Abstract

By taking multiple measurements of transmittance before and after laser conditioning in DKDP crystals, we found that the transmittance was increased by 0.05%~0.4% through laser conditioning with maximum fluence 6J/cm2, and then decreased by about 0.1% after subsequent higher fluence conditioning. Variation of scattering intensity and absorber density, the two major factors leading to transmittance change, was monitored by on-line and off-line detection systems. The transmittance decrease was attributed to laser damage scattering, and the increase was derived from reduction of absorbers. Moreover, the absorption was reduced further at higher conditioning fluence. Based on the above analysis, the heating process during laser exposure was analyzed in the time domain, and a local rapid-rising and slow-cooling process was confirmed to reduce defect concentration, which can improve laser damage resistance and increase the transmittance.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world's most power laser,” Int. Mater. Rev.47, 113–152 (2002).
    [CrossRef]
  2. C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett.91(12), 127402 (2003).
    [CrossRef] [PubMed]
  3. M. D. Feit and A. M. Rubenchik, “Implications of nanoabsorber initiators for damage probability curves, pulselength scaling and laser conditioning,” Proc. SPIE5273, 74–82 (2004).
    [CrossRef]
  4. C. H. Chan, “Effective absorption for thermal blooming due to aerosols,” Appl. Phys. Lett.26(11), 628–630 (1975).
    [CrossRef]
  5. G. Duchateau, “Simple models for laser-induced damage and conditioning of potassium dihydrogen phosphate crystals by nanosecond pulses,” Opt. Express17(13), 10434–10456 (2009).
    [CrossRef] [PubMed]
  6. R. A. Negres, P. DeMange, and S. G. Demos, “Investigation of laser annealing parameters for optimal laser-damage performance in deuterated potassium dihydrogen phosphate,” Opt. Lett.30(20), 2766–2768 (2005).
    [CrossRef] [PubMed]
  7. C. Marshall, S. Payne, M. Henesian, J. Speth, and H. Powell, “Ultraviolet-induced transient absorption in potassium dihydrogen phosphate and its influence on frequency conversion,” J. Opt. Soc. Am. B11(5), 774–785 (1994).
    [CrossRef]
  8. G. Duchateau and A. Dyan, “Coupling statistics and heat transfer to study laser induced crystal damage by nanosecond pulses,” Opt. Express15(8), 4557–4576 (2007).
    [CrossRef] [PubMed]
  9. K. E. Montgomery and F. P. Milanovich, “High-laser-damage-threshold potassium dihydrogen phosphate crystals,” J. Appl. Phys.68(8), 3979–3982 (1990).
    [CrossRef]
  10. Y. Nishida, A. Yokotani, T. Sasaki, K. Yoshida, T. Yamanaka, and C. Yamanaka, “Improvement of the bulk laser damage threshold of potassium dihydrogen phosphate crystals by re-ducing the organic impurities in growth solution,” Appl. Phys. Lett.52(6), 420–421 (1988).
    [CrossRef]
  11. B. Dam, P. Bennema, and W. J. P. van Enckevort, “The mechanism of tapering on KDP-type crystals,” J. Cryst. Growth74(1), 118–128 (1986).
    [CrossRef]
  12. S. Setzler, K. Stevens, L. Halliburton, M. Yan, N. Zaitseva, and J. DeYoreo, “Hydrogen atoms in KH2PO4 crystals,” Phys. Rev. B57(5), 2643–2646 (1998).
    [CrossRef]
  13. C. S. Liu, N. Kioussis, S. G. Demos, and H. B. Radousky, “Electron- or Hole-Assisted Reactions of H Defects in Hydrogen-Bonded KDP,” Phys. Rev. Lett.91(1), 015505 (2003).
    [CrossRef] [PubMed]
  14. C. S. Liu, Q. Zhang, N. Kioussis, S. Demos, and H. Radousky, “Electronic structure calculations of intrinsic and extrinsic hydrogen point defects in KH2PO4,” Phys. Rev. B68(22), 224107 (2003).
    [CrossRef]
  15. A. K. Burnham, M. Runkel, M. D. Feit, A. M. Rubenchik, R. L. Floyd, T. A. Land, W. J. Siekhaus, and R. A. Hawley-Fedder, “Laser-induced damage in deuterated potassium dihydrogen phosphate,” Appl. Opt.42(27), 5483–5495 (2003).
    [CrossRef] [PubMed]
  16. J. J. Adams, “Results of sub-nanosecond laser-conditionining of KD2PO4 crystals,” Proc. SPIE6403, 64031M (2007).
  17. R. A. Negres, P. DeMange, and S. G. Demos, “Investigation of laser annealing parameters for optimal laser-damage performance in deuterated potassium dihydrogen phosphate,” Opt. Lett.30(20), 2766–2768 (2005).
    [CrossRef] [PubMed]
  18. M. Chirila, N. Garces, L. Halliburton, S. Demos, T. Land, and H. Radousky, “Production and thermal decay of radiation-induced point defects in KD2PO4 crystals,” J. Appl. Phys.94(10), 6456–6462 (2003).
    [CrossRef]
  19. M. Runkel, A. K. Burnham, D. Milam, W. Sell, M. Feit, and A. Rubenchik, “The results of pulse scaling experiments on rapid growth DKDP triplers using the optical sciences laser at 351nm,” Proc. SPIE4347, 359–372 (2000).
  20. R. Sharp and M. J. Runkel, “Automated damage onset analysis techniques applied to KDP damage and Zeus small area damage test facility,” Proc. SPIE3902, 361–368 (2000).
    [CrossRef]
  21. J. E. Wolfe and S. E. Schrauth, “Automated laser damage test system with real-time damage event imaging and detection,” Proc. SPIE6403, 640328 (2007).
  22. J. S. Pan, J. M. Tong, and M. B. Tian, Fundamentals of Materials Science, (Qinghua University Press, 1998).
  23. J. Q. Chen, M. X. Chen, and J. S. Zhao, Crystal defects, (Zhejiang University Press, 1992).
  24. C. S. Liu, C. J. Hou, N. Kioussis, S. G. Demos, and H. B. Radousky, “Electronic structure calculations of an oxygen vacancy in KH2PO4,” Phys. Rev. B72(13), 134110 (2005).
    [CrossRef]
  25. H. S. Carslaw and J. C. Jeager, Conduction of Heat in Solids, 2nd edition (Clarendon, 1959).
  26. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett.92(8), 087401 (2004).
    [CrossRef] [PubMed]
  27. A. Dyan, M. Pommies, G. Duchateau, F. Enguehard, S. Lallich, B. Bertussi, D. Damiani, H. Piombini, and H. Mathis, “Revisited thermal approach to model laser-induced damage and conditioning process in KH2PO4 and D2xKH2 (1-x) PO4 crystals,” Proc. SPIE6403, 640307 (2007).

