Abstract

In this paper we propose a time-variant photonic crystal, which can be formed by a stream of wave-length-scale microdroplets flowing through a microfluidic channel. The functionality stems from the photonic bandgap generated from the 1D periodic perturbation of refractive index. The periodicity, volume fraction and composition of both the dispersed and the continuous phases can be conveniently tuned in real time by hydrodynamic or pneumatic methods. By simulation, it is found that the time-variant nature of the proposed structure can induce an abnormal energy evolution, which is distinct from any existing photonic crystal structures. As a basic component for optofluidic systems, the droplet-based photonic crystal may find potential applications in light modulation and light confinement, and could be an ideal model for pursuing physical insights into time-variant optofluidic systems.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
    [CrossRef] [PubMed]
  2. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics1(2), 106–114 (2007).
    [CrossRef]
  3. H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics5(10), 598–604 (2011).
    [CrossRef]
  4. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature436(7049), 370–372 (2005).
    [CrossRef] [PubMed]
  5. S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater.4(7), 530–533 (2005).
    [CrossRef] [PubMed]
  6. H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express15(15), 9139–9146 (2007).
    [CrossRef] [PubMed]
  7. B. S. Schmidt, A. H. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express15(22), 14322–14334 (2007).
    [CrossRef] [PubMed]
  8. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature457(7225), 71–75 (2009).
    [CrossRef] [PubMed]
  9. D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A.101(34), 12434–12438 (2004).
    [CrossRef] [PubMed]
  10. A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1x4 switch,” Opt. Express16(18), 13499–13508 (2008).
    [CrossRef] [PubMed]
  11. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett.29(14), 1626–1628 (2004).
    [CrossRef] [PubMed]
  12. S. Xiong, A. Q. Liu, L. K. Chin, and Y. Yang, “An optofluidic prism tuned by two laminar flows,” Lab Chip11(11), 1864–1869 (2011).
    [CrossRef] [PubMed]
  13. Z. Li, Z. Zhang, A. Scherer, and D. Psaltis, “Mechanically tunable optofluidic distributed feedback dye laser,” Opt. Express14(22), 10494–10499 (2006).
    [CrossRef] [PubMed]
  14. S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett.90(22), 221101 (2007).
    [CrossRef]
  15. M. Mancuso, J. M. Goddard, and D. Erickson, “Nanoporous polymer ring resonators for biosensing,” Opt. Express20(1), 245–255 (2012).
    [CrossRef] [PubMed]
  16. X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab Chip9(14), 2050–2058 (2009).
    [CrossRef] [PubMed]
  17. Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat Commun3, 651 (2012).
    [CrossRef] [PubMed]
  18. S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip8(2), 198–220 (2008).
    [CrossRef] [PubMed]
  19. R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, “Droplet based microfluidics,” Rep. Prog. Phys.75(1), 016601 (2012).
    [CrossRef] [PubMed]
  20. A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl.49(34), 5846–5868 (2010).
    [PubMed]
  21. M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science315(5813), 832–835 (2007).
    [CrossRef] [PubMed]
  22. T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, “Dynamic pattern formation in a vesicle-generating microfluidic device,” Phys. Rev. Lett.86(18), 4163–4166 (2001).
    [CrossRef] [PubMed]
  23. S. L. Anna, N. Bontoux, and H. A. Stone, “Formation of dispersions using flow focusing in microchannels,” Appl. Phys. Lett.82(3), 364–366 (2003).
    [CrossRef]
  24. Y.-C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Lab Chip4(4), 292–298 (2004).
    [CrossRef] [PubMed]
  25. E. Um and J.-K. Park, “A microfluidic abacus channel for controlling the addition of droplets,” Lab Chip9(2), 207–212 (2009).
    [CrossRef] [PubMed]
  26. G. F. Christopher, J. Bergstein, N. B. End, M. Poon, C. Nguyen, and S. L. Anna, “Coalescence and splitting of confined droplets at microfluidic junctions,” Lab Chip9(8), 1102–1109 (2009).
    [CrossRef] [PubMed]
  27. L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature442(7102), 551–554 (2006).
    [CrossRef] [PubMed]
  28. M. Hashimoto, B. Mayers, P. Garstecki, and G. M. Whitesides, “Flowing lattices of bubbles as tunable self-assembled diffraction gratings,” Small2(11), 1292–1298 (2006).
    [CrossRef] [PubMed]
  29. L. K. Chin, A. Q. Liu, J. B. Zhang, C. S. Lim, and Y. C. Soh, “An on-chip liquid tunable grating using multiphase droplet microfluidics,” Appl. Phys. Lett.93(16), 164107 (2008).
    [CrossRef]
  30. L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip10(8), 1072–1078 (2010).
    [CrossRef] [PubMed]
  31. S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip9(19), 2767–2771 (2009).
    [CrossRef] [PubMed]
  32. E. Castro-Hernández, W. van Hoeve, D. Lohse, and J. M. Gordillo, “Microbubble generation in a co-flow device operated in a new regime,” Lab Chip11(12), 2023–2029 (2011).
    [CrossRef] [PubMed]
  33. L. Shui, E. S. Kooij, D. Wijnperle, A. van der Berg, and J. C. T. Eijkel, “Liquid crystallography: 3D microdroplet arrangements using microfluidics,” Soft Matter5(14), 2708–2712 (2009).
    [CrossRef]
  34. L. Shui, A. van den Berg, and J. C. T. Eijkel, “Scalable attoliter monodisperse droplet formation using multiphase nano-microfluidics,” Microfluid. Nanofluid.11(1), 87–92 (2011).
    [CrossRef]
  35. S. Xiong, Y. Yang, K. Mawatari, T. Kitamori, and A. Q. Liu, “Nano-optofluidic droplet via photonic crystal characters for bio-imaging and detection applications,” in The 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences, pp. 1077–1079 (2011).
  36. P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nat. Rev. Drug Discov.5(3), 210–218 (2006).
    [CrossRef] [PubMed]
  37. E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U.S.A.106(34), 14195–14200 (2009).
    [CrossRef] [PubMed]
  38. M. T. Guo, A. Rotem, J. A. Heyman, and D. A. Weitz, “Droplet microfluidics for high-throughput biological assays,” Lab Chip12(12), 2146–2155 (2012).
    [CrossRef] [PubMed]
  39. H. Kogelnik, “An introduction to integrated optics,” IEEE Trans. Microw. Theory Tech.23(1), 2–16 (1975).
    [CrossRef]
  40. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton, 1995).
  41. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech: Norwood, MA, 2000).
  42. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
    [CrossRef]
  43. Carbon disulifide (CS2) sometimes can be used as infrared transparent solvent, whose transparent window mainly spans at wavelengths from 8 to16µm. We select it because of its high refractive index which is 1.628. The most popular infrared solvent is carbon tetrachloride (CCl4), which is transparent at all wavelength less than 12µm. Other infrared transparent solvents include tetrachloroethylene, chloroform, dimethylformamide, dioxane, cyclohexane and benzene.
  44. J. S. Forsi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic bandgap microcavities in optical waveguides,” Nature390, 143–145 (1999).
  45. K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
    [CrossRef] [PubMed]
  46. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005).
    [CrossRef] [PubMed]
  47. V. Lien and F. Vollmer, “Microfluidic flow rate detection based on integrated optical fiber cantilever,” Lab Chip7(10), 1352–1356 (2007).
    [CrossRef] [PubMed]
  48. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B54(1-2), 3–15 (1999).
    [CrossRef]
  49. S. Jakiela, S. Makulska, P. M. Korczyk, and P. Garstecki, “Speed of flow of individual droplets in microfluidic channels as a function of the capillary number, volume of droplets and contrast of viscosities,” Lab Chip11(21), 3603–3608 (2011).
    [CrossRef] [PubMed]
  50. J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics5(4), 234–238 (2011).
    [CrossRef]
  51. J. Lee, H. Park, J. Jung, and H. Kwak, “Bubble nucleation micro line heaters,” J. Heat Transfer125(4), 687–692 (2003).
    [CrossRef]
  52. K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip11(7), 1389–1395 (2011).
    [CrossRef] [PubMed]
  53. According to ideal gas law, a heat source at a fixed location will enlarge the volume of microbubbles as they flow through.
  54. J.-M. Lim, J. P. Urbanski, T. Thorsen, and S.-M. Yang, “Pneumatic control of a liquid-core/liquid-cladding waveguide as the basis for an optofluidic switch,” Appl. Phys. Lett.98(4), 044101 (2011).
    [CrossRef]
  55. W. Song and D. Psaltis, “Pneumatically tunable optofluidic 2×2 switch for reconfigurable optical circuit,” Lab Chip11(14), 2397–2402 (2011).
    [CrossRef] [PubMed]

