Abstract

We experimental demonstrate stable, simple and pulse width-tunable 40 GHz short time window generation using a dual parallel Mach-Zehnder modulator (DPMZM) driven simply by an electrical clock. The pulse widths are measured to be tunable continuously from 5.6ps to 12.6ps by simply adjusting the DC bias voltage of DPMZM. The timing jitter, extinction ratio (ER), optical signal-to-noise ratio (OSNR) and insertion loss (IL) of the generated width-tunable time window are measured to be better than 50fs, 18dB, 50dB and 16dB respectively.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Yu, L. S. Yan, T. Luo, Y. Wang, Z. Pan, and A. E. Willner, “Width-tunable optical RZ pulse train generation based on four-wave mixing in highly nonlinear fiber,” IEEE Photon. Technol. Lett.17(3), 636–638 (2005).
    [CrossRef]
  2. Y. Ji, Y. Li, J. Wu, F. Z. Zhang, K. Xu, W. Li, X. B. Hong, and J. T. Lin, “A Phase Stable Short Pulses Generator Using an EAM and Phase Modulators for Application in 160-GBaud DQPSK Systems,” IEEE Photon. Technol. Lett.24(1), 64–66 (2012).
    [CrossRef]
  3. Y. Ji, Y. Li, J. Wu, B. Luo, Y. T. Dai, K. Xu, W. Li, X. B. Hong, and J. T. Lin, “160-GBaud DQPSK Optical Time-Division Demultiplexing Using a Polarization Modulator,” IEEE Photon. Technol. Lett.24(9), 772–774 (2012).
    [CrossRef]
  4. A. O. J. Wiberg, C. S. Bres, B. P. P. Kuo, E. Myslivets, and S. Radic, “Cavity-less 40 GHz pulse source tunable over 95 nm,” in European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2009), paper 5.2.3.
  5. M. D. Pelusi, “160-Gb/s Optical Time-Division Demultiplexing Using a Mach-Zehnder Modulator in a Fiber Loop,” IEEE Photon. Technol. Lett.20(12), 1060–1062 (2008).
    [CrossRef]
  6. T. Sakamoto, T. Kawanishi, and M. Tsuchiya, “10 GHz, 2.4 ps pulse generation using a single-stage dual-drive Mach-Zehnder modulator,” Opt. Lett.33(8), 890–892 (2008).
    [CrossRef] [PubMed]
  7. Y. Li, J. Wu, Y. Ji, D. M. Kong, K. Xu, W. Li, X. B. Hong, H. X. Guo, Y. T. Dai, Y. Zuo, and J. T. Lin, “160Gbaud/s to 40Gbaud/s OT DM-DQPSK De-multiplex Based on a Dual Parallel Mach-Zehnder Modulator ”, in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OWI1.2.
  8. S. M. R. M. Nezam and A. B. Sahin, J. E. MeGeehan, T. Luo, Q. Yu, and A.E. Willner, “Enhanced Robustness of RZ WDM Systems Using Tunable Pulse-Width Management at the Transmitter” in European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2002), pape 10.6.2.
  9. C. Yu, L.-S. Yan, T. Luo, Y. Wang, Z. Pan, and A. E. Willner, “Width-Tunable Optical Pulse Generation Based on Four-Wave Mixing in Highly-Nonlinear Fiber”, Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2002), paper CTuN4.
  10. A. Zhang, H. L. Liu, M. S. Demokan, and H. Y. Tam, “Width and Wavelength-Tunable Optical Pulse Train Generation Based on Four-Wave Mixing in Highly Nonlinear Photonic Crystal Fiber,” IEEE Photon. Technol. Lett.17(12), 2664–2666 (2005).
    [CrossRef]
  11. M. A. Ummy, N. Madamopoulos, and R. Dorsinville, “SOA-based loop mirror for tunable pulse-width generation,” Opt. Commun.282(13), 2608–2614 (2009).
    [CrossRef]
  12. Y. Dong, Z. H. Li, J. Mo, Y. Wang, C. Lu, and T. H. Cheng, “Pulsewidth-Tunable CS-RZ Signal Format With Better Tolerance to Dispersion and Nonlinear Degradation in Optical Transmission System,” IEEE Photon. Technol. Lett.16(5), 1409–1411 (2004).
    [CrossRef]
  13. Q. Nguyen-The, H. N. Tan, M. Matsuura, and N. Kishi, “Generation of multi-wavelength picosecond pulses with tunable pulsewidth and channel spacing using a Raman amplification-based adiabatic soliton compressor,” Opt. Express20(2), 1230–1236 (2012).
    [CrossRef] [PubMed]