2009 (1)

2007 (4)

G. Duchateau and A. Dyan, “Coupling statistics and heat transfer to study laser induced crystal damage by nanosecond pulses,” Opt. Express15(8), 4557–4576 (2007).
[CrossRef] [PubMed]

J. J. Adams, “Results of sub-nanosecond laser-conditionining of KD2PO4 crystals,” Proc. SPIE6403, 64031M (2007).

J. E. Wolfe and S. E. Schrauth, “Automated laser damage test system with real-time damage event imaging and detection,” Proc. SPIE6403, 640328 (2007).

A. Dyan, M. Pommies, G. Duchateau, F. Enguehard, S. Lallich, B. Bertussi, D. Damiani, H. Piombini, and H. Mathis, “Revisited thermal approach to model laser-induced damage and conditioning process in KH2PO4 and D2xKH2 (1-x) PO4 crystals,” Proc. SPIE6403, 640307 (2007).

2005 (3)

2004 (2)

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett.92(8), 087401 (2004).
[CrossRef] [PubMed]

M. D. Feit and A. M. Rubenchik, “Implications of nanoabsorber initiators for damage probability curves, pulselength scaling and laser conditioning,” Proc. SPIE5273, 74–82 (2004).
[CrossRef]

2003 (5)

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett.91(12), 127402 (2003).
[CrossRef] [PubMed]

C. S. Liu, N. Kioussis, S. G. Demos, and H. B. Radousky, “Electron- or Hole-Assisted Reactions of H Defects in Hydrogen-Bonded KDP,” Phys. Rev. Lett.91(1), 015505 (2003).
[CrossRef] [PubMed]

C. S. Liu, Q. Zhang, N. Kioussis, S. Demos, and H. Radousky, “Electronic structure calculations of intrinsic and extrinsic hydrogen point defects in KH2PO4,” Phys. Rev. B68(22), 224107 (2003).
[CrossRef]

M. Chirila, N. Garces, L. Halliburton, S. Demos, T. Land, and H. Radousky, “Production and thermal decay of radiation-induced point defects in KD2PO4 crystals,” J. Appl. Phys.94(10), 6456–6462 (2003).
[CrossRef]

A. K. Burnham, M. Runkel, M. D. Feit, A. M. Rubenchik, R. L. Floyd, T. A. Land, W. J. Siekhaus, and R. A. Hawley-Fedder, “Laser-induced damage in deuterated potassium dihydrogen phosphate,” Appl. Opt.42(27), 5483–5495 (2003).
[CrossRef] [PubMed]

2002 (1)

J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world's most power laser,” Int. Mater. Rev.47, 113–152 (2002).
[CrossRef]

2000 (2)

M. Runkel, A. K. Burnham, D. Milam, W. Sell, M. Feit, and A. Rubenchik, “The results of pulse scaling experiments on rapid growth DKDP triplers using the optical sciences laser at 351nm,” Proc. SPIE4347, 359–372 (2000).

