Abstract

We demonstrate control of the collective motion of an optical vortex array using an electromagnetically induced transparency media. Scanning the frequency detuning between the pump and probe fields changes the susceptibility of the media, producing a unique effective diffraction of the vortex array for each detuning. We measure several experimental configurations and compare them to numerical simulations.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Boller, A. Imamoglu, and S. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66, 2593–2596 (1991).
    [CrossRef] [PubMed]
  2. M. Fleischhauer, A. Imamoglu, and J. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys.77, 633–673 (2005).
    [CrossRef]
  3. P. K. Vudyasetu, D. Starling, and J. C. Howell, “All optical waveguiding in a coherent atomic rubidium vapor,” Phys. Rev. Lett.102, 123602 (2009).
    [CrossRef] [PubMed]
  4. O. Firstenberg, P. London, M. Shuker, A. Ron, and N. Davidson, “Elimination, reversal and directional bias of optical diffraction,” Nat. Phys.5, 665–668 (2009).
    [CrossRef]
  5. O. Firstenberg, M. Shuker, N. Davidson, and A. Ron, “Elimination of the diffraction of arbitrary images imprinted on slow light,” Phys. Rev. Lett.102, 043601 (2009).
    [CrossRef] [PubMed]
  6. M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett.100, 223601 (2008).
    [CrossRef] [PubMed]
  7. L. Zhao, T. Wang, Y. Xiao, and S. F. Yelin, “Image storage in hot vapors,” Phys. Rev. A77, 041802 (2008).
    [CrossRef]
  8. H. He, M. Friese, N. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett.75, 826–829 (1995).
    [CrossRef] [PubMed]
  9. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412, 313–316 (2001).
    [CrossRef] [PubMed]
  10. S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photon. Rev.2, 299–313 (2008).
    [CrossRef]
  11. R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett.98, 203601 (2007).
    [CrossRef] [PubMed]
  12. Z. Chen, J. Pu, and D. Zhao, “Tight focusing properties of linearly polarized Gaussian beam with a pair of vortices,” Phys. Lett. A375, 2958–2963 (2011).
    [CrossRef]
  13. D. Neshev, “Motion control of ensembles of ordered optical vortices generated on finite extent background,” Opt. Commun.151, 413–421 (1998).
    [CrossRef]
  14. G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt.40, 73–87 (1993).
    [CrossRef]
  15. D. Rozas, Z. S. Sacks, and G. A. Swartzlander, “Experimental observation of fluidlike motion of optical vortices,” Phys. Rev. Lett.79, 3399–3402 (1997).
    [CrossRef]
  16. D. Rozas, C. T. Law, and G. A. Swartzlander, “Propagation dynamics of optical vortices,” J. Opt. Soc. Am. B14, 3054–3065 (1997).
    [CrossRef]
  17. X. Gan, J. Zhao, S. Liu, and L. Fang, “Generation and motion control of optical multi-vortex,” Chin. Opt. Lett.7, 1142–1145 (2009).
    [CrossRef]
  18. O. Firstenberg, M. Shuker, R. Pugatch, D. Fredkin, N. Davidson, and A. Ron, “Theory of thermal motion in electromagnetically induced transparency: effects of diffusion, Doppler broadening, and Dicke and Ramsey narrowing,” Phys. Rev. A77, 043830 (2008).
    [CrossRef]
  19. M. Chen and F. S. Roux, “Accelerating the annihilation of an optical vortex dipole in a Gaussian beam.” J. Opt. Soc. Am. A25, 1279–1286 (2008).
    [CrossRef]
  20. O. Firstenberg, P. London, D. Yankelev, R. Pugatch, M. Shuker, and N. Davidson, “Self-similar modes of coherent diffusion,” Phys. Rev. Lett.105, 183602 (2010).
    [CrossRef]
  21. A. Y. Bekshaev, M. S. Soskin, and M. V. Vasnetsov, “Optical vortex symmetry breakdown and decomposition of the orbital angular momentum of light beams,” J. Opt. Soc. Am. A20, 1635–1643 (2003).
    [CrossRef]
  22. P. K. Vudyasetu, R. M. Camacho, and J. C. Howell, “Storage and retrieval of multimode transverse images in hot atomic rubidium vapor,” Phys. Rev. Lett.100, 123903 (2008).
    [CrossRef] [PubMed]
  23. E. E. Mikhailov, I. Novikova, M. D. Havey, and F. A. Narducci, “Magnetic field imaging with atomic Rb vapor,” Opt. Lett.34, 3529–3531 (2009).
    [CrossRef] [PubMed]