2012 (3)

Y. Ji, Y. Li, J. Wu, F. Z. Zhang, K. Xu, W. Li, X. B. Hong, and J. T. Lin, “A Phase Stable Short Pulses Generator Using an EAM and Phase Modulators for Application in 160-GBaud DQPSK Systems,” IEEE Photon. Technol. Lett.24(1), 64–66 (2012).
[CrossRef]

Y. Ji, Y. Li, J. Wu, B. Luo, Y. T. Dai, K. Xu, W. Li, X. B. Hong, and J. T. Lin, “160-GBaud DQPSK Optical Time-Division Demultiplexing Using a Polarization Modulator,” IEEE Photon. Technol. Lett.24(9), 772–774 (2012).
[CrossRef]

Q. Nguyen-The, H. N. Tan, M. Matsuura, and N. Kishi, “Generation of multi-wavelength picosecond pulses with tunable pulsewidth and channel spacing using a Raman amplification-based adiabatic soliton compressor,” Opt. Express20(2), 1230–1236 (2012).
[CrossRef] [PubMed]

2009 (1)

M. A. Ummy, N. Madamopoulos, and R. Dorsinville, “SOA-based loop mirror for tunable pulse-width generation,” Opt. Commun.282(13), 2608–2614 (2009).
[CrossRef]

2008 (2)

M. D. Pelusi, “160-Gb/s Optical Time-Division Demultiplexing Using a Mach-Zehnder Modulator in a Fiber Loop,” IEEE Photon. Technol. Lett.20(12), 1060–1062 (2008).
[CrossRef]

T. Sakamoto, T. Kawanishi, and M. Tsuchiya, “10 GHz, 2.4 ps pulse generation using a single-stage dual-drive Mach-Zehnder modulator,” Opt. Lett.33(8), 890–892 (2008).
[CrossRef] [PubMed]

2005 (2)

A. Zhang, H. L. Liu, M. S. Demokan, and H. Y. Tam, “Width and Wavelength-Tunable Optical Pulse Train Generation Based on Four-Wave Mixing in Highly Nonlinear Photonic Crystal Fiber,” IEEE Photon. Technol. Lett.17(12), 2664–2666 (2005).
[CrossRef]

C. Yu, L. S. Yan, T. Luo, Y. Wang, Z. Pan, and A. E. Willner, “Width-tunable optical RZ pulse train generation based on four-wave mixing in highly nonlinear fiber,” IEEE Photon. Technol. Lett.17(3), 636–638 (2005).
[CrossRef]

2004 (1)

Y. Dong, Z. H. Li, J. Mo, Y. Wang, C. Lu, and T. H. Cheng, “Pulsewidth-Tunable CS-RZ Signal Format With Better Tolerance to Dispersion and Nonlinear Degradation in Optical Transmission System,” IEEE Photon. Technol. Lett.16(5), 1409–1411 (2004).
[CrossRef]

Cheng, T. H.

Y. Dong, Z. H. Li, J. Mo, Y. Wang, C. Lu, and T. H. Cheng, “Pulsewidth-Tunable CS-RZ Signal Format With Better Tolerance to Dispersion and Nonlinear Degradation in Optical Transmission System,” IEEE Photon. Technol. Lett.16(5), 1409–1411 (2004).
[CrossRef]

Dai, Y. T.

Y. Ji, Y. Li, J. Wu, B. Luo, Y. T. Dai, K. Xu, W. Li, X. B. Hong, and J. T. Lin, “160-GBaud DQPSK Optical Time-Division Demultiplexing Using a Polarization Modulator,” IEEE Photon. Technol. Lett.24(9), 772–774 (2012).
[CrossRef]

Demokan, M. S.

A. Zhang, H. L. Liu, M. S. Demokan, and H. Y. Tam, “Width and Wavelength-Tunable Optical Pulse Train Generation Based on Four-Wave Mixing in Highly Nonlinear Photonic Crystal Fiber,” IEEE Photon. Technol. Lett.17(12), 2664–2666 (2005).
[CrossRef]

Dong, Y.