2012 (4)

R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, “Droplet based microfluidics,” Rep. Prog. Phys.75(1), 016601 (2012).
[CrossRef] [PubMed]

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat Commun3, 651 (2012).
[CrossRef] [PubMed]

M. T. Guo, A. Rotem, J. A. Heyman, and D. A. Weitz, “Droplet microfluidics for high-throughput biological assays,” Lab Chip12(12), 2146–2155 (2012).
[CrossRef] [PubMed]

M. Mancuso, J. M. Goddard, and D. Erickson, “Nanoporous polymer ring resonators for biosensing,” Opt. Express20(1), 245–255 (2012).
[CrossRef] [PubMed]

2011 (9)

S. Xiong, A. Q. Liu, L. K. Chin, and Y. Yang, “An optofluidic prism tuned by two laminar flows,” Lab Chip11(11), 1864–1869 (2011).
[CrossRef] [PubMed]

S. Jakiela, S. Makulska, P. M. Korczyk, and P. Garstecki, “Speed of flow of individual droplets in microfluidic channels as a function of the capillary number, volume of droplets and contrast of viscosities,” Lab Chip11(21), 3603–3608 (2011).
[CrossRef] [PubMed]

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics5(4), 234–238 (2011).
[CrossRef]

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics5(10), 598–604 (2011).
[CrossRef]

E. Castro-Hernández, W. van Hoeve, D. Lohse, and J. M. Gordillo, “Microbubble generation in a co-flow device operated in a new regime,” Lab Chip11(12), 2023–2029 (2011).
[CrossRef] [PubMed]

L. Shui, A. van den Berg, and J. C. T. Eijkel, “Scalable attoliter monodisperse droplet formation using multiphase nano-microfluidics,” Microfluid. Nanofluid.11(1), 87–92 (2011).
[CrossRef]

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip11(7), 1389–1395 (2011).
[CrossRef] [PubMed]

J.-M. Lim, J. P. Urbanski, T. Thorsen, and S.-M. Yang, “Pneumatic control of a liquid-core/liquid-cladding waveguide as the basis for an optofluidic switch,” Appl. Phys. Lett.98(4), 044101 (2011).
[CrossRef]

W. Song and D. Psaltis, “Pneumatically tunable optofluidic 2×2 switch for reconfigurable optical circuit,” Lab Chip11(14), 2397–2402 (2011).
[CrossRef] [PubMed]

2010 (3)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl.49(34), 5846–5868 (2010).
[PubMed]

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip10(8), 1072–1078 (2010).
[CrossRef] [PubMed]

2009 (7)

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip9(19), 2767–2771 (2009).
[CrossRef] [PubMed]

E. Um and J.-K. Park, “A microfluidic abacus channel for controlling the addition of droplets,” Lab Chip9(2), 207–212 (2009).
[CrossRef] [PubMed]

G. F. Christopher, J. Bergstein, N. B. End, M. Poon, C. Nguyen, and S. L. Anna, “Coalescence and splitting of confined droplets at microfluidic junctions,” Lab Chip9(8), 1102–1109 (2009).
[CrossRef] [PubMed]

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab Chip9(14), 2050–2058 (2009).
[CrossRef] [PubMed]

L. Shui, E. S. Kooij, D. Wijnperle, A. van der Berg, and J. C. T. Eijkel, “Liquid crystallography: 3D microdroplet arrangements using microfluidics,” Soft Matter5(14), 2708–2712 (2009).
[CrossRef]

E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U.S.A.106(34), 14195–14200 (2009).
[CrossRef] [PubMed]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature457(7225), 71–75 (2009).
[CrossRef] [PubMed]

2008 (3)

A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1x4 switch,” Opt. Express16(18), 13499–13508 (2008).
[CrossRef] [PubMed]

S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip8(2), 198–220 (2008).
[CrossRef] [PubMed]

L. K. Chin, A. Q. Liu, J. B. Zhang, C. S. Lim, and Y. C. Soh, “An on-chip liquid tunable grating using multiphase droplet microfluidics,” Appl. Phys. Lett.93(16), 164107 (2008).
[CrossRef]

2007 (6)

M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science315(5813), 832–835 (2007).
[CrossRef] [PubMed]

V. Lien and F. Vollmer, “Microfluidic flow rate detection based on integrated optical fiber cantilever,” Lab Chip7(10), 1352–1356 (2007).
[CrossRef] [PubMed]

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett.90(22), 221101 (2007).
[CrossRef]

H. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express15(15), 9139–9146 (2007).
[CrossRef] [PubMed]

B. S. Schmidt, A. H. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express15(22), 14322–14334 (2007).
[CrossRef] [PubMed]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics1(2), 106–114 (2007).
[CrossRef]

2006 (5)

Z. Li, Z. Zhang, A. Scherer, and D. Psaltis, “Mechanically tunable optofluidic distributed feedback dye laser,” Opt. Express14(22), 10494–10499 (2006).
[CrossRef] [PubMed]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
[CrossRef] [PubMed]

