Abstract

We demonstrate 3D surface plasmon photoresponse in nanopillar arrays resulting in enhanced responsivity due to both Localized Surface Plasmon Resonances (LSPRs) and Surface Plasmon Polariton Bloch Waves (SPP-BWs). The LSPRs are excited due to a partial gold shell coating the nanopillar which acts as a 3D Nanopillar Optical Antenna (NOA) in focusing light into the nanopillar. Angular photoresponse measurements show that SPP-BWs can be spectrally coincident with LSPRs to result in a x2 enhancement in responsivity at 1180 nm. Full-wave Finite Difference Time Domain (FDTD) simulations substantiate both the spatial and spectral coupling of the SPP-BW / LSPR for enhanced absorption and the nature of the LSPR. Geometrical control of the 3D NOA and the self-aligned metal hole lattice allows the hybridization of both localized and propagating surface plasmon modes for enhanced absorption. Hybridized plasmonic modes opens up new avenues in optical antenna design in nanoscale photodetectors.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant Germanium Nanoantenna Photodetectors,” Nano Lett.10(4), 1229–1233 (2010).
    [CrossRef] [PubMed]
  2. L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater.8(8), 643–647 (2009).
    [CrossRef] [PubMed]
  3. G. Bulgarini, M. E. Reimer, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Avalanche amplification of a single exciton in a semiconductor nanowire,” Nat. Photonics6(7), 455–458 (2012).
    [CrossRef]
  4. P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics6(6), 380–385 (2012).
    [CrossRef]
  5. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics2(4), 226–229 (2008).
    [CrossRef]
  6. S. C. Lee, S. Krishna, and S. R. J. Brueck, “Quantum dot infrared photodetector enhanced by surface plasma wave excitation,” Opt. Express17(25), 23160–23168 (2009).
    [CrossRef] [PubMed]
  7. T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. Part 244, L364–L366 (2005).
  8. F.-F. Ren, K.-W. Ang, J. Ye, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Split Bull’s Eye Shaped Aluminum Antenna for Plasmon-Enhanced Nanometer Scale Germanium Photodetector,” Nano Lett.11(3), 1289–1293 (2011).
    [CrossRef] [PubMed]
  9. P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J.-L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98(19), 191109 (2011).
    [CrossRef]
  10. A. Akbari, R. N. Tait, and P. Berini, “Surface plasmon waveguide Schottky detector,” Opt. Express18(8), 8505–8514 (2010).
    [CrossRef] [PubMed]
  11. P. Senanayake, C.-H. Hung, J. Shapiro, A. Lin, B. Liang, B. S. Williams, and D. L. Huffaker, “Surface Plasmon-Enhanced Nanopillar Photodetectors,” Nano Lett.11(12), 5279–5283 (2011).
    [CrossRef] [PubMed]
  12. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
    [CrossRef]
  13. S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D Appl. Phys.44(18), 185101 (2011).
    [CrossRef]
  14. T. J. Kim, T. H. Ghong, Y. D. Kim, S. J. Kim, D. E. Aspnes, T. Mori, T. Yao, and B. H. Koo, “Dielectric functions of InxGa1-xAs alloys,” Phys. Rev. B68(11), 115323 (2003).
    [CrossRef]
  15. K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express18(9), 8790–8799 (2010).
    [CrossRef] [PubMed]
  16. J. Rosenberg, R. V. Shenoi, S. Krishna, and O. Painter, “Design of plasmonic photonic crystal resonant cavities for polarization sensitive infrared photodetectors,” Opt. Express18(4), 3672–3686 (2010).
    [CrossRef] [PubMed]
  17. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
    [CrossRef]
  18. H. Gao, W. Zhou, and T. W. Odom, “Plasmonic Crystals: A Platform to Catalog Resonances from Ultraviolet to Near-Infrared Wavelengths in a Plasmonic Library,” Adv. Funct. Mater.20(4), 529–539 (2010).
    [CrossRef]

2012

G. Bulgarini, M. E. Reimer, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Avalanche amplification of a single exciton in a semiconductor nanowire,” Nat. Photonics6(7), 455–458 (2012).
[CrossRef]

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics6(6), 380–385 (2012).
[CrossRef]

2011

F.-F. Ren, K.-W. Ang, J. Ye, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Split Bull’s Eye Shaped Aluminum Antenna for Plasmon-Enhanced Nanometer Scale Germanium Photodetector,” Nano Lett.11(3), 1289–1293 (2011).
[CrossRef] [PubMed]

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J.-L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98(19), 191109 (2011).
[CrossRef]

