Abstract

We demonstrate high-speed terahertz (THz) reflection three-dimensional (3D) imaging based on electronically controlled optical sampling (ECOPS). ECOPS enables scanning of an axial range of 9 mm in free space at 1 kHz. It takes 80 s to scan a transverse range of 100 mm × 100 mm along a zigzag trajectory that consists of 200 lines using translation stages. To show applicability of the imaging system to nondestructive evaluation, a THz reflection 3D image of an artificially made sample is obtained, which is made of glass fiber reinforced polymer composite material and has defects such as delamination and inclusion, and is compared with an ultrasonic reflection 3D image of the sample.

© 2012 OSA

Full Article  |  PDF Article
OSA Recommended Articles
High-speed frequency-domain terahertz coherence tomography

Ji Sang Yahng, Choon-Su Park, Hwi Don Lee, Chang-Seok Kim, and Dae-Su Yee
Opt. Express 24(2) 1053-1061 (2016)

High-speed terahertz reflection three-dimensional imaging using beam steering

Dae-Su Yee, Kyong Hwan Jin, Ji Sang Yahng, Ho-Soon Yang, Chi Yup Kim, and Jong Chul Ye
Opt. Express 23(4) 5027-5034 (2015)

T-ray tomography

Daniel M. Mittleman, Stefan Hunsche, Luc Boivin, and Martin C. Nuss
Opt. Lett. 22(12) 904-906 (1997)

References

  • View by:
  • |
  • |
  • |

  1. W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95(8), 1528–1558 (2007).
    [Crossref]
  2. C. Stoik, M. Bohn, and J. Blackshire, “Nondestructive evaluation of aircraft composites using reflective terahertz time domain spectroscopy,” NDT Int. 43(2), 106–115 (2010).
    [Crossref]
  3. H. Zhong, J. Xu, X. Xie, T. Yuan, R. Reightler, E. Madaras, and X.-C. Zhang, “Nondestructive defect identification with terahertz time-of-flight tomography,” IEEE Sens. J. 5(2), 203–208 (2005).
    [Crossref]
  4. Y. Morita, A. Dobroiu, K. Kawase, and C. Otani, “Terahertz technique for detection of microleaks in the seal of flexible plastic packages,” Opt. Eng. 44(1), 019001 (2005).
    [Crossref]
  5. A. C. Kak and M. Slaney, Principles of computerized tomographic imaging (IEEE Press, New York, 1988).
  6. B. Ferguson, S. Wang, D. Gray, D. Abbot, and X.-C. Zhang, “T-ray computed tomography,” Opt. Lett. 27(15), 1312–1314 (2002).
    [Crossref] [PubMed]
  7. N. Sunaguchi, Y. Sasaki, N. Maikusa, M. Kawai, T. Yuasa, and C. Otani, “Depth-resolving THz imaging with tomosynthesis,” Opt. Express 17(12), 9558–9570 (2009).
    [Crossref] [PubMed]
  8. E. Abraham, Y. Ohgi, M. A. Minami, M. Jewariya, M. Nagai, T. Araki, and T. Yasui, “Real-time line projection for fast terahertz spectral computed tomography,” Opt. Lett. 36(11), 2119–2121 (2011).
    [Crossref] [PubMed]
  9. D. M. Mittleman, S. Hunsche, L. Boivin, and M. C. Nuss, “T-ray tomography,” Opt. Lett. 22(12), 904–906 (1997).
    [Crossref] [PubMed]
  10. N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20(7), S293–S299 (2005).
    [Crossref]
  11. V. P. Wallace, E. Macpherson, J. A. Zeitler, and C. Reid, “Three-dimensional imaging of optically opaque materials using nonionizing terahertz radiation,” J. Opt. Soc. Am. A 25(12), 3120–3133 (2008).
    [Crossref] [PubMed]
  12. I. N. Duling, J. White, and S. Williamson, “High speed imaging with time domain terahertz,” in 35th International Conference on Infrared Millimeter and Terahertz Waves (IRMMW-THz) (2010).
  13. B. Schulkin and D. Brigada, J. St. James, T. Tongue, and X.-C. Zhang, “Progress toward handheld THz sensing,” in 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) (2011).
  14. T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, “Optical sampling by laser cavity tuning,” Opt. Express 18(2), 1613–1617 (2010).
    [Crossref] [PubMed]
  15. T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” Appl. Phys. Lett. 87(6), 061101 (2005).
    [Crossref]
  16. A. Bartels, A. Thoma, C. Janke, T. Dekorsy, A. Dreyhaupt, S. Winnerl, and M. Helm, “High-resolution THz spectrometer with kHz scan rates,” Opt. Express 14(1), 430–437 (2006).
    [Crossref] [PubMed]
  17. Y. Kim and D.-S. Yee, “High-speed terahertz time-domain spectroscopy based on electronically controlled optical sampling,” Opt. Lett. 35(22), 3715–3717 (2010).
    [Crossref] [PubMed]
  18. D. Stehr, C. M. Morris, C. Schmidt, and M. S. Sherwin, “High-performance fiber-laser-based terahertz spectrometer,” Opt. Lett. 35(22), 3799–3801 (2010).
    [Crossref] [PubMed]
  19. J. Li and A. D. Heap, A review of spatial interpolation methods for environmental scientists (Geoscience, 2008).
  20. F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millim. Waves 27(4), 547–556 (2007).
    [Crossref]
  21. L. S. Wilson and D. E. Robinson, “Ultrasonic measurement of small displacements and deformations of tissue,” Ultrason. Imaging 4(1), 71–82 (1982).
    [Crossref] [PubMed]
  22. C. N. Liu, M. Fatemi, and R. C. Waag, “Digital processing for improvement of ultrasonic abdominal images,” IEEE Trans. Med. Imaging 2(2), 66–75 (1983).
    [Crossref] [PubMed]
  23. D. P. Dandekar, C. A. Hall, L. C. Chhabildas, and W. D. Reinhart, “Shock response of a glass-fiber-reinforced polymer composite,” Compos. Struct. 61(1-2), 51–59 (2003).
    [Crossref]
  24. C. Winnewisser, F. Lewen, and H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys., A Mater. Sci. Process. 66(6), 593–598 (1998).
    [Crossref]
  25. L. W. Schmerr, Fundamentals of ultrasonic nondestructive evaluation: a modeling approach (Springer, 1998).