Y. Dong, Z. H. Li, J. Mo, Y. Wang, C. Lu, and T. H. Cheng, “Pulsewidth-Tunable CS-RZ Signal Format With Better Tolerance to Dispersion and Nonlinear Degradation in Optical Transmission System,” IEEE Photon. Technol. Lett.16(5), 1409–1411 (2004).
[CrossRef]

Dorsinville, R.

M. A. Ummy, N. Madamopoulos, and R. Dorsinville, “SOA-based loop mirror for tunable pulse-width generation,” Opt. Commun.282(13), 2608–2614 (2009).
[CrossRef]

Hong, X. B.

Y. Ji, Y. Li, J. Wu, B. Luo, Y. T. Dai, K. Xu, W. Li, X. B. Hong, and J. T. Lin, “160-GBaud DQPSK Optical Time-Division Demultiplexing Using a Polarization Modulator,” IEEE Photon. Technol. Lett.24(9), 772–774 (2012).
[CrossRef]

Y. Ji, Y. Li, J. Wu, F. Z. Zhang, K. Xu, W. Li, X. B. Hong, and J. T. Lin, “A Phase Stable Short Pulses Generator Using an EAM and Phase Modulators for Application in 160-GBaud DQPSK Systems,” IEEE Photon. Technol. Lett.24(1), 64–66 (2012).
[CrossRef]

Ji, Y.

Y. Ji, Y. Li, J. Wu, B. Luo, Y. T. Dai, K. Xu, W. Li, X. B. Hong, and J. T. Lin, “160-GBaud DQPSK Optical Time-Division Demultiplexing Using a Polarization Modulator,” IEEE Photon. Technol. Lett.24(9), 772–774 (2012).
[CrossRef]

Y. Ji, Y. Li, J. Wu, F. Z. Zhang, K. Xu, W. Li, X. B. Hong, and J. T. Lin, “A Phase Stable Short Pulses Generator Using an EAM and Phase Modulators for Application in 160-GBaud DQPSK Systems,” IEEE Photon. Technol. Lett.24(1), 64–66 (2012).
[CrossRef]

Kawanishi, T.

Kishi, N.

Li, W.

Y. Ji, Y. Li, J. Wu, B. Luo, Y. T. Dai, K. Xu, W. Li, X. B. Hong, and J. T. Lin, “160-GBaud DQPSK Optical Time-Division Demultiplexing Using a Polarization Modulator,” IEEE Photon. Technol. Lett.24(9), 772–774 (2012).
[CrossRef]

Y. Ji, Y. Li, J. Wu, F. Z. Zhang, K. Xu, W. Li, X. B. Hong, and J. T. Lin, “A Phase Stable Short Pulses Generator Using an EAM and Phase Modulators for Application in 160-GBaud DQPSK Systems,” IEEE Photon. Technol. Lett.24(1), 64–66 (2012).
[CrossRef]

Li, Y.

Y. Ji, Y. Li, J. Wu, B. Luo, Y. T. Dai, K. Xu, W. Li, X. B. Hong, and J. T. Lin, “160-GBaud DQPSK Optical Time-Division Demultiplexing Using a Polarization Modulator,” IEEE Photon. Technol. Lett.24(9), 772–774 (2012).
[CrossRef]

Y. Ji, Y. Li, J. Wu, F. Z. Zhang, K. Xu, W. Li, X. B. Hong, and J. T. Lin, “A Phase Stable Short Pulses Generator Using an EAM and Phase Modulators for Application in 160-GBaud DQPSK Systems,” IEEE Photon. Technol. Lett.24(1), 64–66 (2012).
[CrossRef]

Li, Z. H.

Y. Dong, Z. H. Li, J. Mo, Y. Wang, C. Lu, and T. H. Cheng, “Pulsewidth-Tunable CS-RZ Signal Format With Better Tolerance to Dispersion and Nonlinear Degradation in Optical Transmission System,” IEEE Photon. Technol. Lett.16(5), 1409–1411 (2004).
[CrossRef]

Lin, J. T.