2011 (1)

Z. Chen, J. Pu, and D. Zhao, “Tight focusing properties of linearly polarized Gaussian beam with a pair of vortices,” Phys. Lett. A375, 2958–2963 (2011).
[CrossRef]

2010 (1)

O. Firstenberg, P. London, D. Yankelev, R. Pugatch, M. Shuker, and N. Davidson, “Self-similar modes of coherent diffusion,” Phys. Rev. Lett.105, 183602 (2010).
[CrossRef]

2009 (5)

P. K. Vudyasetu, D. Starling, and J. C. Howell, “All optical waveguiding in a coherent atomic rubidium vapor,” Phys. Rev. Lett.102, 123602 (2009).
[CrossRef] [PubMed]

O. Firstenberg, P. London, M. Shuker, A. Ron, and N. Davidson, “Elimination, reversal and directional bias of optical diffraction,” Nat. Phys.5, 665–668 (2009).
[CrossRef]

O. Firstenberg, M. Shuker, N. Davidson, and A. Ron, “Elimination of the diffraction of arbitrary images imprinted on slow light,” Phys. Rev. Lett.102, 043601 (2009).
[CrossRef] [PubMed]

E. E. Mikhailov, I. Novikova, M. D. Havey, and F. A. Narducci, “Magnetic field imaging with atomic Rb vapor,” Opt. Lett.34, 3529–3531 (2009).
[CrossRef] [PubMed]

X. Gan, J. Zhao, S. Liu, and L. Fang, “Generation and motion control of optical multi-vortex,” Chin. Opt. Lett.7, 1142–1145 (2009).
[CrossRef]

2008 (6)

M. Chen and F. S. Roux, “Accelerating the annihilation of an optical vortex dipole in a Gaussian beam.” J. Opt. Soc. Am. A25, 1279–1286 (2008).
[CrossRef]

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett.100, 223601 (2008).
[CrossRef] [PubMed]

L. Zhao, T. Wang, Y. Xiao, and S. F. Yelin, “Image storage in hot vapors,” Phys. Rev. A77, 041802 (2008).
[CrossRef]

S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photon. Rev.2, 299–313 (2008).
[CrossRef]

P. K. Vudyasetu, R. M. Camacho, and J. C. Howell, “Storage and retrieval of multimode transverse images in hot atomic rubidium vapor,” Phys. Rev. Lett.100, 123903 (2008).
[CrossRef] [PubMed]

O. Firstenberg, M. Shuker, R. Pugatch, D. Fredkin, N. Davidson, and A. Ron, “Theory of thermal motion in electromagnetically induced transparency: effects of diffusion, Doppler broadening, and Dicke and Ramsey narrowing,” Phys. Rev. A77, 043830 (2008).
[CrossRef]

2007 (1)

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett.98, 203601 (2007).
[CrossRef] [PubMed]

2005 (1)

M. Fleischhauer, A. Imamoglu, and J. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys.77, 633–673 (2005).
[CrossRef]

2003 (1)

2001 (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412, 313–316 (2001).
[CrossRef] [PubMed]

1998 (1)

D. Neshev, “Motion control of ensembles of ordered optical vortices generated on finite extent background,” Opt. Commun.151, 413–421 (1998).
[CrossRef]

1997 (2)