2011 (1)

2010 (4)

2009 (1)

2008 (1)

2007 (2)

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millim. Waves 27(4), 547–556 (2007).
[Crossref]

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95(8), 1528–1558 (2007).
[Crossref]

2006 (1)

2005 (4)

H. Zhong, J. Xu, X. Xie, T. Yuan, R. Reightler, E. Madaras, and X.-C. Zhang, “Nondestructive defect identification with terahertz time-of-flight tomography,” IEEE Sens. J. 5(2), 203–208 (2005).
[Crossref]

Y. Morita, A. Dobroiu, K. Kawase, and C. Otani, “Terahertz technique for detection of microleaks in the seal of flexible plastic packages,” Opt. Eng. 44(1), 019001 (2005).
[Crossref]

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20(7), S293–S299 (2005).
[Crossref]

T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” Appl. Phys. Lett. 87(6), 061101 (2005).
[Crossref]

2003 (1)

D. P. Dandekar, C. A. Hall, L. C. Chhabildas, and W. D. Reinhart, “Shock response of a glass-fiber-reinforced polymer composite,” Compos. Struct. 61(1-2), 51–59 (2003).
[Crossref]

2002 (1)

1998 (1)

C. Winnewisser, F. Lewen, and H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys., A Mater. Sci. Process. 66(6), 593–598 (1998).
[Crossref]

1997 (1)

1983 (1)

C. N. Liu, M. Fatemi, and R. C. Waag, “Digital processing for improvement of ultrasonic abdominal images,” IEEE Trans. Med. Imaging 2(2), 66–75 (1983).
[Crossref] [PubMed]

1982 (1)

L. S. Wilson and D. E. Robinson, “Ultrasonic measurement of small displacements and deformations of tissue,” Ultrason. Imaging 4(1), 71–82 (1982).
[Crossref] [PubMed]

Abbot, D.

Abbott, D.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95(8), 1528–1558 (2007).
[Crossref]

Abraham, E.

Araki, T.