R. Sharp and M. J. Runkel, “Automated damage onset analysis techniques applied to KDP damage and Zeus small area damage test facility,” Proc. SPIE3902, 361–368 (2000).
[CrossRef]

1998 (1)

S. Setzler, K. Stevens, L. Halliburton, M. Yan, N. Zaitseva, and J. DeYoreo, “Hydrogen atoms in KH2PO4 crystals,” Phys. Rev. B57(5), 2643–2646 (1998).
[CrossRef]

1994 (1)

1990 (1)

K. E. Montgomery and F. P. Milanovich, “High-laser-damage-threshold potassium dihydrogen phosphate crystals,” J. Appl. Phys.68(8), 3979–3982 (1990).
[CrossRef]

1988 (1)

Y. Nishida, A. Yokotani, T. Sasaki, K. Yoshida, T. Yamanaka, and C. Yamanaka, “Improvement of the bulk laser damage threshold of potassium dihydrogen phosphate crystals by re-ducing the organic impurities in growth solution,” Appl. Phys. Lett.52(6), 420–421 (1988).
[CrossRef]

1986 (1)

B. Dam, P. Bennema, and W. J. P. van Enckevort, “The mechanism of tapering on KDP-type crystals,” J. Cryst. Growth74(1), 118–128 (1986).
[CrossRef]

1975 (1)

C. H. Chan, “Effective absorption for thermal blooming due to aerosols,” Appl. Phys. Lett.26(11), 628–630 (1975).
[CrossRef]

Adams, J. J.

J. J. Adams, “Results of sub-nanosecond laser-conditionining of KD2PO4 crystals,” Proc. SPIE6403, 64031M (2007).

Bennema, P.

B. Dam, P. Bennema, and W. J. P. van Enckevort, “The mechanism of tapering on KDP-type crystals,” J. Cryst. Growth74(1), 118–128 (1986).
[CrossRef]

Bertussi, B.

A. Dyan, M. Pommies, G. Duchateau, F. Enguehard, S. Lallich, B. Bertussi, D. Damiani, H. Piombini, and H. Mathis, “Revisited thermal approach to model laser-induced damage and conditioning process in KH2PO4 and D2xKH2 (1-x) PO4 crystals,” Proc. SPIE6403, 640307 (2007).

Burnham, A. K.

A. K. Burnham, M. Runkel, M. D. Feit, A. M. Rubenchik, R. L. Floyd, T. A. Land, W. J. Siekhaus, and R. A. Hawley-Fedder, “Laser-induced damage in deuterated potassium dihydrogen phosphate,” Appl. Opt.42(27), 5483–5495 (2003).
[CrossRef] [PubMed]

J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world's most power laser,” Int. Mater. Rev.47, 113–152 (2002).
[CrossRef]

M. Runkel, A. K. Burnham, D. Milam, W. Sell, M. Feit, and A. Rubenchik, “The results of pulse scaling experiments on rapid growth DKDP triplers using the optical sciences laser at 351nm,” Proc. SPIE4347, 359–372 (2000).

Carr, C. W.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett.92(8), 087401 (2004).
[CrossRef] [PubMed]

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett.91(12), 127402 (2003).
[CrossRef] [PubMed]

Chan, C. H.

C. H. Chan, “Effective absorption for thermal blooming due to aerosols,” Appl. Phys. Lett.26(11), 628–630 (1975).
[CrossRef]

Chirila, M.

M. Chirila, N. Garces, L. Halliburton, S. Demos, T. Land, and H. Radousky, “Production and thermal decay of radiation-induced point defects in KD2PO4 crystals,” J. Appl. Phys.94(10), 6456–6462 (2003).
[CrossRef]

Dam, B.

B. Dam, P. Bennema, and W. J. P. van Enckevort, “The mechanism of tapering on KDP-type crystals,” J. Cryst. Growth74(1), 118–128 (1986).
[CrossRef]

Damiani, D.

A. Dyan, M. Pommies, G. Duchateau, F. Enguehard, S. Lallich, B. Bertussi, D. Damiani, H. Piombini, and H. Mathis, “Revisited thermal approach to model laser-induced damage and conditioning process in KH2PO4 and D2xKH2 (1-x) PO4 crystals,” Proc. SPIE6403, 640307 (2007).

De Yoreo, J. J.

J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world's most power laser,” Int. Mater. Rev.47, 113–152 (2002).
[CrossRef]

DeMange, P.

Demos, S.

C. S. Liu, Q. Zhang, N. Kioussis, S. Demos, and H. Radousky, “Electronic structure calculations of intrinsic and extrinsic hydrogen point defects in KH2PO4,” Phys. Rev. B68(22), 224107 (2003).
[CrossRef]

M. Chirila, N. Garces, L. Halliburton, S. Demos, T. Land, and H. Radousky, “Production and thermal decay of radiation-induced point defects in KD2PO4 crystals,” J. Appl. Phys.94(10), 6456–6462 (2003).
[CrossRef]

Demos, S. G.