D. Rozas, Z. S. Sacks, and G. A. Swartzlander, “Experimental observation of fluidlike motion of optical vortices,” Phys. Rev. Lett.79, 3399–3402 (1997).
[CrossRef]

D. Rozas, C. T. Law, and G. A. Swartzlander, “Propagation dynamics of optical vortices,” J. Opt. Soc. Am. B14, 3054–3065 (1997).
[CrossRef]

1995 (1)

H. He, M. Friese, N. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett.75, 826–829 (1995).
[CrossRef] [PubMed]

1993 (1)

G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt.40, 73–87 (1993).
[CrossRef]

1991 (1)

K. Boller, A. Imamoglu, and S. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66, 2593–2596 (1991).
[CrossRef] [PubMed]

Allen, L.

S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photon. Rev.2, 299–313 (2008).
[CrossRef]

Bekshaev, A. Y.

Boller, K.

K. Boller, A. Imamoglu, and S. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66, 2593–2596 (1991).
[CrossRef] [PubMed]

Camacho, R. M.

P. K. Vudyasetu, R. M. Camacho, and J. C. Howell, “Storage and retrieval of multimode transverse images in hot atomic rubidium vapor,” Phys. Rev. Lett.100, 123903 (2008).
[CrossRef] [PubMed]

Chen, M.

Chen, Z.

Z. Chen, J. Pu, and D. Zhao, “Tight focusing properties of linearly polarized Gaussian beam with a pair of vortices,” Phys. Lett. A375, 2958–2963 (2011).
[CrossRef]

Davidson, N.

O. Firstenberg, P. London, D. Yankelev, R. Pugatch, M. Shuker, and N. Davidson, “Self-similar modes of coherent diffusion,” Phys. Rev. Lett.105, 183602 (2010).
[CrossRef]

O. Firstenberg, M. Shuker, N. Davidson, and A. Ron, “Elimination of the diffraction of arbitrary images imprinted on slow light,” Phys. Rev. Lett.102, 043601 (2009).
[CrossRef] [PubMed]

O. Firstenberg, P. London, M. Shuker, A. Ron, and N. Davidson, “Elimination, reversal and directional bias of optical diffraction,” Nat. Phys.5, 665–668 (2009).
[CrossRef]

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett.100, 223601 (2008).
[CrossRef] [PubMed]

O. Firstenberg, M. Shuker, R. Pugatch, D. Fredkin, N. Davidson, and A. Ron, “Theory of thermal motion in electromagnetically induced transparency: effects of diffusion, Doppler broadening, and Dicke and Ramsey narrowing,” Phys. Rev. A77, 043830 (2008).
[CrossRef]

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett.98, 203601 (2007).
[CrossRef] [PubMed]

Fang, L.

Firstenberg, O.

O. Firstenberg, P. London, D. Yankelev, R. Pugatch, M. Shuker, and N. Davidson, “Self-similar modes of coherent diffusion,” Phys. Rev. Lett.105, 183602 (2010).
[CrossRef]

O. Firstenberg, M. Shuker, N. Davidson, and A. Ron, “Elimination of the diffraction of arbitrary images imprinted on slow light,” Phys. Rev. Lett.102, 043601 (2009).
[CrossRef] [PubMed]

O. Firstenberg, P. London, M. Shuker, A. Ron, and N. Davidson, “Elimination, reversal and directional bias of optical diffraction,” Nat. Phys.5, 665–668 (2009).
[CrossRef]

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett.100, 223601 (2008).
[CrossRef] [PubMed]

O. Firstenberg, M. Shuker, R. Pugatch, D. Fredkin, N. Davidson, and A. Ron, “Theory of thermal motion in electromagnetically induced transparency: effects of diffusion, Doppler broadening, and Dicke and Ramsey narrowing,” Phys. Rev. A77, 043830 (2008).
[CrossRef]

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett.98, 203601 (2007).
[CrossRef] [PubMed]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys.77, 633–673 (2005).
[CrossRef]

Franke-Arnold, S.