E. Abraham, Y. Ohgi, M. A. Minami, M. Jewariya, M. Nagai, T. Araki, and T. Yasui, “Real-time line projection for fast terahertz spectral computed tomography,” Opt. Lett. 36(11), 2119–2121 (2011).
[Crossref] [PubMed]

T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” Appl. Phys. Lett. 87(6), 061101 (2005).
[Crossref]

Atakaramians, S.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95(8), 1528–1558 (2007).
[Crossref]

Balakrishnan, J.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95(8), 1528–1558 (2007).
[Crossref]

Bartels, A.

Blackshire, J.

C. Stoik, M. Bohn, and J. Blackshire, “Nondestructive evaluation of aircraft composites using reflective terahertz time domain spectroscopy,” NDT Int. 43(2), 106–115 (2010).
[Crossref]

Bohn, M.

C. Stoik, M. Bohn, and J. Blackshire, “Nondestructive evaluation of aircraft composites using reflective terahertz time domain spectroscopy,” NDT Int. 43(2), 106–115 (2010).
[Crossref]

Boivin, L.

Chhabildas, L. C.

D. P. Dandekar, C. A. Hall, L. C. Chhabildas, and W. D. Reinhart, “Shock response of a glass-fiber-reinforced polymer composite,” Compos. Struct. 61(1-2), 51–59 (2003).
[Crossref]

Dandekar, D. P.

D. P. Dandekar, C. A. Hall, L. C. Chhabildas, and W. D. Reinhart, “Shock response of a glass-fiber-reinforced polymer composite,” Compos. Struct. 61(1-2), 51–59 (2003).
[Crossref]

Dekorsy, T.

Dobroiu, A.

Y. Morita, A. Dobroiu, K. Kawase, and C. Otani, “Terahertz technique for detection of microleaks in the seal of flexible plastic packages,” Opt. Eng. 44(1), 019001 (2005).
[Crossref]

Dreyhaupt, A.

Ewert, U.

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millim. Waves 27(4), 547–556 (2007).
[Crossref]

Fatemi, M.

C. N. Liu, M. Fatemi, and R. C. Waag, “Digital processing for improvement of ultrasonic abdominal images,” IEEE Trans. Med. Imaging 2(2), 66–75 (1983).
[Crossref] [PubMed]

Ferguson, B.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95(8), 1528–1558 (2007).
[Crossref]

B. Ferguson, S. Wang, D. Gray, D. Abbot, and X.-C. Zhang, “T-ray computed tomography,” Opt. Lett. 27(15), 1312–1314 (2002).
[Crossref] [PubMed]

Fischer, B. M.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95(8), 1528–1558 (2007).
[Crossref]

Gray, D.

Hall, C. A.

D. P. Dandekar, C. A. Hall, L. C. Chhabildas, and W. D. Reinhart, “Shock response of a glass-fiber-reinforced polymer composite,” Compos. Struct. 61(1-2), 51–59 (2003).
[Crossref]

Helm, H.

C. Winnewisser, F. Lewen, and H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys., A Mater. Sci. Process. 66(6), 593–598 (1998).
[Crossref]

Helm, M.

Hochrein, T.

Holzwarth, R.

Hunsche, S.

Hwang, J.-S.

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20(7), S293–S299 (2005).
[Crossref]

Janke, C.

Jewariya, M.

Jones, I.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95(8), 1528–1558 (2007).
[Crossref]

Karpowicz, N.

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20(7), S293–S299 (2005).
[Crossref]

Kawai, M.

Kawase, K.

Y. Morita, A. Dobroiu, K. Kawase, and C. Otani, “Terahertz technique for detection of microleaks in the seal of flexible plastic packages,” Opt. Eng. 44(1), 019001 (2005).
[Crossref]

Khare, S.

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millim. Waves 27(4), 547–556 (2007).
[Crossref]

Kim, Y.

Koch, M.

T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, “Optical sampling by laser cavity tuning,” Opt. Express 18(2), 1613–1617 (2010).
[Crossref] [PubMed]

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millim. Waves 27(4), 547–556 (2007).
[Crossref]

Krumbholz, N.

Lewen, F.

C. Winnewisser, F. Lewen, and H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys., A Mater. Sci. Process. 66(6), 593–598 (1998).
[Crossref]

Lin, H.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95(8), 1528–1558 (2007).
[Crossref]

Lin, K.-I.

