some Applications (Clarendon Press, 1993).

E. R. Pike and J. B. Abbiss, Light Scattering and Photon Correlation Spectroscopy (Kluwer Academic Publishers, 1997).

K. Maaz, The Transmission Electron Microscope (InTech, 2012).

V. Bellitto, Atomic Force Microscopy - Imaging, Measuring and Manipulating Surfaces at the Atomic Scale (InTech, 2012)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Measurement scheme based on attenuated total reflection. 1 is the incident radiation, 2 is the scattered radiation, and 3 is a plot of the intensity of the transmitted radiation, I, versus the depth of penetration z.

Fig. 2
Fig. 2

Probability density plot showing the reflection from the boundary between the media.

Fig. 3
Fig. 3

Normalized autocorrelation function of the scattered radiation obtained using the scheme based on ATR (curve 1) and the traditional scheme (curve 2).

Fig. 4
Fig. 4

Normalized autocorrelation function of scattered radiation obtained using the scheme based on ATR for spherical particles with radii of 1 nm (curve 1), 10 nm (curve 2), and 100 nm (curve 3).

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

G( τ )= E m 2 2 e k 2 Dτ ,
Δϕ= k x x+ k z z,
k x = 2π n 1 λ sinα,
k z = 2π n 2 λ .
Δ r 2 ¯ =2Dτ,
D= k b T 6πηR ,
P x = 1 σ 2π e ( x x 0 ) 2 / 2 σ 2 ,
σ 2 = σ x 2 = σ z 2 = 1 3 Δ r 2 ¯ = 2 3 Dτ,
P z = 1 σ 2π ( e ( z z 0 ) 2 / 2 σ 2 + e ( z+ z 0 ) 2 / 2 σ 2 ).
E= E 0 e z/ b 0 cos( k x x+ k z z ),
E t 0 = E 0 e z 0 / b 0 cos( k x x 0 + k z z 0 ).
u=x x 0 , ϕ x = k x x 0 .
E= E 0 e z/ b 0 cos( k x u+ ϕ x + k z z ),
E t 0 = E 0 e z 0 / b 0 cos( ϕ x + k z z 0 ).
G( τ )= E 0 2 π 0 0 + 0 2π P z P x e ( z z 0 ) / b 0 cos( ϕ x + k z z 0 )cos( k x u+ ϕ x + k z z )d ϕ x dudzd z 0 .
G( τ )= E 0 2 e k x 2 σ 2 /2 σ 2π 0 0 [ e ( z z 0 ) 2 / 2 σ 2 + e ( z+ z 0 ) 2 / 2 σ 2 ] e ( z+ z 0 ) / b 0 cos( k z ( z z 0 ) )dzd z 0 .
G( τ )= E 0 2 e k x 2 Dτ /3 2 πDτ /3 0 0 [ e 3 ( z z 0 ) 2 / 4Dτ + e 3 ( z+ z 0 ) 2 / 4Dτ ] e ( z+ z 0 ) / b 0 cos( k z ( z z 0 ) )dzd z 0 .

Metrics