P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nat. Rev. Drug Discov.5(3), 210–218 (2006).
[CrossRef] [PubMed]

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature442(7102), 551–554 (2006).
[CrossRef] [PubMed]

M. Hashimoto, B. Mayers, P. Garstecki, and G. M. Whitesides, “Flowing lattices of bubbles as tunable self-assembled diffraction gratings,” Small2(11), 1292–1298 (2006).
[CrossRef] [PubMed]

2005 (3)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005).
[CrossRef] [PubMed]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature436(7049), 370–372 (2005).
[CrossRef] [PubMed]

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater.4(7), 530–533 (2005).
[CrossRef] [PubMed]

2004 (3)

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A.101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett.29(14), 1626–1628 (2004).
[CrossRef] [PubMed]

Y.-C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Lab Chip4(4), 292–298 (2004).
[CrossRef] [PubMed]

2003 (3)

S. L. Anna, N. Bontoux, and H. A. Stone, “Formation of dispersions using flow focusing in microchannels,” Appl. Phys. Lett.82(3), 364–366 (2003).
[CrossRef]

K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
[CrossRef] [PubMed]

J. Lee, H. Park, J. Jung, and H. Kwak, “Bubble nucleation micro line heaters,” J. Heat Transfer125(4), 687–692 (2003).
[CrossRef]

2001 (1)

T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, “Dynamic pattern formation in a vesicle-generating microfluidic device,” Phys. Rev. Lett.86(18), 4163–4166 (2001).
[CrossRef] [PubMed]

1999 (2)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B54(1-2), 3–15 (1999).
[CrossRef]

J. S. Forsi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic bandgap microcavities in optical waveguides,” Nature390, 143–145 (1999).

1975 (1)

H. Kogelnik, “An introduction to integrated optics,” IEEE Trans. Microw. Theory Tech.23(1), 2–16 (1975).
[CrossRef]

Abate, A. R.

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip9(19), 2767–2771 (2009).
[CrossRef] [PubMed]

Abell, C.

A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl.49(34), 5846–5868 (2010).
[PubMed]

Agarwal, A. K.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature442(7102), 551–554 (2006).
[CrossRef] [PubMed]

Agresti, J. J.

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip9(19), 2767–2771 (2009).
[CrossRef] [PubMed]

Almeida, V. R.

Anna, S. L.

G. F. Christopher, J. Bergstein, N. B. End, M. Poon, C. Nguyen, and S. L. Anna, “Coalescence and splitting of confined droplets at microfluidic junctions,” Lab Chip9(8), 1102–1109 (2009).
[CrossRef] [PubMed]

S. L. Anna, N. Bontoux, and H. A. Stone, “Formation of dispersions using flow focusing in microchannels,” Appl. Phys. Lett.82(3), 364–366 (2003).
[CrossRef]

Arnold, F. H.

T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, “Dynamic pattern formation in a vesicle-generating microfluidic device,” Phys. Rev. Lett.86(18), 4163–4166 (2001).
[CrossRef] [PubMed]

Beebe, D. J.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature442(7102), 551–554 (2006).
[CrossRef] [PubMed]

Bergstein, J.

G. F. Christopher, J. Bergstein, N. B. End, M. Poon, C. Nguyen, and S. L. Anna, “Coalescence and splitting of confined droplets at microfluidic junctions,” Lab Chip9(8), 1102–1109 (2009).
[CrossRef] [PubMed]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Bontoux, N.

S. L. Anna, N. Bontoux, and H. A. Stone, “Formation of dispersions using flow focusing in microchannels,” Appl. Phys. Lett.82(3), 364–366 (2003).
[CrossRef]

Brinkmann, M.

R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, “Droplet based microfluidics,” Rep. Prog. Phys.75(1), 016601 (2012).
[CrossRef] [PubMed]

Brouzes, E.

E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U.S.A.106(34), 14195–14200 (2009).
[CrossRef] [PubMed]

Campbell, K.

Castro-Hernández, E.

E. Castro-Hernández, W. van Hoeve, D. Lohse, and J. M. Gordillo, “Microbubble generation in a co-flow device operated in a new regime,” Lab Chip11(12), 2023–2029 (2011).
[CrossRef] [PubMed]

Chin, L. K.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat Commun3, 651 (2012).
[CrossRef] [PubMed]

S. Xiong, A. Q. Liu, L. K. Chin, and Y. Yang, “An optofluidic prism tuned by two laminar flows,” Lab Chip11(11), 1864–1869 (2011).
[CrossRef] [PubMed]

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip10(8), 1072–1078 (2010).
[CrossRef] [PubMed]

L. K. Chin, A. Q. Liu, J. B. Zhang, C. S. Lim, and Y. C. Soh, “An on-chip liquid tunable grating using multiphase droplet microfluidics,” Appl. Phys. Lett.93(16), 164107 (2008).
[CrossRef]

Chiou, P. Y.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Christopher, G. F.

G. F. Christopher, J. Bergstein, N. B. End, M. Poon, C. Nguyen, and S. L. Anna, “Coalescence and splitting of confined droplets at microfluidic junctions,” Lab Chip9(8), 1102–1109 (2009).
[CrossRef] [PubMed]

Conroy, R. S.

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A.101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

Courtois, F.

A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl.49(34), 5846–5868 (2010).
[PubMed]

Cristini, V.

Y.-C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Lab Chip4(4), 292–298 (2004).
[CrossRef] [PubMed]

Cuennet, J. G.

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics5(4), 234–238 (2011).
[CrossRef]

Dale, P. S.

De Sio, L.

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics5(4), 234–238 (2011).
[CrossRef]

Dholakia, K.

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater.4(7), 530–533 (2005).
[CrossRef] [PubMed]

Dittrich, P. S.

P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nat. Rev. Drug Discov.5(3), 210–218 (2006).
[CrossRef] [PubMed]

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics1(2), 106–114 (2007).
[CrossRef]

Dong, L.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature442(7102), 551–554 (2006).
[CrossRef] [PubMed]

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics1(2), 106–114 (2007).
[CrossRef]

Eijkel, J. C. T.

L. Shui, A. van den Berg, and J. C. T. Eijkel, “Scalable attoliter monodisperse droplet formation using multiphase nano-microfluidics,” Microfluid. Nanofluid.11(1), 87–92 (2011).
[CrossRef]

L. Shui, E. S. Kooij, D. Wijnperle, A. van der Berg, and J. C. T. Eijkel, “Liquid crystallography: 3D microdroplet arrangements using microfluidics,” Soft Matter5(14), 2708–2712 (2009).
[CrossRef]

End, N. B.