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20(7), S293–S299 (2005).
[Crossref]

Liu, C. N.

C. N. Liu, M. Fatemi, and R. C. Waag, “Digital processing for improvement of ultrasonic abdominal images,” IEEE Trans. Med. Imaging 2(2), 66–75 (1983).
[Crossref] [PubMed]

Macpherson, E.

Madaras, E.

H. Zhong, J. Xu, X. Xie, T. Yuan, R. Reightler, E. Madaras, and X.-C. Zhang, “Nondestructive defect identification with terahertz time-of-flight tomography,” IEEE Sens. J. 5(2), 203–208 (2005).
[Crossref]

Maikusa, N.

Mei, M.

Mickan, S. P.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95(8), 1528–1558 (2007).
[Crossref]

Minami, M. A.

Mittleman, D. M.

Moneke, M.

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millim. Waves 27(4), 547–556 (2007).
[Crossref]

Morita, Y.

Y. Morita, A. Dobroiu, K. Kawase, and C. Otani, “Terahertz technique for detection of microleaks in the seal of flexible plastic packages,” Opt. Eng. 44(1), 019001 (2005).
[Crossref]

Morris, C. M.

Nagai, M.

Ng, B. W.-H.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95(8), 1528–1558 (2007).
[Crossref]

Nuss, M. C.

Ohgi, Y.

Otani, C.

N. Sunaguchi, Y. Sasaki, N. Maikusa, M. Kawai, T. Yuasa, and C. Otani, “Depth-resolving THz imaging with tomosynthesis,” Opt. Express 17(12), 9558–9570 (2009).
[Crossref] [PubMed]

Y. Morita, A. Dobroiu, K. Kawase, and C. Otani, “Terahertz technique for detection of microleaks in the seal of flexible plastic packages,” Opt. Eng. 44(1), 019001 (2005).
[Crossref]

Png, G. M.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95(8), 1528–1558 (2007).
[Crossref]

Reid, C.

Reightler, R.

H. Zhong, J. Xu, X. Xie, T. Yuan, R. Reightler, E. Madaras, and X.-C. Zhang, “Nondestructive defect identification with terahertz time-of-flight tomography,” IEEE Sens. J. 5(2), 203–208 (2005).
[Crossref]

Reinhart, W. D.

D. P. Dandekar, C. A. Hall, L. C. Chhabildas, and W. D. Reinhart, “Shock response of a glass-fiber-reinforced polymer composite,” Compos. Struct. 61(1-2), 51–59 (2003).
[Crossref]

Richter, H.

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millim. Waves 27(4), 547–556 (2007).
[Crossref]

Robinson, D. E.

L. S. Wilson and D. E. Robinson, “Ultrasonic measurement of small displacements and deformations of tissue,” Ultrason. Imaging 4(1), 71–82 (1982).
[Crossref] [PubMed]

Rutz, F.

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millim. Waves 27(4), 547–556 (2007).
[Crossref]

Saneyoshi, E.

T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” Appl. Phys. Lett. 87(6), 061101 (2005).
[Crossref]

Sasaki, Y.

Schmidt, C.

Sherwin, M. S.

Stehr, D.

Stoik, C.

C. Stoik, M. Bohn, and J. Blackshire, “Nondestructive evaluation of aircraft composites using reflective terahertz time domain spectroscopy,” NDT Int. 43(2), 106–115 (2010).
[Crossref]

Sunaguchi, N.

Thoma, A.

Ung, B.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95(8), 1528–1558 (2007).
[Crossref]

Waag, R. C.

C. N. Liu, M. Fatemi, and R. C. Waag, “Digital processing for improvement of ultrasonic abdominal images,” IEEE Trans. Med. Imaging 2(2), 66–75 (1983).
[Crossref] [PubMed]

Wallace, V. P.

Wang, S.

Wilk, R.

Wilson, L. S.

L. S. Wilson and D. E. Robinson, “Ultrasonic measurement of small displacements and deformations of tissue,” Ultrason. Imaging 4(1), 71–82 (1982).
[Crossref] [PubMed]

Winnerl, S.

Winnewisser, C.

C. Winnewisser, F. Lewen, and H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys., A Mater. Sci. Process. 66(6), 593–598 (1998).
[Crossref]

Withayachumnankul, W.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95(8), 1528–1558 (2007).
[Crossref]

Xie, X.