S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photon. Rev.2, 299–313 (2008).
[CrossRef]

Fredkin, D.

O. Firstenberg, M. Shuker, R. Pugatch, D. Fredkin, N. Davidson, and A. Ron, “Theory of thermal motion in electromagnetically induced transparency: effects of diffusion, Doppler broadening, and Dicke and Ramsey narrowing,” Phys. Rev. A77, 043830 (2008).
[CrossRef]

Friese, M.

H. He, M. Friese, N. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett.75, 826–829 (1995).
[CrossRef] [PubMed]

Gan, X.

Harris, S.

K. Boller, A. Imamoglu, and S. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66, 2593–2596 (1991).
[CrossRef] [PubMed]

Havey, M. D.

He, H.

H. He, M. Friese, N. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett.75, 826–829 (1995).
[CrossRef] [PubMed]

Heckenberg, N.

H. He, M. Friese, N. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett.75, 826–829 (1995).
[CrossRef] [PubMed]

Howell, J. C.

P. K. Vudyasetu, D. Starling, and J. C. Howell, “All optical waveguiding in a coherent atomic rubidium vapor,” Phys. Rev. Lett.102, 123602 (2009).
[CrossRef] [PubMed]

P. K. Vudyasetu, R. M. Camacho, and J. C. Howell, “Storage and retrieval of multimode transverse images in hot atomic rubidium vapor,” Phys. Rev. Lett.100, 123903 (2008).
[CrossRef] [PubMed]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys.77, 633–673 (2005).
[CrossRef]

K. Boller, A. Imamoglu, and S. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66, 2593–2596 (1991).
[CrossRef] [PubMed]

Indebetouw, G.

G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt.40, 73–87 (1993).
[CrossRef]

Law, C. T.

Liu, S.

London, P.

O. Firstenberg, P. London, D. Yankelev, R. Pugatch, M. Shuker, and N. Davidson, “Self-similar modes of coherent diffusion,” Phys. Rev. Lett.105, 183602 (2010).
[CrossRef]

O. Firstenberg, P. London, M. Shuker, A. Ron, and N. Davidson, “Elimination, reversal and directional bias of optical diffraction,” Nat. Phys.5, 665–668 (2009).
[CrossRef]

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412, 313–316 (2001).
[CrossRef] [PubMed]

Marangos, J.

M. Fleischhauer, A. Imamoglu, and J. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys.77, 633–673 (2005).
[CrossRef]

Mikhailov, E. E.

Narducci, F. A.

Neshev, D.

D. Neshev, “Motion control of ensembles of ordered optical vortices generated on finite extent background,” Opt. Commun.151, 413–421 (1998).
[CrossRef]

Novikova, I.

Padgett, M.

S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photon. Rev.2, 299–313 (2008).
[CrossRef]

Pu, J.

Z. Chen, J. Pu, and D. Zhao, “Tight focusing properties of linearly polarized Gaussian beam with a pair of vortices,” Phys. Lett. A375, 2958–2963 (2011).
[CrossRef]

Pugatch, R.

O. Firstenberg, P. London, D. Yankelev, R. Pugatch, M. Shuker, and N. Davidson, “Self-similar modes of coherent diffusion,” Phys. Rev. Lett.105, 183602 (2010).
[CrossRef]

O. Firstenberg, M. Shuker, R. Pugatch, D. Fredkin, N. Davidson, and A. Ron, “Theory of thermal motion in electromagnetically induced transparency: effects of diffusion, Doppler broadening, and Dicke and Ramsey narrowing,” Phys. Rev. A77, 043830 (2008).
[CrossRef]

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett.100, 223601 (2008).
[CrossRef] [PubMed]

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett.98, 203601 (2007).
[CrossRef] [PubMed]

Ron, A.

