M. B. Bernini, A. Federico, and G. H. Kaufmann, “Phase measurement in temporal speckle pattern interferometry signals presenting low-modulated regions by means of the bidimensional empirical mode decomposition,” Appl. Opt.50(5), 641–647 (2011).

[CrossRef]
[PubMed]

Y. Zhou and H. G. Li, “Adaptive noise reduction method for DSPI fringes based on bi-dimensional ensemble empirical mode decomposition,” Opt. Express19(19), 18207–18215 (2011).

[CrossRef]
[PubMed]

M. Wielgus and K. Patorski, “Evaluation of amplitude encoded fringe patterns using the bidimensional empirical mode decomposition and the 2D Hilbert transform generalizations,” Appl. Opt.50(28), 5513–5523 (2011).

[CrossRef]
[PubMed]

S. Li, X. Su, W. Chen, and L. Xiang, “Eliminating the zero spectrum in Fourier transform profilometry using empirical mode decomposition,” J. Opt. Soc. Am. A26(5), 1195–1201 (2009).

[CrossRef]
[PubMed]

X. Zhou, H. Zhao, and T. Jiang, “Adaptive analysis of optical fringe patterns using ensemble empirical mode decomposition algorithm,” Opt. Lett.34(13), 2033–2035 (2009).

[CrossRef]
[PubMed]

S. M. A. Bhuiyan, N. Attoh-Okine, K. E. Barner, A. Y. Ayenu-Prah, and R. R. Adhami, “Bidimensional empirical mode decomposition using various interpolation techniques,” Adv. Adapt. Data Anal01(02), 309–338 (2009).

[CrossRef]

X. Guanlei, W. Xiaotong, and X. Xiaogang, “Improved bi-dimensional EMD and Hilbert spectrum for the analysis of textures,” Pattern Recognit.42(5), 718–734 (2009).

[CrossRef]

S. Ozder, O. Kocahan, E. Coşkun, and H. Göktaş, “Optical phase distribution evaluation by using an S-transform,” Opt. Lett.32(6), 591–593 (2007).

[CrossRef]
[PubMed]

M. B. Bernini, G. E. Galizzi, A. Federico, and G. H. Kaufmann, “Evaluation of the 1D empirical mode decomposition method to smooth digital speckle pattern interferometry fringes,” Opt. Lasers Eng.45(6), 723–729 (2007).

[CrossRef]

Q. Kemao, “On window size selection in the windowed Fourier ridges algorithm,” Opt. Lasers Eng.45(12), 1186–1192 (2007).

[CrossRef]

Q. Kemao, “Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations,” Opt. Lasers Eng.45(2), 304–317 (2007).

[CrossRef]

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-D transform-domain collaborative filtering,” IEEE Trans. Image Process.16(8), 2080–2095 (2007).

[CrossRef]
[PubMed]

M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Eliminating the zero spectrum in Fourier transform profilometry using a two-dimensional continuous wavelet transform,” Opt. Commun.266(2), 482–489 (2006).

[CrossRef]

J. G. Zhong and J. W. Weng, “Phase retrieval of optical fringe patterns from the ridge of a wavelet transform,” Opt. Lett.30(19), 2560–2562 (2005).

[CrossRef]
[PubMed]

C. Damerval, S. Meignen, and V. Perrier, “A fast algorithm for bidimensional EMD,” IEEE. Signal Proc. Lett.12(10), 701–704 (2005).

[CrossRef]

A. Linderhed, “Variable sampling of the empirical mode decomposition of two-dimensional signals,” Int. J. Wavelets Multiresolution Inf. Process.03(03), 435–452 (2005).

[CrossRef]

J. Nunes, S. Guyot, and E. Delechelle, “Texture analysis based on local analysis of the bidimensional empirical mode decomposition,” Mach. Vis. Appl.16, 177–188 (2005).

[CrossRef]

X. Su and W. Chen, “Reliability-guided phase unwrapping algorithm: a review,” Opt. Lasers Eng.42(3), 245–261 (2004).

[CrossRef]

Q. Kemao, “Windowed Fourier transform for fringe pattern analysis,” Appl. Opt.43(13), 2695–2702 (2004).

[CrossRef]
[PubMed]

J. Zhong and J. Weng, “Dilating Gabor transform for the fringe analysis of 3-D shape measurement,” Opt. Eng.43(4), 895 (2004).

[CrossRef]

J. G. Zhong and J. W. Weng, “Spatial carrier-fringe pattern analysis by means of wavelet transform: wavelet transform profilometry,” Appl. Opt.43(26), 4993–4998 (2004).

[CrossRef]
[PubMed]

A. Federico and G. H. Kaufmann, “Phase retrieval in digital speckle pattern interferometry by use of a smoothed space-frequency distribution,” Appl. Opt.42(35), 7066–7071 (2003).