R. A. Negres, P. DeMange, and S. G. Demos, “Investigation of laser annealing parameters for optimal laser-damage performance in deuterated potassium dihydrogen phosphate,” Opt. Lett.30(20), 2766–2768 (2005).
[CrossRef] [PubMed]

C. S. Liu, C. J. Hou, N. Kioussis, S. G. Demos, and H. B. Radousky, “Electronic structure calculations of an oxygen vacancy in KH2PO4,” Phys. Rev. B72(13), 134110 (2005).
[CrossRef]

R. A. Negres, P. DeMange, and S. G. Demos, “Investigation of laser annealing parameters for optimal laser-damage performance in deuterated potassium dihydrogen phosphate,” Opt. Lett.30(20), 2766–2768 (2005).
[CrossRef] [PubMed]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett.92(8), 087401 (2004).
[CrossRef] [PubMed]

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett.91(12), 127402 (2003).
[CrossRef] [PubMed]

C. S. Liu, N. Kioussis, S. G. Demos, and H. B. Radousky, “Electron- or Hole-Assisted Reactions of H Defects in Hydrogen-Bonded KDP,” Phys. Rev. Lett.91(1), 015505 (2003).
[CrossRef] [PubMed]

DeYoreo, J.

S. Setzler, K. Stevens, L. Halliburton, M. Yan, N. Zaitseva, and J. DeYoreo, “Hydrogen atoms in KH2PO4 crystals,” Phys. Rev. B57(5), 2643–2646 (1998).
[CrossRef]

Duchateau, G.

G. Duchateau, “Simple models for laser-induced damage and conditioning of potassium dihydrogen phosphate crystals by nanosecond pulses,” Opt. Express17(13), 10434–10456 (2009).
[CrossRef] [PubMed]

G. Duchateau and A. Dyan, “Coupling statistics and heat transfer to study laser induced crystal damage by nanosecond pulses,” Opt. Express15(8), 4557–4576 (2007).
[CrossRef] [PubMed]

A. Dyan, M. Pommies, G. Duchateau, F. Enguehard, S. Lallich, B. Bertussi, D. Damiani, H. Piombini, and H. Mathis, “Revisited thermal approach to model laser-induced damage and conditioning process in KH2PO4 and D2xKH2 (1-x) PO4 crystals,” Proc. SPIE6403, 640307 (2007).

Dyan, A.

A. Dyan, M. Pommies, G. Duchateau, F. Enguehard, S. Lallich, B. Bertussi, D. Damiani, H. Piombini, and H. Mathis, “Revisited thermal approach to model laser-induced damage and conditioning process in KH2PO4 and D2xKH2 (1-x) PO4 crystals,” Proc. SPIE6403, 640307 (2007).

G. Duchateau and A. Dyan, “Coupling statistics and heat transfer to study laser induced crystal damage by nanosecond pulses,” Opt. Express15(8), 4557–4576 (2007).
[CrossRef] [PubMed]

Enguehard, F.

A. Dyan, M. Pommies, G. Duchateau, F. Enguehard, S. Lallich, B. Bertussi, D. Damiani, H. Piombini, and H. Mathis, “Revisited thermal approach to model laser-induced damage and conditioning process in KH2PO4 and D2xKH2 (1-x) PO4 crystals,” Proc. SPIE6403, 640307 (2007).

Feit, M.

M. Runkel, A. K. Burnham, D. Milam, W. Sell, M. Feit, and A. Rubenchik, “The results of pulse scaling experiments on rapid growth DKDP triplers using the optical sciences laser at 351nm,” Proc. SPIE4347, 359–372 (2000).

Feit, M. D.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett.92(8), 087401 (2004).
[CrossRef] [PubMed]

M. D. Feit and A. M. Rubenchik, “Implications of nanoabsorber initiators for damage probability curves, pulselength scaling and laser conditioning,” Proc. SPIE5273, 74–82 (2004).
[CrossRef]

A. K. Burnham, M. Runkel, M. D. Feit, A. M. Rubenchik, R. L. Floyd, T. A. Land, W. J. Siekhaus, and R. A. Hawley-Fedder, “Laser-induced damage in deuterated potassium dihydrogen phosphate,” Appl. Opt.42(27), 5483–5495 (2003).
[CrossRef] [PubMed]

Floyd, R. L.

Garces, N.

M. Chirila, N. Garces, L. Halliburton, S. Demos, T. Land, and H. Radousky, “Production and thermal decay of radiation-induced point defects in KD2PO4 crystals,” J. Appl. Phys.94(10), 6456–6462 (2003).
[CrossRef]

Halliburton, L.

M. Chirila, N. Garces, L. Halliburton, S. Demos, T. Land, and H. Radousky, “Production and thermal decay of radiation-induced point defects in KD2PO4 crystals,” J. Appl. Phys.94(10), 6456–6462 (2003).
[CrossRef]

S. Setzler, K. Stevens, L. Halliburton, M. Yan, N. Zaitseva, and J. DeYoreo, “Hydrogen atoms in KH2PO4 crystals,” Phys. Rev. B57(5), 2643–2646 (1998).
[CrossRef]

Hawley-Fedder, R. A.