O. Firstenberg, M. Shuker, N. Davidson, and A. Ron, “Elimination of the diffraction of arbitrary images imprinted on slow light,” Phys. Rev. Lett.102, 043601 (2009).
[CrossRef] [PubMed]

O. Firstenberg, P. London, M. Shuker, A. Ron, and N. Davidson, “Elimination, reversal and directional bias of optical diffraction,” Nat. Phys.5, 665–668 (2009).
[CrossRef]

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett.100, 223601 (2008).
[CrossRef] [PubMed]

O. Firstenberg, M. Shuker, R. Pugatch, D. Fredkin, N. Davidson, and A. Ron, “Theory of thermal motion in electromagnetically induced transparency: effects of diffusion, Doppler broadening, and Dicke and Ramsey narrowing,” Phys. Rev. A77, 043830 (2008).
[CrossRef]

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett.98, 203601 (2007).
[CrossRef] [PubMed]

Roux, F. S.

Rozas, D.

D. Rozas, Z. S. Sacks, and G. A. Swartzlander, “Experimental observation of fluidlike motion of optical vortices,” Phys. Rev. Lett.79, 3399–3402 (1997).
[CrossRef]

D. Rozas, C. T. Law, and G. A. Swartzlander, “Propagation dynamics of optical vortices,” J. Opt. Soc. Am. B14, 3054–3065 (1997).
[CrossRef]

Rubinsztein-Dunlop, H.

H. He, M. Friese, N. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett.75, 826–829 (1995).
[CrossRef] [PubMed]

Sacks, Z. S.

D. Rozas, Z. S. Sacks, and G. A. Swartzlander, “Experimental observation of fluidlike motion of optical vortices,” Phys. Rev. Lett.79, 3399–3402 (1997).
[CrossRef]

Shuker, M.

O. Firstenberg, P. London, D. Yankelev, R. Pugatch, M. Shuker, and N. Davidson, “Self-similar modes of coherent diffusion,” Phys. Rev. Lett.105, 183602 (2010).
[CrossRef]

O. Firstenberg, M. Shuker, N. Davidson, and A. Ron, “Elimination of the diffraction of arbitrary images imprinted on slow light,” Phys. Rev. Lett.102, 043601 (2009).
[CrossRef] [PubMed]

O. Firstenberg, P. London, M. Shuker, A. Ron, and N. Davidson, “Elimination, reversal and directional bias of optical diffraction,” Nat. Phys.5, 665–668 (2009).
[CrossRef]

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett.100, 223601 (2008).
[CrossRef] [PubMed]

O. Firstenberg, M. Shuker, R. Pugatch, D. Fredkin, N. Davidson, and A. Ron, “Theory of thermal motion in electromagnetically induced transparency: effects of diffusion, Doppler broadening, and Dicke and Ramsey narrowing,” Phys. Rev. A77, 043830 (2008).
[CrossRef]

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett.98, 203601 (2007).
[CrossRef] [PubMed]

Soskin, M. S.

Starling, D.

P. K. Vudyasetu, D. Starling, and J. C. Howell, “All optical waveguiding in a coherent atomic rubidium vapor,” Phys. Rev. Lett.102, 123602 (2009).
[CrossRef] [PubMed]

Swartzlander, G. A.

D. Rozas, C. T. Law, and G. A. Swartzlander, “Propagation dynamics of optical vortices,” J. Opt. Soc. Am. B14, 3054–3065 (1997).
[CrossRef]

D. Rozas, Z. S. Sacks, and G. A. Swartzlander, “Experimental observation of fluidlike motion of optical vortices,” Phys. Rev. Lett.79, 3399–3402 (1997).
[CrossRef]

Vasnetsov, M. V.

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412, 313–316 (2001).
[CrossRef] [PubMed]

Vudyasetu, P. K.

P. K. Vudyasetu, D. Starling, and J. C. Howell, “All optical waveguiding in a coherent atomic rubidium vapor,” Phys. Rev. Lett.102, 123602 (2009).
[CrossRef] [PubMed]

P. K. Vudyasetu, R. M. Camacho, and J. C. Howell, “Storage and retrieval of multimode transverse images in hot atomic rubidium vapor,” Phys. Rev. Lett.100, 123903 (2008).
[CrossRef] [PubMed]

Wang, T.