G. F. Christopher, J. Bergstein, N. B. End, M. Poon, C. Nguyen, and S. L. Anna, “Coalescence and splitting of confined droplets at microfluidic junctions,” Lab Chip9(8), 1102–1109 (2009).
[CrossRef] [PubMed]

Erickson, D.

Fainman, Y.

Fan, S.

J. S. Forsi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic bandgap microcavities in optical waveguides,” Nature390, 143–145 (1999).

Fan, X.

Ferrera, J.

J. S. Forsi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic bandgap microcavities in optical waveguides,” Nature390, 143–145 (1999).

Fischbach, M. A.

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A.101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

Fischlechner, M.

A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl.49(34), 5846–5868 (2010).
[PubMed]

Fisher, J. S.

Y.-C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Lab Chip4(4), 292–298 (2004).
[CrossRef] [PubMed]

Forsi, J. S.

J. S. Forsi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic bandgap microcavities in optical waveguides,” Nature390, 143–145 (1999).

Garstecki, P.

S. Jakiela, S. Makulska, P. M. Korczyk, and P. Garstecki, “Speed of flow of individual droplets in microfluidic channels as a function of the capillary number, volume of droplets and contrast of viscosities,” Lab Chip11(21), 3603–3608 (2011).
[CrossRef] [PubMed]

M. Hashimoto, B. Mayers, P. Garstecki, and G. M. Whitesides, “Flowing lattices of bubbles as tunable self-assembled diffraction gratings,” Small2(11), 1292–1298 (2006).
[CrossRef] [PubMed]

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A.101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B54(1-2), 3–15 (1999).
[CrossRef]

Gershenfeld, N.

M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science315(5813), 832–835 (2007).
[CrossRef] [PubMed]

Goddard, J. M.

Gordillo, J. M.

E. Castro-Hernández, W. van Hoeve, D. Lohse, and J. M. Gordillo, “Microbubble generation in a co-flow device operated in a new regime,” Lab Chip11(12), 2023–2029 (2011).
[CrossRef] [PubMed]

Groisman, A.

Guo, M. T.

M. T. Guo, A. Rotem, J. A. Heyman, and D. A. Weitz, “Droplet microfluidics for high-throughput biological assays,” Lab Chip12(12), 2146–2155 (2012).
[CrossRef] [PubMed]

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Hashimoto, M.

M. Hashimoto, B. Mayers, P. Garstecki, and G. M. Whitesides, “Flowing lattices of bubbles as tunable self-assembled diffraction gratings,” Small2(11), 1292–1298 (2006).
[CrossRef] [PubMed]

Hawkins, A. R.

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics5(10), 598–604 (2011).
[CrossRef]

Herminghaus, S.

R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, “Droplet based microfluidics,” Rep. Prog. Phys.75(1), 016601 (2012).
[CrossRef] [PubMed]

Heyman, J. A.

M. T. Guo, A. Rotem, J. A. Heyman, and D. A. Weitz, “Droplet microfluidics for high-throughput biological assays,” Lab Chip12(12), 2146–2155 (2012).
[CrossRef] [PubMed]

Hollfelder, F.

A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl.49(34), 5846–5868 (2010).
[PubMed]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B54(1-2), 3–15 (1999).
[CrossRef]

Huang, T. J.

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab Chip9(14), 2050–2058 (2009).
[CrossRef] [PubMed]

Huck, W. T. S.

A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl.49(34), 5846–5868 (2010).
[PubMed]

Hung, L. H.

S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip8(2), 198–220 (2008).
[CrossRef] [PubMed]

Hutchison, J. B.

E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U.S.A.106(34), 14195–14200 (2009).
[CrossRef] [PubMed]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Ippen, E. P.

J. S. Forsi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic bandgap microcavities in optical waveguides,” Nature390, 143–145 (1999).

Jakiela, S.

S. Jakiela, S. Makulska, P. M. Korczyk, and P. Garstecki, “Speed of flow of individual droplets in microfluidic channels as a function of the capillary number, volume of droplets and contrast of viscosities,” Lab Chip11(21), 3603–3608 (2011).
[CrossRef] [PubMed]

Jian, A.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip11(7), 1389–1395 (2011).
[CrossRef] [PubMed]

Jiang, H.

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature442(7102), 551–554 (2006).
[CrossRef] [PubMed]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

J. S. Forsi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic bandgap microcavities in optical waveguides,” Nature390, 143–145 (1999).

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Juluri, B. K.

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab Chip9(14), 2050–2058 (2009).
[CrossRef] [PubMed]

Jung, J.

J. Lee, H. Park, J. Jung, and H. Kwak, “Bubble nucleation micro line heaters,” J. Heat Transfer125(4), 687–692 (2003).
[CrossRef]

Kimerling, L. C.

J. S. Forsi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic bandgap microcavities in optical waveguides,” Nature390, 143–145 (1999).

Klug, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Kogelnik, H.

H. Kogelnik, “An introduction to integrated optics,” IEEE Trans. Microw. Theory Tech.23(1), 2–16 (1975).
[CrossRef]

Kooij, E. S.

L. Shui, E. S. Kooij, D. Wijnperle, A. van der Berg, and J. C. T. Eijkel, “Liquid crystallography: 3D microdroplet arrangements using microfluidics,” Soft Matter5(14), 2708–2712 (2009).
[CrossRef]

Korczyk, P. M.

S. Jakiela, S. Makulska, P. M. Korczyk, and P. Garstecki, “Speed of flow of individual droplets in microfluidic channels as a function of the capillary number, volume of droplets and contrast of viscosities,” Lab Chip11(21), 3603–3608 (2011).
[CrossRef] [PubMed]

Krauss, T. F.

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater.4(7), 530–533 (2005).
[CrossRef] [PubMed]

Kwak, H.

J. Lee, H. Park, J. Jung, and H. Kwak, “Bubble nucleation micro line heaters,” J. Heat Transfer125(4), 687–692 (2003).
[CrossRef]

Lapsley, M. I.

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab Chip9(14), 2050–2058 (2009).
[CrossRef] [PubMed]

Lee, A. I.

Y.-C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Lab Chip4(4), 292–298 (2004).
[CrossRef] [PubMed]

Lee, A. P.

S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip8(2), 198–220 (2008).
[CrossRef] [PubMed]

Y.-C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Lab Chip4(4), 292–298 (2004).
[CrossRef] [PubMed]

Lee, J.

J. Lee, H. Park, J. Jung, and H. Kwak, “Bubble nucleation micro line heaters,” J. Heat Transfer125(4), 687–692 (2003).
[CrossRef]

Levy, U.

Li, Z.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip11(7), 1389–1395 (2011).
[CrossRef] [PubMed]

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip9(19), 2767–2771 (2009).
[CrossRef] [PubMed]

Z. Li, Z. Zhang, A. Scherer, and D. Psaltis, “Mechanically tunable optofluidic distributed feedback dye laser,” Opt. Express14(22), 10494–10499 (2006).
[CrossRef] [PubMed]

Lien, V.