Henesian, M.

Hou, C. J.

C. S. Liu, C. J. Hou, N. Kioussis, S. G. Demos, and H. B. Radousky, “Electronic structure calculations of an oxygen vacancy in KH2PO4,” Phys. Rev. B72(13), 134110 (2005).
[CrossRef]

Kioussis, N.

C. S. Liu, C. J. Hou, N. Kioussis, S. G. Demos, and H. B. Radousky, “Electronic structure calculations of an oxygen vacancy in KH2PO4,” Phys. Rev. B72(13), 134110 (2005).
[CrossRef]

C. S. Liu, Q. Zhang, N. Kioussis, S. Demos, and H. Radousky, “Electronic structure calculations of intrinsic and extrinsic hydrogen point defects in KH2PO4,” Phys. Rev. B68(22), 224107 (2003).
[CrossRef]

C. S. Liu, N. Kioussis, S. G. Demos, and H. B. Radousky, “Electron- or Hole-Assisted Reactions of H Defects in Hydrogen-Bonded KDP,” Phys. Rev. Lett.91(1), 015505 (2003).
[CrossRef] [PubMed]

Lallich, S.

A. Dyan, M. Pommies, G. Duchateau, F. Enguehard, S. Lallich, B. Bertussi, D. Damiani, H. Piombini, and H. Mathis, “Revisited thermal approach to model laser-induced damage and conditioning process in KH2PO4 and D2xKH2 (1-x) PO4 crystals,” Proc. SPIE6403, 640307 (2007).

Land, T.

M. Chirila, N. Garces, L. Halliburton, S. Demos, T. Land, and H. Radousky, “Production and thermal decay of radiation-induced point defects in KD2PO4 crystals,” J. Appl. Phys.94(10), 6456–6462 (2003).
[CrossRef]

Land, T. A.

Liu, C. S.

C. S. Liu, C. J. Hou, N. Kioussis, S. G. Demos, and H. B. Radousky, “Electronic structure calculations of an oxygen vacancy in KH2PO4,” Phys. Rev. B72(13), 134110 (2005).
[CrossRef]

C. S. Liu, Q. Zhang, N. Kioussis, S. Demos, and H. Radousky, “Electronic structure calculations of intrinsic and extrinsic hydrogen point defects in KH2PO4,” Phys. Rev. B68(22), 224107 (2003).
[CrossRef]

C. S. Liu, N. Kioussis, S. G. Demos, and H. B. Radousky, “Electron- or Hole-Assisted Reactions of H Defects in Hydrogen-Bonded KDP,” Phys. Rev. Lett.91(1), 015505 (2003).
[CrossRef] [PubMed]

Marshall, C.

Mathis, H.

A. Dyan, M. Pommies, G. Duchateau, F. Enguehard, S. Lallich, B. Bertussi, D. Damiani, H. Piombini, and H. Mathis, “Revisited thermal approach to model laser-induced damage and conditioning process in KH2PO4 and D2xKH2 (1-x) PO4 crystals,” Proc. SPIE6403, 640307 (2007).

Milam, D.

M. Runkel, A. K. Burnham, D. Milam, W. Sell, M. Feit, and A. Rubenchik, “The results of pulse scaling experiments on rapid growth DKDP triplers using the optical sciences laser at 351nm,” Proc. SPIE4347, 359–372 (2000).

Milanovich, F. P.

K. E. Montgomery and F. P. Milanovich, “High-laser-damage-threshold potassium dihydrogen phosphate crystals,” J. Appl. Phys.68(8), 3979–3982 (1990).
[CrossRef]

Montgomery, K. E.

K. E. Montgomery and F. P. Milanovich, “High-laser-damage-threshold potassium dihydrogen phosphate crystals,” J. Appl. Phys.68(8), 3979–3982 (1990).
[CrossRef]

Negres, R. A.

Nishida, Y.

Y. Nishida, A. Yokotani, T. Sasaki, K. Yoshida, T. Yamanaka, and C. Yamanaka, “Improvement of the bulk laser damage threshold of potassium dihydrogen phosphate crystals by re-ducing the organic impurities in growth solution,” Appl. Phys. Lett.52(6), 420–421 (1988).
[CrossRef]

Payne, S.

Piombini, H.

A. Dyan, M. Pommies, G. Duchateau, F. Enguehard, S. Lallich, B. Bertussi, D. Damiani, H. Piombini, and H. Mathis, “Revisited thermal approach to model laser-induced damage and conditioning process in KH2PO4 and D2xKH2 (1-x) PO4 crystals,” Proc. SPIE6403, 640307 (2007).

Pommies, M.