P. Senanayake, C.-H. Hung, J. Shapiro, A. Lin, B. Liang, B. S. Williams, and D. L. Huffaker, “Surface Plasmon-Enhanced Nanopillar Photodetectors,” Nano Lett.11(12), 5279–5283 (2011).
[CrossRef] [PubMed]

S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D Appl. Phys.44(18), 185101 (2011).
[CrossRef]

2010

2009

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater.8(8), 643–647 (2009).
[CrossRef] [PubMed]

S. C. Lee, S. Krishna, and S. R. J. Brueck, “Quantum dot infrared photodetector enhanced by surface plasma wave excitation,” Opt. Express17(25), 23160–23168 (2009).
[CrossRef] [PubMed]

2008

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics2(4), 226–229 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
[CrossRef]

2005

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. Part 244, L364–L366 (2005).

2003

T. J. Kim, T. H. Ghong, Y. D. Kim, S. J. Kim, D. E. Aspnes, T. Mori, T. Yao, and B. H. Koo, “Dielectric functions of InxGa1-xAs alloys,” Phys. Rev. B68(11), 115323 (2003).
[CrossRef]

1998

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
[CrossRef]

Afshinmanesh, F.

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics6(6), 380–385 (2012).
[CrossRef]

Akbari, A.

Ang, K.-W.

F.-F. Ren, K.-W. Ang, J. Ye, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Split Bull’s Eye Shaped Aluminum Antenna for Plasmon-Enhanced Nanometer Scale Germanium Photodetector,” Nano Lett.11(3), 1289–1293 (2011).
[CrossRef] [PubMed]

Aspnes, D. E.

T. J. Kim, T. H. Ghong, Y. D. Kim, S. J. Kim, D. E. Aspnes, T. Mori, T. Yao, and B. H. Koo, “Dielectric functions of InxGa1-xAs alloys,” Phys. Rev. B68(11), 115323 (2003).
[CrossRef]

Baba, T.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. Part 244, L364–L366 (2005).

Bakkers, E. P. A. M.

G. Bulgarini, M. E. Reimer, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Avalanche amplification of a single exciton in a semiconductor nanowire,” Nat. Photonics6(7), 455–458 (2012).
[CrossRef]

Bardou, N.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J.-L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98(19), 191109 (2011).
[CrossRef]

Beck, F. J.

S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D Appl. Phys.44(18), 185101 (2011).
[CrossRef]

Berini, P.

Bouchon, P.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J.-L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98(19), 191109 (2011).
[CrossRef]

Brongersma, M. L.

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics6(6), 380–385 (2012).
[CrossRef]

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant Germanium Nanoantenna Photodetectors,” Nano Lett.10(4), 1229–1233 (2010).
[CrossRef] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater.8(8), 643–647 (2009).
[CrossRef] [PubMed]

Brueck, S. R. J.

Bulgarini, G.

G. Bulgarini, M. E. Reimer, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Avalanche amplification of a single exciton in a semiconductor nanowire,” Nat. Photonics6(7), 455–458 (2012).
[CrossRef]

Cao, L.

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics6(6), 380–385 (2012).
[CrossRef]

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant Germanium Nanoantenna Photodetectors,” Nano Lett.10(4), 1229–1233 (2010).
[CrossRef] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater.8(8), 643–647 (2009).
[CrossRef] [PubMed]

Catchpole, K. R.

S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D Appl. Phys.44(18), 185101 (2011).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
[CrossRef]

Chettiar, U. K.

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics6(6), 380–385 (2012).
[CrossRef]

Clemens, B.

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant Germanium Nanoantenna Photodetectors,” Nano Lett.10(4), 1229–1233 (2010).
[CrossRef] [PubMed]

Clemens, B. M.

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater.8(8), 643–647 (2009).
[CrossRef] [PubMed]

Dagher, G.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J.-L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98(19), 191109 (2011).
[CrossRef]

de Waele, R.

S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D Appl. Phys.44(18), 185101 (2011).
[CrossRef]

Dupuis, C.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J.-L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98(19), 191109 (2011).
[CrossRef]

Ebbesen, T. W.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
[CrossRef]

Engheta, N.

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics6(6), 380–385 (2012).
[CrossRef]

Fan, P.

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics6(6), 380–385 (2012).
[CrossRef]

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant Germanium Nanoantenna Photodetectors,” Nano Lett.10(4), 1229–1233 (2010).
[CrossRef] [PubMed]

Ferlazzo, L.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J.-L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98(19), 191109 (2011).
[CrossRef]

Fujikata, J.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. Part 244, L364–L366 (2005).

Gao, H.