V. Lien and F. Vollmer, “Microfluidic flow rate detection based on integrated optical fiber cantilever,” Lab Chip7(10), 1352–1356 (2007).
[CrossRef] [PubMed]

Lim, C. S.

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip10(8), 1072–1078 (2010).
[CrossRef] [PubMed]

L. K. Chin, A. Q. Liu, J. B. Zhang, C. S. Lim, and Y. C. Soh, “An on-chip liquid tunable grating using multiphase droplet microfluidics,” Appl. Phys. Lett.93(16), 164107 (2008).
[CrossRef]

Lim, J.-M.

J.-M. Lim, J. P. Urbanski, T. Thorsen, and S.-M. Yang, “Pneumatic control of a liquid-core/liquid-cladding waveguide as the basis for an optofluidic switch,” Appl. Phys. Lett.98(4), 044101 (2011).
[CrossRef]

Lin, C. L.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat Commun3, 651 (2012).
[CrossRef] [PubMed]

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip10(8), 1072–1078 (2010).
[CrossRef] [PubMed]

Lin, R.

S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip8(2), 198–220 (2008).
[CrossRef] [PubMed]

Lin, S.-C. S.

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab Chip9(14), 2050–2058 (2009).
[CrossRef] [PubMed]

Link, D. R.

E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U.S.A.106(34), 14195–14200 (2009).
[CrossRef] [PubMed]

Lipson, M.

Liu, A. Q.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat Commun3, 651 (2012).
[CrossRef] [PubMed]

S. Xiong, A. Q. Liu, L. K. Chin, and Y. Yang, “An optofluidic prism tuned by two laminar flows,” Lab Chip11(11), 1864–1869 (2011).
[CrossRef] [PubMed]

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip10(8), 1072–1078 (2010).
[CrossRef] [PubMed]

L. K. Chin, A. Q. Liu, J. B. Zhang, C. S. Lim, and Y. C. Soh, “An on-chip liquid tunable grating using multiphase droplet microfluidics,” Appl. Phys. Lett.93(16), 164107 (2008).
[CrossRef]

Lohse, D.

E. Castro-Hernández, W. van Hoeve, D. Lohse, and J. M. Gordillo, “Microbubble generation in a co-flow device operated in a new regime,” Lab Chip11(12), 2023–2029 (2011).
[CrossRef] [PubMed]

Lu, C.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat Commun3, 651 (2012).
[CrossRef] [PubMed]

MacDonald, M. P.

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater.4(7), 530–533 (2005).
[CrossRef] [PubMed]

Makulska, S.

S. Jakiela, S. Makulska, P. M. Korczyk, and P. Garstecki, “Speed of flow of individual droplets in microfluidic channels as a function of the capillary number, volume of droplets and contrast of viscosities,” Lab Chip11(21), 3603–3608 (2011).
[CrossRef] [PubMed]

Mancuso, M.

Manz, A.

P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nat. Rev. Drug Discov.5(3), 210–218 (2006).
[CrossRef] [PubMed]

Mao, X.

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab Chip9(14), 2050–2058 (2009).
[CrossRef] [PubMed]

Marran, D.

E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U.S.A.106(34), 14195–14200 (2009).
[CrossRef] [PubMed]

Mayers, B.

M. Hashimoto, B. Mayers, P. Garstecki, and G. M. Whitesides, “Flowing lattices of bubbles as tunable self-assembled diffraction gratings,” Small2(11), 1292–1298 (2006).
[CrossRef] [PubMed]

Mayers, B. T.

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A.101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Medkova, M.

E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U.S.A.106(34), 14195–14200 (2009).
[CrossRef] [PubMed]

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics1(2), 106–114 (2007).
[CrossRef]

Moore, S. D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Neale, S. L.

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater.4(7), 530–533 (2005).
[CrossRef] [PubMed]

Nguyen, C.

G. F. Christopher, J. Bergstein, N. B. End, M. Poon, C. Nguyen, and S. L. Anna, “Coalescence and splitting of confined droplets at microfluidic junctions,” Lab Chip9(8), 1102–1109 (2009).
[CrossRef] [PubMed]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Ohta, A. T.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Panepucci, R. R.

Pang, L.

Park, H.

J. Lee, H. Park, J. Jung, and H. Kwak, “Bubble nucleation micro line heaters,” J. Heat Transfer125(4), 687–692 (2003).
[CrossRef]

Park, J.-K.

E. Um and J.-K. Park, “A microfluidic abacus channel for controlling the addition of droplets,” Lab Chip9(2), 207–212 (2009).
[CrossRef] [PubMed]

Paul, K. E.

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A.101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

Perrimon, N.

E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U.S.A.106(34), 14195–14200 (2009).
[CrossRef] [PubMed]

Pfohl, T.

R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, “Droplet based microfluidics,” Rep. Prog. Phys.75(1), 016601 (2012).
[CrossRef] [PubMed]

Poon, M.

G. F. Christopher, J. Bergstein, N. B. End, M. Poon, C. Nguyen, and S. L. Anna, “Coalescence and splitting of confined droplets at microfluidic junctions,” Lab Chip9(8), 1102–1109 (2009).
[CrossRef] [PubMed]

Prakash, M.

M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science315(5813), 832–835 (2007).
[CrossRef] [PubMed]

Prentiss, M.

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A.101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

Psaltis, D.

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics5(4), 234–238 (2011).
[CrossRef]

W. Song and D. Psaltis, “Pneumatically tunable optofluidic 2×2 switch for reconfigurable optical circuit,” Lab Chip11(14), 2397–2402 (2011).
[CrossRef] [PubMed]

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip9(19), 2767–2771 (2009).
[CrossRef] [PubMed]

Z. Li, Z. Zhang, A. Scherer, and D. Psaltis, “Mechanically tunable optofluidic distributed feedback dye laser,” Opt. Express14(22), 10494–10499 (2006).
[CrossRef] [PubMed]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
[CrossRef] [PubMed]

T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, “Dynamic pattern formation in a vesicle-generating microfluidic device,” Phys. Rev. Lett.86(18), 4163–4166 (2001).
[CrossRef] [PubMed]

Roberts, R. W.

T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, “Dynamic pattern formation in a vesicle-generating microfluidic device,” Phys. Rev. Lett.86(18), 4163–4166 (2001).
[CrossRef] [PubMed]

Rotem, A.

M. T. Guo, A. Rotem, J. A. Heyman, and D. A. Weitz, “Droplet microfluidics for high-throughput biological assays,” Lab Chip12(12), 2146–2155 (2012).
[CrossRef] [PubMed]

Rothberg, J. M.

E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U.S.A.106(34), 14195–14200 (2009).
[CrossRef] [PubMed]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Samuels, M. L.