[CrossRef]
[PubMed]

J. C. Nunes, Y. Bouaoune, E. Delechelle, O. Niang, and P. Bunel, “Image analysis by bidimensional empirical mode decomposition,” Image Vis. Comput.21(12), 1019–1026 (2003).

[CrossRef]

Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Proc. Lett.9(3), 81–84 (2002).

[CrossRef]

J. A. Quiroga, J. Antonio Gómez-Pedrero, and Á. García-Botella, “Algorithm for fringe pattern normalization,” Opt. Commun.197(1-3), 43–51 (2001).

[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. L. C. Wu, H. H. Shih, Q. N. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci.454(1971), 903–995 (1998).

[CrossRef]

J. F. Lin and X. Y. Su, “Two-dimensional Fourier transform profilometry for the automatic measurement of three-dimensional object shapes,” Opt. Eng.34(11), 3297–3302 (1995).

[CrossRef]

S. M. A. Bhuiyan, N. Attoh-Okine, K. E. Barner, A. Y. Ayenu-Prah, and R. R. Adhami, “Bidimensional empirical mode decomposition using various interpolation techniques,” Adv. Adapt. Data Anal01(02), 309–338 (2009).

[CrossRef]

H. A. Aebischer and S. Waldner, “A simple and effective method for filtering speckle-interferometric phase fringe patterns,” Opt. Commun.162(4-6), 205–210 (1999).

[CrossRef]

J. A. Quiroga, J. Antonio Gómez-Pedrero, and Á. García-Botella, “Algorithm for fringe pattern normalization,” Opt. Commun.197(1-3), 43–51 (2001).

[CrossRef]

S. M. A. Bhuiyan, N. Attoh-Okine, K. E. Barner, A. Y. Ayenu-Prah, and R. R. Adhami, “Bidimensional empirical mode decomposition using various interpolation techniques,” Adv. Adapt. Data Anal01(02), 309–338 (2009).

[CrossRef]

S. M. A. Bhuiyan, N. Attoh-Okine, K. E. Barner, A. Y. Ayenu-Prah, and R. R. Adhami, “Bidimensional empirical mode decomposition using various interpolation techniques,” Adv. Adapt. Data Anal01(02), 309–338 (2009).

[CrossRef]

S. M. A. Bhuiyan, N. Attoh-Okine, K. E. Barner, A. Y. Ayenu-Prah, and R. R. Adhami, “Bidimensional empirical mode decomposition using various interpolation techniques,” Adv. Adapt. Data Anal01(02), 309–338 (2009).

[CrossRef]

M. B. Bernini, A. Federico, and G. H. Kaufmann, “Phase measurement in temporal speckle pattern interferometry signals presenting low-modulated regions by means of the bidimensional empirical mode decomposition,” Appl. Opt.50(5), 641–647 (2011).

[CrossRef]
[PubMed]

M. B. Bernini, A. Federico, and G. H. Kaufmann, “Noise reduction in digital speckle pattern interferometry using bidimensional empirical mode decomposition,” Appl. Opt.47(14), 2592–2598 (2008).

[CrossRef]
[PubMed]

M. B. Bernini, G. E. Galizzi, A. Federico, and G. H. Kaufmann, “Evaluation of the 1D empirical mode decomposition method to smooth digital speckle pattern interferometry fringes,” Opt. Lasers Eng.45(6), 723–729 (2007).

[CrossRef]

S. M. A. Bhuiyan, N. Attoh-Okine, K. E. Barner, A. Y. Ayenu-Prah, and R. R. Adhami, “Bidimensional empirical mode decomposition using various interpolation techniques,” Adv. Adapt. Data Anal01(02), 309–338 (2009).

[CrossRef]

J. C. Nunes, Y. Bouaoune, E. Delechelle, O. Niang, and P. Bunel, “Image analysis by bidimensional empirical mode decomposition,” Image Vis. Comput.21(12), 1019–1026 (2003).

[CrossRef]

Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Proc. Lett.9(3), 81–84 (2002).

[CrossRef]

J. C. Nunes, Y. Bouaoune, E. Delechelle, O. Niang, and P. Bunel, “Image analysis by bidimensional empirical mode decomposition,” Image Vis. Comput.21(12), 1019–1026 (2003).

[CrossRef]

M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Eliminating the zero spectrum in Fourier transform profilometry using a two-dimensional continuous wavelet transform,” Opt. Commun.266(2), 482–489 (2006).

[CrossRef]

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-D transform-domain collaborative filtering,” IEEE Trans. Image Process.16(8), 2080–2095 (2007).

[CrossRef]
[PubMed]

C. Damerval, S. Meignen, and V. Perrier, “A fast algorithm for bidimensional EMD,” IEEE. Signal Proc. Lett.12(10), 701–704 (2005).