H. Gao, W. Zhou, and T. W. Odom, “Plasmonic Crystals: A Platform to Catalog Resonances from Ultraviolet to Near-Infrared Wavelengths in a Plasmonic Library,” Adv. Funct. Mater.20(4), 529–539 (2010).
[CrossRef]

Ghaemi, H. F.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
[CrossRef]

Ghenuche, P.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J.-L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98(19), 191109 (2011).
[CrossRef]

Ghong, T. H.

T. J. Kim, T. H. Ghong, Y. D. Kim, S. J. Kim, D. E. Aspnes, T. Mori, T. Yao, and B. H. Koo, “Dielectric functions of InxGa1-xAs alloys,” Phys. Rev. B68(11), 115323 (2003).
[CrossRef]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
[CrossRef]

Haidar, R.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J.-L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98(19), 191109 (2011).
[CrossRef]

Hocevar, M.

G. Bulgarini, M. E. Reimer, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Avalanche amplification of a single exciton in a semiconductor nanowire,” Nat. Photonics6(7), 455–458 (2012).
[CrossRef]

Huffaker, D. L.

P. Senanayake, C.-H. Hung, J. Shapiro, A. Lin, B. Liang, B. S. Williams, and D. L. Huffaker, “Surface Plasmon-Enhanced Nanopillar Photodetectors,” Nano Lett.11(12), 5279–5283 (2011).
[CrossRef] [PubMed]

Hung, C.-H.

P. Senanayake, C.-H. Hung, J. Shapiro, A. Lin, B. Liang, B. S. Williams, and D. L. Huffaker, “Surface Plasmon-Enhanced Nanopillar Photodetectors,” Nano Lett.11(12), 5279–5283 (2011).
[CrossRef] [PubMed]

Ishi, T.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. Part 244, L364–L366 (2005).

Kim, S. J.

T. J. Kim, T. H. Ghong, Y. D. Kim, S. J. Kim, D. E. Aspnes, T. Mori, T. Yao, and B. H. Koo, “Dielectric functions of InxGa1-xAs alloys,” Phys. Rev. B68(11), 115323 (2003).
[CrossRef]

Kim, T. J.

T. J. Kim, T. H. Ghong, Y. D. Kim, S. J. Kim, D. E. Aspnes, T. Mori, T. Yao, and B. H. Koo, “Dielectric functions of InxGa1-xAs alloys,” Phys. Rev. B68(11), 115323 (2003).
[CrossRef]

Kim, Y. D.

T. J. Kim, T. H. Ghong, Y. D. Kim, S. J. Kim, D. E. Aspnes, T. Mori, T. Yao, and B. H. Koo, “Dielectric functions of InxGa1-xAs alloys,” Phys. Rev. B68(11), 115323 (2003).
[CrossRef]

Kocabas, S. E.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics2(4), 226–229 (2008).
[CrossRef]

Koo, B. H.

T. J. Kim, T. H. Ghong, Y. D. Kim, S. J. Kim, D. E. Aspnes, T. Mori, T. Yao, and B. H. Koo, “Dielectric functions of InxGa1-xAs alloys,” Phys. Rev. B68(11), 115323 (2003).
[CrossRef]

Kouwenhoven, L. P.

G. Bulgarini, M. E. Reimer, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Avalanche amplification of a single exciton in a semiconductor nanowire,” Nat. Photonics6(7), 455–458 (2012).
[CrossRef]

Krishna, S.

Kwong, D.-L.

F.-F. Ren, K.-W. Ang, J. Ye, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Split Bull’s Eye Shaped Aluminum Antenna for Plasmon-Enhanced Nanometer Scale Germanium Photodetector,” Nano Lett.11(3), 1289–1293 (2011).
[CrossRef] [PubMed]

Lakhani, A.

Latif, S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics2(4), 226–229 (2008).
[CrossRef]

Lee, S. C.

Lezec, H. J.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
[CrossRef]

Liang, B.

P. Senanayake, C.-H. Hung, J. Shapiro, A. Lin, B. Liang, B. S. Williams, and D. L. Huffaker, “Surface Plasmon-Enhanced Nanopillar Photodetectors,” Nano Lett.11(12), 5279–5283 (2011).
[CrossRef] [PubMed]

Lin, A.

P. Senanayake, C.-H. Hung, J. Shapiro, A. Lin, B. Liang, B. S. Williams, and D. L. Huffaker, “Surface Plasmon-Enhanced Nanopillar Photodetectors,” Nano Lett.11(12), 5279–5283 (2011).
[CrossRef] [PubMed]

Lo, G.-Q.