A. Dyan, M. Pommies, G. Duchateau, F. Enguehard, S. Lallich, B. Bertussi, D. Damiani, H. Piombini, and H. Mathis, “Revisited thermal approach to model laser-induced damage and conditioning process in KH2PO4 and D2xKH2 (1-x) PO4 crystals,” Proc. SPIE6403, 640307 (2007).

Powell, H.

Radousky, H.

M. Chirila, N. Garces, L. Halliburton, S. Demos, T. Land, and H. Radousky, “Production and thermal decay of radiation-induced point defects in KD2PO4 crystals,” J. Appl. Phys.94(10), 6456–6462 (2003).
[CrossRef]

C. S. Liu, Q. Zhang, N. Kioussis, S. Demos, and H. Radousky, “Electronic structure calculations of intrinsic and extrinsic hydrogen point defects in KH2PO4,” Phys. Rev. B68(22), 224107 (2003).
[CrossRef]

Radousky, H. B.

C. S. Liu, C. J. Hou, N. Kioussis, S. G. Demos, and H. B. Radousky, “Electronic structure calculations of an oxygen vacancy in KH2PO4,” Phys. Rev. B72(13), 134110 (2005).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett.92(8), 087401 (2004).
[CrossRef] [PubMed]

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett.91(12), 127402 (2003).
[CrossRef] [PubMed]

C. S. Liu, N. Kioussis, S. G. Demos, and H. B. Radousky, “Electron- or Hole-Assisted Reactions of H Defects in Hydrogen-Bonded KDP,” Phys. Rev. Lett.91(1), 015505 (2003).
[CrossRef] [PubMed]

Rubenchik, A.

M. Runkel, A. K. Burnham, D. Milam, W. Sell, M. Feit, and A. Rubenchik, “The results of pulse scaling experiments on rapid growth DKDP triplers using the optical sciences laser at 351nm,” Proc. SPIE4347, 359–372 (2000).

Rubenchik, A. M.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett.92(8), 087401 (2004).
[CrossRef] [PubMed]

M. D. Feit and A. M. Rubenchik, “Implications of nanoabsorber initiators for damage probability curves, pulselength scaling and laser conditioning,” Proc. SPIE5273, 74–82 (2004).
[CrossRef]

A. K. Burnham, M. Runkel, M. D. Feit, A. M. Rubenchik, R. L. Floyd, T. A. Land, W. J. Siekhaus, and R. A. Hawley-Fedder, “Laser-induced damage in deuterated potassium dihydrogen phosphate,” Appl. Opt.42(27), 5483–5495 (2003).
[CrossRef] [PubMed]

Runkel, M.

A. K. Burnham, M. Runkel, M. D. Feit, A. M. Rubenchik, R. L. Floyd, T. A. Land, W. J. Siekhaus, and R. A. Hawley-Fedder, “Laser-induced damage in deuterated potassium dihydrogen phosphate,” Appl. Opt.42(27), 5483–5495 (2003).
[CrossRef] [PubMed]

M. Runkel, A. K. Burnham, D. Milam, W. Sell, M. Feit, and A. Rubenchik, “The results of pulse scaling experiments on rapid growth DKDP triplers using the optical sciences laser at 351nm,” Proc. SPIE4347, 359–372 (2000).

Runkel, M. J.

R. Sharp and M. J. Runkel, “Automated damage onset analysis techniques applied to KDP damage and Zeus small area damage test facility,” Proc. SPIE3902, 361–368 (2000).
[CrossRef]

Sasaki, T.

Y. Nishida, A. Yokotani, T. Sasaki, K. Yoshida, T. Yamanaka, and C. Yamanaka, “Improvement of the bulk laser damage threshold of potassium dihydrogen phosphate crystals by re-ducing the organic impurities in growth solution,” Appl. Phys. Lett.52(6), 420–421 (1988).
[CrossRef]

Schrauth, S. E.

J. E. Wolfe and S. E. Schrauth, “Automated laser damage test system with real-time damage event imaging and detection,” Proc. SPIE6403, 640328 (2007).

Sell, W.

M. Runkel, A. K. Burnham, D. Milam, W. Sell, M. Feit, and A. Rubenchik, “The results of pulse scaling experiments on rapid growth DKDP triplers using the optical sciences laser at 351nm,” Proc. SPIE4347, 359–372 (2000).

Setzler, S.

S. Setzler, K. Stevens, L. Halliburton, M. Yan, N. Zaitseva, and J. DeYoreo, “Hydrogen atoms in KH2PO4 crystals,” Phys. Rev. B57(5), 2643–2646 (1998).
[CrossRef]

Sharp, R.

R. Sharp and M. J. Runkel, “Automated damage onset analysis techniques applied to KDP damage and Zeus small area damage test facility,” Proc. SPIE3902, 361–368 (2000).
[CrossRef]

Siekhaus, W. J.

Speth, J.

Stevens, K.