H. Zhong, J. Xu, X. Xie, T. Yuan, R. Reightler, E. Madaras, and X.-C. Zhang, “Nondestructive defect identification with terahertz time-of-flight tomography,” IEEE Sens. J. 5(2), 203–208 (2005).
[Crossref]

Xu, J.

H. Zhong, J. Xu, X. Xie, T. Yuan, R. Reightler, E. Madaras, and X.-C. Zhang, “Nondestructive defect identification with terahertz time-of-flight tomography,” IEEE Sens. J. 5(2), 203–208 (2005).
[Crossref]

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20(7), S293–S299 (2005).
[Crossref]

Yasui, T.

E. Abraham, Y. Ohgi, M. A. Minami, M. Jewariya, M. Nagai, T. Araki, and T. Yasui, “Real-time line projection for fast terahertz spectral computed tomography,” Opt. Lett. 36(11), 2119–2121 (2011).
[Crossref] [PubMed]

T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” Appl. Phys. Lett. 87(6), 061101 (2005).
[Crossref]

Yee, D.-S.

Yin, X.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95(8), 1528–1558 (2007).
[Crossref]

Yuan, T.

H. Zhong, J. Xu, X. Xie, T. Yuan, R. Reightler, E. Madaras, and X.-C. Zhang, “Nondestructive defect identification with terahertz time-of-flight tomography,” IEEE Sens. J. 5(2), 203–208 (2005).
[Crossref]

Yuasa, T.

Zeitler, J. A.

Zhang, X.-C.

H. Zhong, J. Xu, X. Xie, T. Yuan, R. Reightler, E. Madaras, and X.-C. Zhang, “Nondestructive defect identification with terahertz time-of-flight tomography,” IEEE Sens. J. 5(2), 203–208 (2005).
[Crossref]

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20(7), S293–S299 (2005).
[Crossref]

B. Ferguson, S. Wang, D. Gray, D. Abbot, and X.-C. Zhang, “T-ray computed tomography,” Opt. Lett. 27(15), 1312–1314 (2002).
[Crossref] [PubMed]

Zhong, H.

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20(7), S293–S299 (2005).
[Crossref]

H. Zhong, J. Xu, X. Xie, T. Yuan, R. Reightler, E. Madaras, and X.-C. Zhang, “Nondestructive defect identification with terahertz time-of-flight tomography,” IEEE Sens. J. 5(2), 203–208 (2005).
[Crossref]

Appl. Phys. Lett. (1)

T. Yasui, E. Saneyoshi, and T. Araki, “Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition,” Appl. Phys. Lett. 87(6), 061101 (2005).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

C. Winnewisser, F. Lewen, and H. Helm, “Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy,” Appl. Phys., A Mater. Sci. Process. 66(6), 593–598 (1998).
[Crossref]

Compos. Struct. (1)

D. P. Dandekar, C. A. Hall, L. C. Chhabildas, and W. D. Reinhart, “Shock response of a glass-fiber-reinforced polymer composite,” Compos. Struct. 61(1-2), 51–59 (2003).
[Crossref]

IEEE Sens. J. (1)

H. Zhong, J. Xu, X. Xie, T. Yuan, R. Reightler, E. Madaras, and X.-C. Zhang, “Nondestructive defect identification with terahertz time-of-flight tomography,” IEEE Sens. J. 5(2), 203–208 (2005).
[Crossref]

IEEE Trans. Med. Imaging (1)

C. N. Liu, M. Fatemi, and R. C. Waag, “Digital processing for improvement of ultrasonic abdominal images,” IEEE Trans. Med. Imaging 2(2), 66–75 (1983).
[Crossref] [PubMed]

Int. J. Infrared Millim. Waves (1)

F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, “Terahertz quality control of polymeric products,” Int. J. Infrared Millim. Waves 27(4), 547–556 (2007).
[Crossref]

J. Opt. Soc. Am. A (1)

NDT Int. (1)

C. Stoik, M. Bohn, and J. Blackshire, “Nondestructive evaluation of aircraft composites using reflective terahertz time domain spectroscopy,” NDT Int. 43(2), 106–115 (2010).
[Crossref]

Opt. Eng. (1)