Y. Ji, Y. Li, J. Wu, B. Luo, Y. T. Dai, K. Xu, W. Li, X. B. Hong, and J. T. Lin, “160-GBaud DQPSK Optical Time-Division Demultiplexing Using a Polarization Modulator,” IEEE Photon. Technol. Lett.24(9), 772–774 (2012).
[CrossRef]

Y. Ji, Y. Li, J. Wu, F. Z. Zhang, K. Xu, W. Li, X. B. Hong, and J. T. Lin, “A Phase Stable Short Pulses Generator Using an EAM and Phase Modulators for Application in 160-GBaud DQPSK Systems,” IEEE Photon. Technol. Lett.24(1), 64–66 (2012).
[CrossRef]

Liu, H. L.

A. Zhang, H. L. Liu, M. S. Demokan, and H. Y. Tam, “Width and Wavelength-Tunable Optical Pulse Train Generation Based on Four-Wave Mixing in Highly Nonlinear Photonic Crystal Fiber,” IEEE Photon. Technol. Lett.17(12), 2664–2666 (2005).
[CrossRef]

Lu, C.

Y. Dong, Z. H. Li, J. Mo, Y. Wang, C. Lu, and T. H. Cheng, “Pulsewidth-Tunable CS-RZ Signal Format With Better Tolerance to Dispersion and Nonlinear Degradation in Optical Transmission System,” IEEE Photon. Technol. Lett.16(5), 1409–1411 (2004).
[CrossRef]

Luo, B.

Y. Ji, Y. Li, J. Wu, B. Luo, Y. T. Dai, K. Xu, W. Li, X. B. Hong, and J. T. Lin, “160-GBaud DQPSK Optical Time-Division Demultiplexing Using a Polarization Modulator,” IEEE Photon. Technol. Lett.24(9), 772–774 (2012).
[CrossRef]

Luo, T.

C. Yu, L. S. Yan, T. Luo, Y. Wang, Z. Pan, and A. E. Willner, “Width-tunable optical RZ pulse train generation based on four-wave mixing in highly nonlinear fiber,” IEEE Photon. Technol. Lett.17(3), 636–638 (2005).
[CrossRef]

Madamopoulos, N.

M. A. Ummy, N. Madamopoulos, and R. Dorsinville, “SOA-based loop mirror for tunable pulse-width generation,” Opt. Commun.282(13), 2608–2614 (2009).
[CrossRef]

Matsuura, M.

Mo, J.

Y. Dong, Z. H. Li, J. Mo, Y. Wang, C. Lu, and T. H. Cheng, “Pulsewidth-Tunable CS-RZ Signal Format With Better Tolerance to Dispersion and Nonlinear Degradation in Optical Transmission System,” IEEE Photon. Technol. Lett.16(5), 1409–1411 (2004).
[CrossRef]

Nguyen-The, Q.

Pan, Z.

C. Yu, L. S. Yan, T. Luo, Y. Wang, Z. Pan, and A. E. Willner, “Width-tunable optical RZ pulse train generation based on four-wave mixing in highly nonlinear fiber,” IEEE Photon. Technol. Lett.17(3), 636–638 (2005).
[CrossRef]

Pelusi, M. D.

M. D. Pelusi, “160-Gb/s Optical Time-Division Demultiplexing Using a Mach-Zehnder Modulator in a Fiber Loop,” IEEE Photon. Technol. Lett.20(12), 1060–1062 (2008).
[CrossRef]

Sakamoto, T.

Tam, H. Y.

A. Zhang, H. L. Liu, M. S. Demokan, and H. Y. Tam, “Width and Wavelength-Tunable Optical Pulse Train Generation Based on Four-Wave Mixing in Highly Nonlinear Photonic Crystal Fiber,” IEEE Photon. Technol. Lett.17(12), 2664–2666 (2005).
[CrossRef]

Tan, H. N.

Tsuchiya, M.

Ummy, M. A.

M. A. Ummy, N. Madamopoulos, and R. Dorsinville, “SOA-based loop mirror for tunable pulse-width generation,” Opt. Commun.282(13), 2608–2614 (2009).
[CrossRef]

Wang, Y.