S. Setzler, K. Stevens, L. Halliburton, M. Yan, N. Zaitseva, and J. DeYoreo, “Hydrogen atoms in KH2PO4 crystals,” Phys. Rev. B57(5), 2643–2646 (1998).
[CrossRef]

van Enckevort, W. J. P.

B. Dam, P. Bennema, and W. J. P. van Enckevort, “The mechanism of tapering on KDP-type crystals,” J. Cryst. Growth74(1), 118–128 (1986).
[CrossRef]

Whitman, P. K.

J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world's most power laser,” Int. Mater. Rev.47, 113–152 (2002).
[CrossRef]

Wolfe, J. E.

J. E. Wolfe and S. E. Schrauth, “Automated laser damage test system with real-time damage event imaging and detection,” Proc. SPIE6403, 640328 (2007).

Yamanaka, C.

Y. Nishida, A. Yokotani, T. Sasaki, K. Yoshida, T. Yamanaka, and C. Yamanaka, “Improvement of the bulk laser damage threshold of potassium dihydrogen phosphate crystals by re-ducing the organic impurities in growth solution,” Appl. Phys. Lett.52(6), 420–421 (1988).
[CrossRef]

Yamanaka, T.

Y. Nishida, A. Yokotani, T. Sasaki, K. Yoshida, T. Yamanaka, and C. Yamanaka, “Improvement of the bulk laser damage threshold of potassium dihydrogen phosphate crystals by re-ducing the organic impurities in growth solution,” Appl. Phys. Lett.52(6), 420–421 (1988).
[CrossRef]

Yan, M.

S. Setzler, K. Stevens, L. Halliburton, M. Yan, N. Zaitseva, and J. DeYoreo, “Hydrogen atoms in KH2PO4 crystals,” Phys. Rev. B57(5), 2643–2646 (1998).
[CrossRef]

Yokotani, A.

Y. Nishida, A. Yokotani, T. Sasaki, K. Yoshida, T. Yamanaka, and C. Yamanaka, “Improvement of the bulk laser damage threshold of potassium dihydrogen phosphate crystals by re-ducing the organic impurities in growth solution,” Appl. Phys. Lett.52(6), 420–421 (1988).
[CrossRef]

Yoshida, K.

Y. Nishida, A. Yokotani, T. Sasaki, K. Yoshida, T. Yamanaka, and C. Yamanaka, “Improvement of the bulk laser damage threshold of potassium dihydrogen phosphate crystals by re-ducing the organic impurities in growth solution,” Appl. Phys. Lett.52(6), 420–421 (1988).
[CrossRef]

Zaitseva, N.

S. Setzler, K. Stevens, L. Halliburton, M. Yan, N. Zaitseva, and J. DeYoreo, “Hydrogen atoms in KH2PO4 crystals,” Phys. Rev. B57(5), 2643–2646 (1998).
[CrossRef]

Zhang, Q.

C. S. Liu, Q. Zhang, N. Kioussis, S. Demos, and H. Radousky, “Electronic structure calculations of intrinsic and extrinsic hydrogen point defects in KH2PO4,” Phys. Rev. B68(22), 224107 (2003).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

C. H. Chan, “Effective absorption for thermal blooming due to aerosols,” Appl. Phys. Lett.26(11), 628–630 (1975).
[CrossRef]

Y. Nishida, A. Yokotani, T. Sasaki, K. Yoshida, T. Yamanaka, and C. Yamanaka, “Improvement of the bulk laser damage threshold of potassium dihydrogen phosphate crystals by re-ducing the organic impurities in growth solution,” Appl. Phys. Lett.52(6), 420–421 (1988).
[CrossRef]

Int. Mater. Rev. (1)

J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world's most power laser,” Int. Mater. Rev.47, 113–152 (2002).
[CrossRef]

J. Appl. Phys. (2)

K. E. Montgomery and F. P. Milanovich, “High-laser-damage-threshold potassium dihydrogen phosphate crystals,” J. Appl. Phys.68(8), 3979–3982 (1990).
[CrossRef]

M. Chirila, N. Garces, L. Halliburton, S. Demos, T. Land, and H. Radousky, “Production and thermal decay of radiation-induced point defects in KD2PO4 crystals,” J. Appl. Phys.94(10), 6456–6462 (2003).
[CrossRef]

J. Cryst. Growth (1)

B. Dam, P. Bennema, and W. J. P. van Enckevort, “The mechanism of tapering on KDP-type crystals,” J. Cryst. Growth74(1), 118–128 (1986).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (3)

C. S. Liu, Q. Zhang, N. Kioussis, S. Demos, and H. Radousky, “Electronic structure calculations of intrinsic and extrinsic hydrogen point defects in KH2PO4,” Phys. Rev. B68(22), 224107 (2003).
[CrossRef]

S. Setzler, K. Stevens, L. Halliburton, M. Yan, N. Zaitseva, and J. DeYoreo, “Hydrogen atoms in KH2PO4 crystals,” Phys. Rev. B57(5), 2643–2646 (1998).
[CrossRef]