F.-F. Ren, K.-W. Ang, J. Ye, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Split Bull’s Eye Shaped Aluminum Antenna for Plasmon-Enhanced Nanometer Scale Germanium Photodetector,” Nano Lett.11(3), 1289–1293 (2011).
[CrossRef] [PubMed]

Ly-Gagnon, D. S.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics2(4), 226–229 (2008).
[CrossRef]

Makita, K.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. Part 244, L364–L366 (2005).

Miller, D. A. B.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics2(4), 226–229 (2008).
[CrossRef]

Mokkapati, S.

S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D Appl. Phys.44(18), 185101 (2011).
[CrossRef]

Mori, T.

T. J. Kim, T. H. Ghong, Y. D. Kim, S. J. Kim, D. E. Aspnes, T. Mori, T. Yao, and B. H. Koo, “Dielectric functions of InxGa1-xAs alloys,” Phys. Rev. B68(11), 115323 (2003).
[CrossRef]

Odom, T. W.

H. Gao, W. Zhou, and T. W. Odom, “Plasmonic Crystals: A Platform to Catalog Resonances from Ultraviolet to Near-Infrared Wavelengths in a Plasmonic Library,” Adv. Funct. Mater.20(4), 529–539 (2010).
[CrossRef]

Ohashi, K.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. Part 244, L364–L366 (2005).

Okyay, A. K.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics2(4), 226–229 (2008).
[CrossRef]

Painter, O.

Pardo, F.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J.-L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98(19), 191109 (2011).
[CrossRef]

Park, J.-S.

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant Germanium Nanoantenna Photodetectors,” Nano Lett.10(4), 1229–1233 (2010).
[CrossRef] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater.8(8), 643–647 (2009).
[CrossRef] [PubMed]

Pelouard, J.-L.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J.-L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98(19), 191109 (2011).
[CrossRef]

Polman, A.

S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D Appl. Phys.44(18), 185101 (2011).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
[CrossRef]

Portier, B.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J.-L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98(19), 191109 (2011).
[CrossRef]

Reimer, M. E.

G. Bulgarini, M. E. Reimer, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Avalanche amplification of a single exciton in a semiconductor nanowire,” Nat. Photonics6(7), 455–458 (2012).
[CrossRef]

Ren, F.-F.

F.-F. Ren, K.-W. Ang, J. Ye, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Split Bull’s Eye Shaped Aluminum Antenna for Plasmon-Enhanced Nanometer Scale Germanium Photodetector,” Nano Lett.11(3), 1289–1293 (2011).
[CrossRef] [PubMed]

Rosenberg, J.

Saraswat, K. C.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics2(4), 226–229 (2008).
[CrossRef]

Schuller, J. A.

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater.8(8), 643–647 (2009).
[CrossRef] [PubMed]

Senanayake, P.

P. Senanayake, C.-H. Hung, J. Shapiro, A. Lin, B. Liang, B. S. Williams, and D. L. Huffaker, “Surface Plasmon-Enhanced Nanopillar Photodetectors,” Nano Lett.11(12), 5279–5283 (2011).
[CrossRef] [PubMed]

Shapiro, J.

P. Senanayake, C.-H. Hung, J. Shapiro, A. Lin, B. Liang, B. S. Williams, and D. L. Huffaker, “Surface Plasmon-Enhanced Nanopillar Photodetectors,” Nano Lett.11(12), 5279–5283 (2011).
[CrossRef] [PubMed]

Shenoi, R. V.

Tait, R. N.

Tang, L.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics2(4), 226–229 (2008).
[CrossRef]

Thio, T.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
[CrossRef]

White, J. S.

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater.8(8), 643–647 (2009).
[CrossRef] [PubMed]

Williams, B. S.

P. Senanayake, C.-H. Hung, J. Shapiro, A. Lin, B. Liang, B. S. Williams, and D. L. Huffaker, “Surface Plasmon-Enhanced Nanopillar Photodetectors,” Nano Lett.11(12), 5279–5283 (2011).
[CrossRef] [PubMed]

Wu, M. C.

Yao, T.

T. J. Kim, T. H. Ghong, Y. D. Kim, S. J. Kim, D. E. Aspnes, T. Mori, T. Yao, and B. H. Koo, “Dielectric functions of InxGa1-xAs alloys,” Phys. Rev. B68(11), 115323 (2003).
[CrossRef]

Ye, J.

F.-F. Ren, K.-W. Ang, J. Ye, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Split Bull’s Eye Shaped Aluminum Antenna for Plasmon-Enhanced Nanometer Scale Germanium Photodetector,” Nano Lett.11(3), 1289–1293 (2011).
[CrossRef] [PubMed]

Yu, K.

Yu, M.