E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U.S.A.106(34), 14195–14200 (2009).
[CrossRef] [PubMed]

Savenelli, N.

E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U.S.A.106(34), 14195–14200 (2009).
[CrossRef] [PubMed]

Schaerli, Y.

A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl.49(34), 5846–5868 (2010).
[PubMed]

Scherer, A.

Schmidt, B. S.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature457(7225), 71–75 (2009).
[CrossRef] [PubMed]

B. S. Schmidt, A. H. Yang, D. Erickson, and M. Lipson, “Optofluidic trapping and transport on solid core waveguides within a microfluidic device,” Opt. Express15(22), 14322–14334 (2007).
[CrossRef] [PubMed]

Schmidt, H.

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics5(10), 598–604 (2011).
[CrossRef]

Seemann, R.

R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, “Droplet based microfluidics,” Rep. Prog. Phys.75(1), 016601 (2012).
[CrossRef] [PubMed]

Shi, J.

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab Chip9(14), 2050–2058 (2009).
[CrossRef] [PubMed]

Shopova, S. I.

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett.90(22), 221101 (2007).
[CrossRef]

Shui, L.

L. Shui, A. van den Berg, and J. C. T. Eijkel, “Scalable attoliter monodisperse droplet formation using multiphase nano-microfluidics,” Microfluid. Nanofluid.11(1), 87–92 (2011).
[CrossRef]

L. Shui, E. S. Kooij, D. Wijnperle, A. van der Berg, and J. C. T. Eijkel, “Liquid crystallography: 3D microdroplet arrangements using microfluidics,” Soft Matter5(14), 2708–2712 (2009).
[CrossRef]

Smith, H. I.

J. S. Forsi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic bandgap microcavities in optical waveguides,” Nature390, 143–145 (1999).

Soh, Y. C.

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip10(8), 1072–1078 (2010).
[CrossRef] [PubMed]

L. K. Chin, A. Q. Liu, J. B. Zhang, C. S. Lim, and Y. C. Soh, “An on-chip liquid tunable grating using multiphase droplet microfluidics,” Appl. Phys. Lett.93(16), 164107 (2008).
[CrossRef]

Song, W.

W. Song and D. Psaltis, “Pneumatically tunable optofluidic 2×2 switch for reconfigurable optical circuit,” Lab Chip11(14), 2397–2402 (2011).
[CrossRef] [PubMed]

Steinmeyer, G.

J. S. Forsi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic bandgap microcavities in optical waveguides,” Nature390, 143–145 (1999).

Stone, H. A.

S. L. Anna, N. Bontoux, and H. A. Stone, “Formation of dispersions using flow focusing in microchannels,” Appl. Phys. Lett.82(3), 364–366 (2003).
[CrossRef]

Suter, J. D.

Tam, H. Y.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip11(7), 1389–1395 (2011).
[CrossRef] [PubMed]

Tan, Y.-C.

Y.-C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Lab Chip4(4), 292–298 (2004).
[CrossRef] [PubMed]

Tang, S. K. Y.

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip9(19), 2767–2771 (2009).
[CrossRef] [PubMed]

Teh, S. Y.

S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip8(2), 198–220 (2008).
[CrossRef] [PubMed]

Theberge, A. B.

A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl.49(34), 5846–5868 (2010).
[PubMed]

Thoen, E. R.

J. S. Forsi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic bandgap microcavities in optical waveguides,” Nature390, 143–145 (1999).

Thorsen, T.

J.-M. Lim, J. P. Urbanski, T. Thorsen, and S.-M. Yang, “Pneumatic control of a liquid-core/liquid-cladding waveguide as the basis for an optofluidic switch,” Appl. Phys. Lett.98(4), 044101 (2011).
[CrossRef]

T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, “Dynamic pattern formation in a vesicle-generating microfluidic device,” Phys. Rev. Lett.86(18), 4163–4166 (2001).
[CrossRef] [PubMed]

Tsai, D. P.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat Commun3, 651 (2012).
[CrossRef] [PubMed]

Twardowski, M.

E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U.S.A.106(34), 14195–14200 (2009).
[CrossRef] [PubMed]

Um, E.

E. Um and J.-K. Park, “A microfluidic abacus channel for controlling the addition of droplets,” Lab Chip9(2), 207–212 (2009).
[CrossRef] [PubMed]

Urbanski, J. P.

J.-M. Lim, J. P. Urbanski, T. Thorsen, and S.-M. Yang, “Pneumatic control of a liquid-core/liquid-cladding waveguide as the basis for an optofluidic switch,” Appl. Phys. Lett.98(4), 044101 (2011).
[CrossRef]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
[CrossRef] [PubMed]

van den Berg, A.

L. Shui, A. van den Berg, and J. C. T. Eijkel, “Scalable attoliter monodisperse droplet formation using multiphase nano-microfluidics,” Microfluid. Nanofluid.11(1), 87–92 (2011).
[CrossRef]

van der Berg, A.

L. Shui, E. S. Kooij, D. Wijnperle, A. van der Berg, and J. C. T. Eijkel, “Liquid crystallography: 3D microdroplet arrangements using microfluidics,” Soft Matter5(14), 2708–2712 (2009).
[CrossRef]

van Hoeve, W.

E. Castro-Hernández, W. van Hoeve, D. Lohse, and J. M. Gordillo, “Microbubble generation in a co-flow device operated in a new regime,” Lab Chip11(12), 2023–2029 (2011).
[CrossRef] [PubMed]

Vasdekis, A. E.

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics5(4), 234–238 (2011).
[CrossRef]

Villeneuve, P. R.

J. S. Forsi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic bandgap microcavities in optical waveguides,” Nature390, 143–145 (1999).

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005).
[CrossRef] [PubMed]

Vollmer, F.

V. Lien and F. Vollmer, “Microfluidic flow rate detection based on integrated optical fiber cantilever,” Lab Chip7(10), 1352–1356 (2007).
[CrossRef] [PubMed]

Wang, G. P.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat Commun3, 651 (2012).
[CrossRef] [PubMed]

Wang, Y.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip11(7), 1389–1395 (2011).
[CrossRef] [PubMed]

Weitz, D. A.

M. T. Guo, A. Rotem, J. A. Heyman, and D. A. Weitz, “Droplet microfluidics for high-throughput biological assays,” Lab Chip12(12), 2146–2155 (2012).
[CrossRef] [PubMed]

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip9(19), 2767–2771 (2009).
[CrossRef] [PubMed]

White, I. M.

Whitesides, G. M.

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip9(19), 2767–2771 (2009).
[CrossRef] [PubMed]

M. Hashimoto, B. Mayers, P. Garstecki, and G. M. Whitesides, “Flowing lattices of bubbles as tunable self-assembled diffraction gratings,” Small2(11), 1292–1298 (2006).
[CrossRef] [PubMed]

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A.101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

Wijnperle, D.