C. S. Liu, C. J. Hou, N. Kioussis, S. G. Demos, and H. B. Radousky, “Electronic structure calculations of an oxygen vacancy in KH2PO4,” Phys. Rev. B72(13), 134110 (2005).
[CrossRef]

Phys. Rev. Lett. (3)

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett.92(8), 087401 (2004).
[CrossRef] [PubMed]

C. S. Liu, N. Kioussis, S. G. Demos, and H. B. Radousky, “Electron- or Hole-Assisted Reactions of H Defects in Hydrogen-Bonded KDP,” Phys. Rev. Lett.91(1), 015505 (2003).
[CrossRef] [PubMed]

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett.91(12), 127402 (2003).
[CrossRef] [PubMed]

Proc. SPIE (6)

M. D. Feit and A. M. Rubenchik, “Implications of nanoabsorber initiators for damage probability curves, pulselength scaling and laser conditioning,” Proc. SPIE5273, 74–82 (2004).
[CrossRef]

A. Dyan, M. Pommies, G. Duchateau, F. Enguehard, S. Lallich, B. Bertussi, D. Damiani, H. Piombini, and H. Mathis, “Revisited thermal approach to model laser-induced damage and conditioning process in KH2PO4 and D2xKH2 (1-x) PO4 crystals,” Proc. SPIE6403, 640307 (2007).

J. J. Adams, “Results of sub-nanosecond laser-conditionining of KD2PO4 crystals,” Proc. SPIE6403, 64031M (2007).

M. Runkel, A. K. Burnham, D. Milam, W. Sell, M. Feit, and A. Rubenchik, “The results of pulse scaling experiments on rapid growth DKDP triplers using the optical sciences laser at 351nm,” Proc. SPIE4347, 359–372 (2000).

R. Sharp and M. J. Runkel, “Automated damage onset analysis techniques applied to KDP damage and Zeus small area damage test facility,” Proc. SPIE3902, 361–368 (2000).
[CrossRef]

J. E. Wolfe and S. E. Schrauth, “Automated laser damage test system with real-time damage event imaging and detection,” Proc. SPIE6403, 640328 (2007).

Other (3)

J. S. Pan, J. M. Tong, and M. B. Tian, Fundamentals of Materials Science, (Qinghua University Press, 1998).

J. Q. Chen, M. X. Chen, and J. S. Zhao, Crystal defects, (Zhejiang University Press, 1992).

H. S. Carslaw and J. C. Jeager, Conduction of Heat in Solids, 2nd edition (Clarendon, 1959).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic of laser conditioning experimental bench used for KDP/DKDP crystals

Fig. 2
Fig. 2

The transmittance homogeneity in a DKDP sample

Fig. 3
Fig. 3

(a) displays the variation of transmittance measured fifteen times at the same position in the same time period, (b) displays the variation of transmittance in different periods at the same position

Fig. 4
Fig. 4

(a) Schematic of pinpoint density detection system, (b) The image detected by this system

Fig. 5
Fig. 5

(a) Schematic of fluorescence microscopy, (b) The fluorescent image detected by this microscopy

Fig. 6
Fig. 6

The results of 532nm transmittance measurements at the four different positions

Fig. 7
Fig. 7

The results of 1064nm transmittance measurements at the four different positions

Fig. 8
Fig. 8

(a) The bulk pinpoint density and (b) the percent area covered by surface damage at the four positions after laser conditioning to 10J/cm2

Fig. 9
Fig. 9

Comparison of pinpoint density before and after laser conditioning

Fig. 10
Fig. 10

Comparison of fluorescent spot number in the imaging region before and after 10J/cm2 laser conditioning in DKDP crystals

Fig. 11
Fig. 11

The temperature of defect cluster in the time domain during and after laser exposure

Fig. 12
Fig. 12

The maximum probable reduction of defect concentration Vs. the maximum temperature induced during laser exposure (ΔHdefect is set at 200kJ/mol, ΔSdefect is 19.27 × 10−3kJ/mol·K).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

T t =κ 2 T
I Q abs π a 2 =4π a 2 k m ( T r ) r=a + 4π 3 a 3 ρ p C p ( T t ) r=a
T(r,t)= T 0 + 2a T r π β { 1exp[ t τ p (1 β 2 μ 2 ) ] } exp( μ 2 )dμ ( tτ )
T(a,t)= T 0 + T [1exp(t/ τ p )] ( tτ )
4π a 2 k m ( T r ) r=a = 4π 3 a 3 ρ p C p ( T t ) r=a
T(r,t)= 2L T max πr n=1 (1) n n sin nπr a exp(κ n 2 π 2 t/ L 2 )
T(r,t)=2 T max n=1 (1) n exp(κ n 2 π 2 t/ L 2 ) ( t>τ )
C defect =exp( Δ G defect RT )
Δ G defect =Δ H defect T×Δ S defect
Δ C defect =exp( Δ G defect R T 1 )exp( Δ G defect R T 2 )

Metrics