Y. Morita, A. Dobroiu, K. Kawase, and C. Otani, “Terahertz technique for detection of microleaks in the seal of flexible plastic packages,” Opt. Eng. 44(1), 019001 (2005).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Proc. IEEE (1)

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95(8), 1528–1558 (2007).
[Crossref]

Semicond. Sci. Technol. (1)

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20(7), S293–S299 (2005).
[Crossref]

Ultrason. Imaging (1)

L. S. Wilson and D. E. Robinson, “Ultrasonic measurement of small displacements and deformations of tissue,” Ultrason. Imaging 4(1), 71–82 (1982).
[Crossref] [PubMed]

Other (5)

L. W. Schmerr, Fundamentals of ultrasonic nondestructive evaluation: a modeling approach (Springer, 1998).

A. C. Kak and M. Slaney, Principles of computerized tomographic imaging (IEEE Press, New York, 1988).

I. N. Duling, J. White, and S. Williamson, “High speed imaging with time domain terahertz,” in 35th International Conference on Infrared Millimeter and Terahertz Waves (IRMMW-THz) (2010).

B. Schulkin and D. Brigada, J. St. James, T. Tongue, and X.-C. Zhang, “Progress toward handheld THz sensing,” in 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) (2011).

J. Li and A. D. Heap, A review of spatial interpolation methods for environmental scientists (Geoscience, 2008).

Supplementary Material (4)

» Media 1: MOV (1799 KB)     
» Media 2: MOV (1781 KB)     
» Media 3: MOV (1782 KB)     
» Media 4: MOV (1780 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram for our fast THz reflection 3D imaging system. EM: THz emitter, PS: power supply, PM: off-axis parabolic mirror, BS: silicon beam splitter, DT: THz detector, AMP: current amplifier, NC: nonlinear crystal, PD: photodetector, DPG: digital delay/pulse generator, ADC: analog-to-digital converter, PC: personal computer.

Fig. 2
Fig. 2

Examples of the cross-correlation signal, TTL signal, and THz time-domain data. The blue line shows a cross-correlation signal that has two pulses within a 1 ms period. The digital delay/pulse generator outputs a 1 kHz TTL signal (red line), triggered by only the leading cross-correlation pulses. THz time-domain data (black line) are acquired by the digitizer triggered by the TTL signal. The parts of the THz time-domain data indicated by yellow color are used as A-scan data.

Fig. 3
Fig. 3

(a) 2D and (b) 3D images of a floppy disk (Media 1), acquired using the THz imaging system.

Fig. 4
Fig. 4

Schematic design for the GFRP sample. The blue squares represent Teflon inclusions and the red and green rectangles delaminations. The depths where the defects lie are different, as indicated in the design. The unit of number is millimeter. The black-circled numbers indicate the regions where the A-scan data in Fig. 6 were acquired.

Fig. 5
Fig. 5

(a) 3D THz image of the GFRP sample acquired using the imaging system (Media 2). (b) and (c) 3D ultrasonic images of the GFRP sample obtained from ultrasonic reflection tomography. The ultrasonic images in (b) and (c) were obtained using the envelope function (Media 3) and Wiener deconvolution (Media 4) methods to process the A-scan data, respectively.

Fig. 6
Fig. 6

(a) THz A-scan data (red line) acquired at the regions indicated by black-circled numbers in Fig. 4 and their simulation results (black line). (b) Ultrasonic A-scan data (red line) acquired at the same regions as in (a) and A-scan data obtained using the envelope function (blue line) and Wiener deconvolution (black line) methods. The reflected pulses from the back surface (1), the upper delamination (2), the lower delamination (3), and the inclusion (4) are indicated by arrows in (b). The vertical scale is normalized to the peak amplitude of the reflected pulse from the front surface.

Fig. 7
Fig. 7

The solid lines show the amplitude spectra of the reflected THz pulses from the front surface (black line), the upper (red line) and lower (green line) delaminations, and the inclusion (blue line). Also, the calculated FP reflection coefficients of the delamination and inclusion are indicated by the purple and brown dashed lines, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

r FP (ω)=| r+ r( 1 r 2 )exp(iδ) 1 r 2 exp(iδ) |= 2 r 2 ( 1cosδ ) 12 r 2 cosδ+ r 4 ( δ= ω c 2nd ),

Metrics