L. Shui, E. S. Kooij, D. Wijnperle, A. van der Berg, and J. C. T. Eijkel, “Liquid crystallography: 3D microdroplet arrangements using microfluidics,” Soft Matter5(14), 2708–2712 (2009).
[CrossRef]

Wolfe, D. B.

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A.101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

Wu, M. C.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Xiong, S.

S. Xiong, A. Q. Liu, L. K. Chin, and Y. Yang, “An optofluidic prism tuned by two laminar flows,” Lab Chip11(11), 1864–1869 (2011).
[CrossRef] [PubMed]

Xu, Q.

Yang, A. H.

Yang, A. H. J.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Yang, S.-M.

J.-M. Lim, J. P. Urbanski, T. Thorsen, and S.-M. Yang, “Pneumatic control of a liquid-core/liquid-cladding waveguide as the basis for an optofluidic switch,” Appl. Phys. Lett.98(4), 044101 (2011).
[CrossRef]

Yang, Y.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat Commun3, 651 (2012).
[CrossRef] [PubMed]

S. Xiong, A. Q. Liu, L. K. Chin, and Y. Yang, “An optofluidic prism tuned by two laminar flows,” Lab Chip11(11), 1864–1869 (2011).
[CrossRef] [PubMed]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B54(1-2), 3–15 (1999).
[CrossRef]

Zamek, S.

Zhang, J. B.

L. K. Chin, A. Q. Liu, J. B. Zhang, C. S. Lim, and Y. C. Soh, “An on-chip liquid tunable grating using multiphase droplet microfluidics,” Appl. Phys. Lett.93(16), 164107 (2008).
[CrossRef]

Zhang, K.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip11(7), 1389–1395 (2011).
[CrossRef] [PubMed]

Zhang, P.

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett.90(22), 221101 (2007).
[CrossRef]

Zhang, X.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip11(7), 1389–1395 (2011).
[CrossRef] [PubMed]

Zhang, X. M.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat Commun3, 651 (2012).
[CrossRef] [PubMed]

Zhang, Z.

Zheludev, N. I.

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat Commun3, 651 (2012).
[CrossRef] [PubMed]

Zhou, H.

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett.90(22), 221101 (2007).
[CrossRef]

Zhu, H.

Angew. Chem. Int. Ed. Engl. (1)

A. B. Theberge, F. Courtois, Y. Schaerli, M. Fischlechner, C. Abell, F. Hollfelder, and W. T. S. Huck, “Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology,” Angew. Chem. Int. Ed. Engl.49(34), 5846–5868 (2010).
[PubMed]

Appl. Phys. Lett. (4)

L. K. Chin, A. Q. Liu, J. B. Zhang, C. S. Lim, and Y. C. Soh, “An on-chip liquid tunable grating using multiphase droplet microfluidics,” Appl. Phys. Lett.93(16), 164107 (2008).
[CrossRef]

S. L. Anna, N. Bontoux, and H. A. Stone, “Formation of dispersions using flow focusing in microchannels,” Appl. Phys. Lett.82(3), 364–366 (2003).
[CrossRef]

J.-M. Lim, J. P. Urbanski, T. Thorsen, and S.-M. Yang, “Pneumatic control of a liquid-core/liquid-cladding waveguide as the basis for an optofluidic switch,” Appl. Phys. Lett.98(4), 044101 (2011).
[CrossRef]

S. I. Shopova, H. Zhou, X. Fan, and P. Zhang, “Optofluidic ring resonator based dye laser,” Appl. Phys. Lett.90(22), 221101 (2007).
[CrossRef]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

H. Kogelnik, “An introduction to integrated optics,” IEEE Trans. Microw. Theory Tech.23(1), 2–16 (1975).
[CrossRef]

J. Heat Transfer (1)

J. Lee, H. Park, J. Jung, and H. Kwak, “Bubble nucleation micro line heaters,” J. Heat Transfer125(4), 687–692 (2003).
[CrossRef]

Lab Chip (14)

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip11(7), 1389–1395 (2011).
[CrossRef] [PubMed]

S. Jakiela, S. Makulska, P. M. Korczyk, and P. Garstecki, “Speed of flow of individual droplets in microfluidic channels as a function of the capillary number, volume of droplets and contrast of viscosities,” Lab Chip11(21), 3603–3608 (2011).
[CrossRef] [PubMed]

V. Lien and F. Vollmer, “Microfluidic flow rate detection based on integrated optical fiber cantilever,” Lab Chip7(10), 1352–1356 (2007).
[CrossRef] [PubMed]

M. T. Guo, A. Rotem, J. A. Heyman, and D. A. Weitz, “Droplet microfluidics for high-throughput biological assays,” Lab Chip12(12), 2146–2155 (2012).
[CrossRef] [PubMed]

Y.-C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Lab Chip4(4), 292–298 (2004).
[CrossRef] [PubMed]

E. Um and J.-K. Park, “A microfluidic abacus channel for controlling the addition of droplets,” Lab Chip9(2), 207–212 (2009).
[CrossRef] [PubMed]

G. F. Christopher, J. Bergstein, N. B. End, M. Poon, C. Nguyen, and S. L. Anna, “Coalescence and splitting of confined droplets at microfluidic junctions,” Lab Chip9(8), 1102–1109 (2009).
[CrossRef] [PubMed]

X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, “Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom,” Lab Chip9(14), 2050–2058 (2009).
[CrossRef] [PubMed]

S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip8(2), 198–220 (2008).
[CrossRef] [PubMed]

L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip10(8), 1072–1078 (2010).
[CrossRef] [PubMed]

S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip9(19), 2767–2771 (2009).
[CrossRef] [PubMed]

E. Castro-Hernández, W. van Hoeve, D. Lohse, and J. M. Gordillo, “Microbubble generation in a co-flow device operated in a new regime,” Lab Chip11(12), 2023–2029 (2011).
[CrossRef] [PubMed]

W. Song and D. Psaltis, “Pneumatically tunable optofluidic 2×2 switch for reconfigurable optical circuit,” Lab Chip11(14), 2397–2402 (2011).
[CrossRef] [PubMed]

S. Xiong, A. Q. Liu, L. K. Chin, and Y. Yang, “An optofluidic prism tuned by two laminar flows,” Lab Chip11(11), 1864–1869 (2011).
[CrossRef] [PubMed]

Microfluid. Nanofluid. (1)

L. Shui, A. van den Berg, and J. C. T. Eijkel, “Scalable attoliter monodisperse droplet formation using multiphase nano-microfluidics,” Microfluid. Nanofluid.11(1), 87–92 (2011).
[CrossRef]

Nat Commun (1)

Y. Yang, A. Q. Liu, L. K. Chin, X. M. Zhang, D. P. Tsai, C. L. Lin, C. Lu, G. P. Wang, and N. I. Zheludev, “Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation,” Nat Commun3, 651 (2012).
[CrossRef] [PubMed]

Nat. Mater. (1)

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater.4(7), 530–533 (2005).
[CrossRef] [PubMed]

Nat. Photonics (3)

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: a new river of light,” Nat. Photonics1(2), 106–114 (2007).
[CrossRef]

H. Schmidt and A. R. Hawkins, “The photonic integration of non-solid media using optofluidics,” Nat. Photonics5(10), 598–604 (2011).
[CrossRef]

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics5(4), 234–238 (2011).
[CrossRef]

Nat. Rev. Drug Discov. (1)

P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nat. Rev. Drug Discov.5(3), 210–218 (2006).
[CrossRef] [PubMed]

Nature (7)

J. S. Forsi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic bandgap microcavities in optical waveguides,” Nature390, 143–145 (1999).