C. Yu, L. S. Yan, T. Luo, Y. Wang, Z. Pan, and A. E. Willner, “Width-tunable optical RZ pulse train generation based on four-wave mixing in highly nonlinear fiber,” IEEE Photon. Technol. Lett.17(3), 636–638 (2005).
[CrossRef]

Y. Dong, Z. H. Li, J. Mo, Y. Wang, C. Lu, and T. H. Cheng, “Pulsewidth-Tunable CS-RZ Signal Format With Better Tolerance to Dispersion and Nonlinear Degradation in Optical Transmission System,” IEEE Photon. Technol. Lett.16(5), 1409–1411 (2004).
[CrossRef]

Willner, A. E.

C. Yu, L. S. Yan, T. Luo, Y. Wang, Z. Pan, and A. E. Willner, “Width-tunable optical RZ pulse train generation based on four-wave mixing in highly nonlinear fiber,” IEEE Photon. Technol. Lett.17(3), 636–638 (2005).
[CrossRef]

Wu, J.

Y. Ji, Y. Li, J. Wu, B. Luo, Y. T. Dai, K. Xu, W. Li, X. B. Hong, and J. T. Lin, “160-GBaud DQPSK Optical Time-Division Demultiplexing Using a Polarization Modulator,” IEEE Photon. Technol. Lett.24(9), 772–774 (2012).
[CrossRef]

Y. Ji, Y. Li, J. Wu, F. Z. Zhang, K. Xu, W. Li, X. B. Hong, and J. T. Lin, “A Phase Stable Short Pulses Generator Using an EAM and Phase Modulators for Application in 160-GBaud DQPSK Systems,” IEEE Photon. Technol. Lett.24(1), 64–66 (2012).
[CrossRef]

Xu, K.

Y. Ji, Y. Li, J. Wu, F. Z. Zhang, K. Xu, W. Li, X. B. Hong, and J. T. Lin, “A Phase Stable Short Pulses Generator Using an EAM and Phase Modulators for Application in 160-GBaud DQPSK Systems,” IEEE Photon. Technol. Lett.24(1), 64–66 (2012).
[CrossRef]

Y. Ji, Y. Li, J. Wu, B. Luo, Y. T. Dai, K. Xu, W. Li, X. B. Hong, and J. T. Lin, “160-GBaud DQPSK Optical Time-Division Demultiplexing Using a Polarization Modulator,” IEEE Photon. Technol. Lett.24(9), 772–774 (2012).
[CrossRef]

Yan, L. S.

C. Yu, L. S. Yan, T. Luo, Y. Wang, Z. Pan, and A. E. Willner, “Width-tunable optical RZ pulse train generation based on four-wave mixing in highly nonlinear fiber,” IEEE Photon. Technol. Lett.17(3), 636–638 (2005).
[CrossRef]

Yu, C.

C. Yu, L. S. Yan, T. Luo, Y. Wang, Z. Pan, and A. E. Willner, “Width-tunable optical RZ pulse train generation based on four-wave mixing in highly nonlinear fiber,” IEEE Photon. Technol. Lett.17(3), 636–638 (2005).
[CrossRef]

Zhang, A.

A. Zhang, H. L. Liu, M. S. Demokan, and H. Y. Tam, “Width and Wavelength-Tunable Optical Pulse Train Generation Based on Four-Wave Mixing in Highly Nonlinear Photonic Crystal Fiber,” IEEE Photon. Technol. Lett.17(12), 2664–2666 (2005).
[CrossRef]

Zhang, F. Z.

Y. Ji, Y. Li, J. Wu, F. Z. Zhang, K. Xu, W. Li, X. B. Hong, and J. T. Lin, “A Phase Stable Short Pulses Generator Using an EAM and Phase Modulators for Application in 160-GBaud DQPSK Systems,” IEEE Photon. Technol. Lett.24(1), 64–66 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

C. Yu, L. S. Yan, T. Luo, Y. Wang, Z. Pan, and A. E. Willner, “Width-tunable optical RZ pulse train generation based on four-wave mixing in highly nonlinear fiber,” IEEE Photon. Technol. Lett.17(3), 636–638 (2005).
[CrossRef]

Y. Ji, Y. Li, J. Wu, F. Z. Zhang, K. Xu, W. Li, X. B. Hong, and J. T. Lin, “A Phase Stable Short Pulses Generator Using an EAM and Phase Modulators for Application in 160-GBaud DQPSK Systems,” IEEE Photon. Technol. Lett.24(1), 64–66 (2012).
[CrossRef]