F.-F. Ren, K.-W. Ang, J. Ye, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Split Bull’s Eye Shaped Aluminum Antenna for Plasmon-Enhanced Nanometer Scale Germanium Photodetector,” Nano Lett.11(3), 1289–1293 (2011).
[CrossRef] [PubMed]

Zhou, W.

H. Gao, W. Zhou, and T. W. Odom, “Plasmonic Crystals: A Platform to Catalog Resonances from Ultraviolet to Near-Infrared Wavelengths in a Plasmonic Library,” Adv. Funct. Mater.20(4), 529–539 (2010).
[CrossRef]

Zwiller, V.

G. Bulgarini, M. E. Reimer, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Avalanche amplification of a single exciton in a semiconductor nanowire,” Nat. Photonics6(7), 455–458 (2012).
[CrossRef]

Adv. Funct. Mater.

H. Gao, W. Zhou, and T. W. Odom, “Plasmonic Crystals: A Platform to Catalog Resonances from Ultraviolet to Near-Infrared Wavelengths in a Plasmonic Library,” Adv. Funct. Mater.20(4), 529–539 (2010).
[CrossRef]

Appl. Phys. Lett.

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008).
[CrossRef]

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J.-L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98(19), 191109 (2011).
[CrossRef]

J. Phys. D Appl. Phys.

S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D Appl. Phys.44(18), 185101 (2011).
[CrossRef]

Jpn. J. Appl. Phys. Part 2

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. Part 244, L364–L366 (2005).

Nano Lett.

F.-F. Ren, K.-W. Ang, J. Ye, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Split Bull’s Eye Shaped Aluminum Antenna for Plasmon-Enhanced Nanometer Scale Germanium Photodetector,” Nano Lett.11(3), 1289–1293 (2011).
[CrossRef] [PubMed]

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant Germanium Nanoantenna Photodetectors,” Nano Lett.10(4), 1229–1233 (2010).
[CrossRef] [PubMed]

P. Senanayake, C.-H. Hung, J. Shapiro, A. Lin, B. Liang, B. S. Williams, and D. L. Huffaker, “Surface Plasmon-Enhanced Nanopillar Photodetectors,” Nano Lett.11(12), 5279–5283 (2011).
[CrossRef] [PubMed]

Nat. Mater.

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater.8(8), 643–647 (2009).
[CrossRef] [PubMed]

Nat. Photonics

G. Bulgarini, M. E. Reimer, M. Hocevar, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Avalanche amplification of a single exciton in a semiconductor nanowire,” Nat. Photonics6(7), 455–458 (2012).
[CrossRef]

P. Fan, U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, “An invisible metal-semiconductor photodetector,” Nat. Photonics6(6), 380–385 (2012).
[CrossRef]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics2(4), 226–229 (2008).
[CrossRef]

Opt. Express

Phys. Rev. B

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B58(11), 6779–6782 (1998).
[CrossRef]

T. J. Kim, T. H. Ghong, Y. D. Kim, S. J. Kim, D. E. Aspnes, T. Mori, T. Yao, and B. H. Koo, “Dielectric functions of InxGa1-xAs alloys,” Phys. Rev. B68(11), 115323 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

a) Schematic of Nanopillar Optical Antenna (NOA). Contour plot of the Qabs as b) w is varied, and c) as h is varied.

Fig. 2
Fig. 2

a) Absorption enhancement due to the Localized Surface Plasmon (LSPR) supported by the metal cap b) Electric field intensity profile of LSPR mode at 1270 nm in x-z plane

Fig. 3
Fig. 3

a) Electric field intensity in the y-z plane of the LSPR mode at 1270 nm and the corresponding electric field in b) the z-direction Ez and c) y-direction Ey

Fig. 4
Fig. 4

a) The full-wave simulation of the optical absorption in the nanopillar array for P = 580 nm. Power absorbed in the x-z plane for b) the SPP mode and c) LSPR mode.

Fig. 5
Fig. 5

a) Measured angular photoresponse spectra of PENPD showing enhanced photocurrent due to both SPP-1,0 and LSPR modes. P = 580 nm w = 160 nm h = 320 nm b) Fitting of the SPP-BW and LSPR before and after overlap at 0 o and 30 o

Fig. 6
Fig. 6

a) Simulated photonic bandstructure of NP-PEPD with P = 580 nm showing the SPP-BW Gold-BCB modes and Gold-Air modes. b) the absorbed power in the nanopillar.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Q abs = NP 1 2 ω ε | E | 2 dV I source A NP
λ SPPB W i,j = 2π( ε d ε Au ε d + ε Au ) ( ( 2π P i ) 2 + ( k inplane ± 2π P j ) 2 ) 1 2

Metrics