L. Zhao, T. Wang, Y. Xiao, and S. F. Yelin, “Image storage in hot vapors,” Phys. Rev. A77, 041802 (2008).
[CrossRef]

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412, 313–316 (2001).
[CrossRef] [PubMed]

Xiao, Y.

L. Zhao, T. Wang, Y. Xiao, and S. F. Yelin, “Image storage in hot vapors,” Phys. Rev. A77, 041802 (2008).
[CrossRef]

Yankelev, D.

O. Firstenberg, P. London, D. Yankelev, R. Pugatch, M. Shuker, and N. Davidson, “Self-similar modes of coherent diffusion,” Phys. Rev. Lett.105, 183602 (2010).
[CrossRef]

Yelin, S. F.

L. Zhao, T. Wang, Y. Xiao, and S. F. Yelin, “Image storage in hot vapors,” Phys. Rev. A77, 041802 (2008).
[CrossRef]

Zeilinger, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412, 313–316 (2001).
[CrossRef] [PubMed]

Zhao, D.

Z. Chen, J. Pu, and D. Zhao, “Tight focusing properties of linearly polarized Gaussian beam with a pair of vortices,” Phys. Lett. A375, 2958–2963 (2011).
[CrossRef]

Zhao, J.

Zhao, L.

L. Zhao, T. Wang, Y. Xiao, and S. F. Yelin, “Image storage in hot vapors,” Phys. Rev. A77, 041802 (2008).
[CrossRef]

Chin. Opt. Lett. (1)

J. Mod. Opt. (1)

G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt.40, 73–87 (1993).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photon. Rev.2, 299–313 (2008).
[CrossRef]

Nat. Phys. (1)

O. Firstenberg, P. London, M. Shuker, A. Ron, and N. Davidson, “Elimination, reversal and directional bias of optical diffraction,” Nat. Phys.5, 665–668 (2009).
[CrossRef]

Nature (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature412, 313–316 (2001).
[CrossRef] [PubMed]

Opt. Commun. (1)

D. Neshev, “Motion control of ensembles of ordered optical vortices generated on finite extent background,” Opt. Commun.151, 413–421 (1998).
[CrossRef]

Opt. Lett. (1)

Phys. Lett. A (1)

Z. Chen, J. Pu, and D. Zhao, “Tight focusing properties of linearly polarized Gaussian beam with a pair of vortices,” Phys. Lett. A375, 2958–2963 (2011).
[CrossRef]

Phys. Rev. A (2)

O. Firstenberg, M. Shuker, R. Pugatch, D. Fredkin, N. Davidson, and A. Ron, “Theory of thermal motion in electromagnetically induced transparency: effects of diffusion, Doppler broadening, and Dicke and Ramsey narrowing,” Phys. Rev. A77, 043830 (2008).
[CrossRef]

L. Zhao, T. Wang, Y. Xiao, and S. F. Yelin, “Image storage in hot vapors,” Phys. Rev. A77, 041802 (2008).
[CrossRef]

Phys. Rev. Lett. (9)

H. He, M. Friese, N. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett.75, 826–829 (1995).
[CrossRef] [PubMed]

P. K. Vudyasetu, D. Starling, and J. C. Howell, “All optical waveguiding in a coherent atomic rubidium vapor,” Phys. Rev. Lett.102, 123602 (2009).
[CrossRef] [PubMed]

O. Firstenberg, M. Shuker, N. Davidson, and A. Ron, “Elimination of the diffraction of arbitrary images imprinted on slow light,” Phys. Rev. Lett.102, 043601 (2009).
[CrossRef] [PubMed]

M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, “Storing images in warm atomic vapor,” Phys. Rev. Lett.100, 223601 (2008).
[CrossRef] [PubMed]

K. Boller, A. Imamoglu, and S. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66, 2593–2596 (1991).
[CrossRef] [PubMed]