Y. Ji, Y. Li, J. Wu, B. Luo, Y. T. Dai, K. Xu, W. Li, X. B. Hong, and J. T. Lin, “160-GBaud DQPSK Optical Time-Division Demultiplexing Using a Polarization Modulator,” IEEE Photon. Technol. Lett.24(9), 772–774 (2012).
[CrossRef]

M. D. Pelusi, “160-Gb/s Optical Time-Division Demultiplexing Using a Mach-Zehnder Modulator in a Fiber Loop,” IEEE Photon. Technol. Lett.20(12), 1060–1062 (2008).
[CrossRef]

A. Zhang, H. L. Liu, M. S. Demokan, and H. Y. Tam, “Width and Wavelength-Tunable Optical Pulse Train Generation Based on Four-Wave Mixing in Highly Nonlinear Photonic Crystal Fiber,” IEEE Photon. Technol. Lett.17(12), 2664–2666 (2005).
[CrossRef]

Y. Dong, Z. H. Li, J. Mo, Y. Wang, C. Lu, and T. H. Cheng, “Pulsewidth-Tunable CS-RZ Signal Format With Better Tolerance to Dispersion and Nonlinear Degradation in Optical Transmission System,” IEEE Photon. Technol. Lett.16(5), 1409–1411 (2004).
[CrossRef]

Opt. Commun. (1)

M. A. Ummy, N. Madamopoulos, and R. Dorsinville, “SOA-based loop mirror for tunable pulse-width generation,” Opt. Commun.282(13), 2608–2614 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Other (4)

Y. Li, J. Wu, Y. Ji, D. M. Kong, K. Xu, W. Li, X. B. Hong, H. X. Guo, Y. T. Dai, Y. Zuo, and J. T. Lin, “160Gbaud/s to 40Gbaud/s OT DM-DQPSK De-multiplex Based on a Dual Parallel Mach-Zehnder Modulator ”, in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OWI1.2.

S. M. R. M. Nezam and A. B. Sahin, J. E. MeGeehan, T. Luo, Q. Yu, and A.E. Willner, “Enhanced Robustness of RZ WDM Systems Using Tunable Pulse-Width Management at the Transmitter” in European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2002), pape 10.6.2.

C. Yu, L.-S. Yan, T. Luo, Y. Wang, Z. Pan, and A. E. Willner, “Width-Tunable Optical Pulse Generation Based on Four-Wave Mixing in Highly-Nonlinear Fiber”, Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2002), paper CTuN4.

A. O. J. Wiberg, C. S. Bres, B. P. P. Kuo, E. Myslivets, and S. Radic, “Cavity-less 40 GHz pulse source tunable over 95 nm,” in European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2009), paper 5.2.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of DPMZM based short time window generation.

Fig. 2
Fig. 2

Concept diagram of the DPMZM based optical switch. (a) Modulation curve of MZM; (b ~d) pulse waveform and phase output from MZM1and MZM2; (e ~g) time window waveform output from DPMZM

Fig. 3
Fig. 3

Simulated time window waveform and frequency chirp in linear (a) and logarithm (b) coordinates.

Fig. 4
Fig. 4

Experimental measured FWHM pulse width (a), Insertion loss and ER (b) and optical spectra (c~f) of the DPMZM generated time window versus VDC1.

Fig. 5
Fig. 5

Minimum available pulse-width and the corresponding insertion loss (a) and the optical spectras (b~d) for different RF clock power.

Fig. 6
Fig. 6

Maximum available pulse-width and the corresponding insertion loss (a) and the optical spectras (b~d) for different RF clock power.

Tables (1)

Tables Icon

Table 1 Characteristics of Tunable Optical Pulses for Different RF Clock Voltage

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E a (t)= E in (t) 2 cos[ π 2 V pi ( V RF1 (t)+ V DC1 )] e j π V DC1 2 V pi E b (t)= E in (t) 2 cos[ π 2 V pi ( V RF2 (t)+ V DC2 )] e j π V DC2 2 V pi
E out (t)= E a (t)+ e j π V DC3 V PI E b (t)
E out (t)= E in (t) 2 {[cos π 2 V pi ( V 0 sin(2π f 0 t)+ V DC1 )]+ e j 2π V DC3 +π V DC2 π V DC1 2 V PI cos π V DC2 2 V pi } e j π V DC1 2 V pi

Metrics