K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
[CrossRef] [PubMed]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature438(7064), 65–69 (2005).
[CrossRef] [PubMed]

L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive liquid microlenses activated by stimuli-responsive hydrogels,” Nature442(7102), 551–554 (2006).
[CrossRef] [PubMed]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature436(7049), 370–372 (2005).
[CrossRef] [PubMed]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
[CrossRef] [PubMed]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, “Dynamic pattern formation in a vesicle-generating microfluidic device,” Phys. Rev. Lett.86(18), 4163–4166 (2001).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

E. Brouzes, M. Medkova, N. Savenelli, D. Marran, M. Twardowski, J. B. Hutchison, J. M. Rothberg, D. R. Link, N. Perrimon, and M. L. Samuels, “Droplet microfluidic technology for single-cell high-throughput screening,” Proc. Natl. Acad. Sci. U.S.A.106(34), 14195–14200 (2009).
[CrossRef] [PubMed]

D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A.101(34), 12434–12438 (2004).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, “Droplet based microfluidics,” Rep. Prog. Phys.75(1), 016601 (2012).
[CrossRef] [PubMed]

Science (1)

M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science315(5813), 832–835 (2007).
[CrossRef] [PubMed]

Sens. Actuators B (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B54(1-2), 3–15 (1999).
[CrossRef]

Small (1)

M. Hashimoto, B. Mayers, P. Garstecki, and G. M. Whitesides, “Flowing lattices of bubbles as tunable self-assembled diffraction gratings,” Small2(11), 1292–1298 (2006).
[CrossRef] [PubMed]

Soft Matter (1)

L. Shui, E. S. Kooij, D. Wijnperle, A. van der Berg, and J. C. T. Eijkel, “Liquid crystallography: 3D microdroplet arrangements using microfluidics,” Soft Matter5(14), 2708–2712 (2009).
[CrossRef]

Other (5)

S. Xiong, Y. Yang, K. Mawatari, T. Kitamori, and A. Q. Liu, “Nano-optofluidic droplet via photonic crystal characters for bio-imaging and detection applications,” in The 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences, pp. 1077–1079 (2011).

According to ideal gas law, a heat source at a fixed location will enlarge the volume of microbubbles as they flow through.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton, 1995).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech: Norwood, MA, 2000).

Carbon disulifide (CS2) sometimes can be used as infrared transparent solvent, whose transparent window mainly spans at wavelengths from 8 to16µm. We select it because of its high refractive index which is 1.628. The most popular infrared solvent is carbon tetrachloride (CCl4), which is transparent at all wavelength less than 12µm. Other infrared transparent solvents include tetrachloroethylene, chloroform, dimethylformamide, dioxane, cyclohexane and benzene.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic illustration of droplet-based U-shape PC waveguide.

Fig. 2
Fig. 2

(a) Normal index-guiding waveguide. (b) Waveguide with periodic modulation of RI. (c) Linear dispersion curve in (a). (d) Splitting of the waveguide modes in (b).

Fig. 3
Fig. 3

The two-dimensional FDTD model and results of the TvPC structure. (a) The model of as-proposed droplet-based TvPC waveguide for calculation. (b) The empty waveguide model for reference. (c) The transmittance vs. frequency observed at the output point when the waveguide is excited at the light source point.

Fig. 4
Fig. 4

Energy evolution in droplet-based 1D TvPC. (a) The energy distributions in a finite TvPC at the 1st and the 2nd order waveguide modes, respectively. The waveguide is excited by a continuous source outside the left end of the channel. (b)-(e) The 1st and 2nd order energy distributions in an infinite 1D droplet-based TvPC at (b) t = 0, (c) t = T/4, (d) t = T/2 and (e) t = 3T/4, where T is the time period for the TvPC to restore. The dashed arrows indicate the evolution of electromagnetic energy, along with the flow of microbubbles.

Fig. 5
Fig. 5

Relationships between transmittance and lengths of microbubbles. (a) Schematic illustration of different microbubble sizes L. (b) The transmittance spectra of the 1D TvPC waveguide for different microbubble lengths, of 1.0a, 1.2a, 1.4a, 1.6a, respectively.

Fig. 6
Fig. 6

Relationships between transmittance and RI of continuous phase adopted in droplet-based 1D TvPCs (a) The transmittance of TvPC with different RIs, where center frequencies of the bandgaps are marked by orange triangles. (b) The center frequency of the bandgap as a function of RIs.

Fig. 7
Fig. 7

Light modulation at the bandedge frequency of the droplet-based 1D TvPC. (a) The energy evolution at the frequency f = 0.31c/a, in a time period T. (b) The transmission spectra of the waveguide at t = 0, t = T/4, t = T/2, t = 3T/4, respectively. (c) The transmittance modulation at f1 = c/a, f2 = 0.33c/a, respectively, as a function of time from 0 to 5T.

Fig. 8
Fig. 8

Relationships between defect lengths and defect mode frequencies. (a) Schematic models showing different defective TvPCs produced by inserting a longer liquid section at the center. The defect length d is defined to be the distance between two bubbles closest to the center. (b) The transmittance spectra of the defective TvPC, where the dashed arrows indicate the shifts of the defect mode by variation of d. (c) The plot of defect mode frequency as a function of defect length.

Fig. 9
Fig. 9

Behaviors of dynamic defects in droplet-based 1D TvPC. (a) Electromagnetic energy distribution in a defective TvPC waveguide at t = 2.5T, t = 3.5T, t = 4.5T, t = 5.5T and t = 6.5T, the defect length is 3.2a. The points with highest energy density are marked by orange triangles. (b) Transmittance spectra of the defective TvPC, where the defect mode peaks are clearly shown. (c) The transmittance at the defect mode frequency as a function of time, from 0 to 9T, the period for a dynamic defect to flow through the TvPC structure; blue circles are data points, and the red line is only guide for eyes.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

× [n(x)] 2 × e ikr E k (x)= (ω(k)/c) 2 e ikr E k (x),
T= |E | 2 dl/ | E 0 | 2 dl,

Metrics