O. Firstenberg, P. London, D. Yankelev, R. Pugatch, M. Shuker, and N. Davidson, “Self-similar modes of coherent diffusion,” Phys. Rev. Lett.105, 183602 (2010).
[CrossRef]

P. K. Vudyasetu, R. M. Camacho, and J. C. Howell, “Storage and retrieval of multimode transverse images in hot atomic rubidium vapor,” Phys. Rev. Lett.100, 123903 (2008).
[CrossRef] [PubMed]

D. Rozas, Z. S. Sacks, and G. A. Swartzlander, “Experimental observation of fluidlike motion of optical vortices,” Phys. Rev. Lett.79, 3399–3402 (1997).
[CrossRef]

R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, “Topological stability of stored optical vortices,” Phys. Rev. Lett.98, 203601 (2007).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys.77, 633–673 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Our experimental setup. Orange lines - pump beam, purple lines - probe beam. DFB - distributed feedback laser, PBS - polarizing beam splitter, λ/2, λ/4 - waveplates, AP -aperture, GT - Glan-Taylor polarizer, SL - solenoid, SLM - spatial light modulator, AOM -acousto-optic modulator, EOM - electro-optic modulator, BD - beam dump, μMSμ-metal shield. In the inset - the relevant 87Rb hyperfine level diagram.

Fig. 2
Fig. 2

Phase patterns of a four vortex array. The phase for each point of the pattern is the multiplication of each vortex phase, Πj exp(imjϕj). ϕj is defined as ϕj = arctan[(yyj)/(xxj)], where (xj, yj) is the location of the jth vortex core. Patterns are imprinted on the spatial light modulator with the gaussian probe beam directed to the center of the pattern. (a) Two m=1 and two m=−1 vortices. (b) Four m=1 vortices.

Fig. 3
Fig. 3

Experimental results for the collective rotation of four vortices, two m=+1 and two m=−1 with total angular momentum L=0. (a) Pictures for different frequencies with log scaled normalized intensity. The numbers relate to the vertical lines in (c). (b) Pictures of simulations for the same frequencies. (c) The average size of the array measured as the distance between two opposite vortices. The array size at resonance is about half of the original array size. (d) 2D plot of the vortex centers at different detunings. Although each vortex moves in a circular motion as the detuning is scanned, the full array does not rotate but only contracts. Near the resonance (picture (a3)) the four vortices almost combine to one point with zero amplitude and L=0.

Fig. 4
Fig. 4

Experimental results for the collective rotation of four m=+1 vortices with total angular momentum L=4. (a) Pictures for different frequencies with log scaled normalized intensity. The numbers relate to the vertical lines in (c). (b) Pictures of simulations for the same frequencies. (c) The average size of the array measured as the distance between two opposite vortices. (d) 2D plot of the vortex centers at different detunings. In this case, as with L=0, each vortex moves in a circular manner as the detuning is scanned, but here due to the fact that all the vortices rotate in the same direction, there is a global rotation of the entire array.

Fig. 5
Fig. 5

(a) Rotation angle of two vortices. m=1(red circles), m=−1(blue squares), m=1 and m=−1 (green diamonds). Simulation results for these configurations are plotted by solid lines. (b) The distance between two m=+1 vortex centers (Black circles) and the EIT transmission (Red squares) as a function of the two photon detuning. Both curves follow the same trend.

Fig. 6
Fig. 6

Storage dynamics of two vortices with total L=0. The storage is done under the condition of zero two-photon detuning. (a) Pictures of the array for different storage times. (b) A cross section of the pictures in (a) along the axis connecting the two vortices. The vortices dark spot vanishes for long storage times.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

χ 31 ( k , ω ) = i g c K ( ω ) n 0 [ 1 + L ˜ ( k , ω ) ]
L ˜ ( k , ω ) = K ( ω ) | Ω c | 2 i ( Δ + ω ) Γ hom D k 2

Metrics