[CrossRef]

J. Nunes, S. Guyot, and E. Delechelle, “Texture analysis based on local analysis of the bidimensional empirical mode decomposition,” Mach. Vis. Appl.16, 177–188 (2005).

[CrossRef]

J. C. Nunes, Y. Bouaoune, E. Delechelle, O. Niang, and P. Bunel, “Image analysis by bidimensional empirical mode decomposition,” Image Vis. Comput.21(12), 1019–1026 (2003).

[CrossRef]

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-D transform-domain collaborative filtering,” IEEE Trans. Image Process.16(8), 2080–2095 (2007).

[CrossRef]
[PubMed]

M. B. Bernini, A. Federico, and G. H. Kaufmann, “Phase measurement in temporal speckle pattern interferometry signals presenting low-modulated regions by means of the bidimensional empirical mode decomposition,” Appl. Opt.50(5), 641–647 (2011).

[CrossRef]
[PubMed]

M. B. Bernini, A. Federico, and G. H. Kaufmann, “Noise reduction in digital speckle pattern interferometry using bidimensional empirical mode decomposition,” Appl. Opt.47(14), 2592–2598 (2008).

[CrossRef]
[PubMed]

M. B. Bernini, G. E. Galizzi, A. Federico, and G. H. Kaufmann, “Evaluation of the 1D empirical mode decomposition method to smooth digital speckle pattern interferometry fringes,” Opt. Lasers Eng.45(6), 723–729 (2007).

[CrossRef]

A. Federico and G. H. Kaufmann, “Phase retrieval in digital speckle pattern interferometry by use of a smoothed space-frequency distribution,” Appl. Opt.42(35), 7066–7071 (2003).

[CrossRef]
[PubMed]

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-D transform-domain collaborative filtering,” IEEE Trans. Image Process.16(8), 2080–2095 (2007).

[CrossRef]
[PubMed]

M. B. Bernini, G. E. Galizzi, A. Federico, and G. H. Kaufmann, “Evaluation of the 1D empirical mode decomposition method to smooth digital speckle pattern interferometry fringes,” Opt. Lasers Eng.45(6), 723–729 (2007).

[CrossRef]

J. A. Quiroga, J. Antonio Gómez-Pedrero, and Á. García-Botella, “Algorithm for fringe pattern normalization,” Opt. Commun.197(1-3), 43–51 (2001).

[CrossRef]

M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Eliminating the zero spectrum in Fourier transform profilometry using a two-dimensional continuous wavelet transform,” Opt. Commun.266(2), 482–489 (2006).

[CrossRef]

X. Guanlei, W. Xiaotong, and X. Xiaogang, “Improved bi-dimensional EMD and Hilbert spectrum for the analysis of textures,” Pattern Recognit.42(5), 718–734 (2009).

[CrossRef]

J. Nunes, S. Guyot, and E. Delechelle, “Texture analysis based on local analysis of the bidimensional empirical mode decomposition,” Mach. Vis. Appl.16, 177–188 (2005).

[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. L. C. Wu, H. H. Shih, Q. N. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci.454(1971), 903–995 (1998).

[CrossRef]

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-D transform-domain collaborative filtering,” IEEE Trans. Image Process.16(8), 2080–2095 (2007).

[CrossRef]
[PubMed]

M. B. Bernini, A. Federico, and G. H. Kaufmann, “Phase measurement in temporal speckle pattern interferometry signals presenting low-modulated regions by means of the bidimensional empirical mode decomposition,” Appl. Opt.50(5), 641–647 (2011).

[CrossRef]
[PubMed]

M. B. Bernini, A. Federico, and G. H. Kaufmann, “Noise reduction in digital speckle pattern interferometry using bidimensional empirical mode decomposition,” Appl. Opt.47(14), 2592–2598 (2008).

[CrossRef]
[PubMed]

M. B. Bernini, G. E. Galizzi, A. Federico, and G. H. Kaufmann, “Evaluation of the 1D empirical mode decomposition method to smooth digital speckle pattern interferometry fringes,” Opt. Lasers Eng.45(6), 723–729 (2007).

[CrossRef]

A. Federico and G. H. Kaufmann, “Phase retrieval in digital speckle pattern interferometry by use of a smoothed space-frequency distribution,” Appl. Opt.42(35), 7066–7071 (2003).

[CrossRef]
[PubMed]

Q. Kemao, “On window size selection in the windowed Fourier ridges algorithm,” Opt. Lasers Eng.45(12), 1186–1192 (2007).

[CrossRef]

Q. Kemao, “Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations,” Opt. Lasers Eng.45(2), 304–317 (2007).

[CrossRef]

Q. Kemao, “Windowed Fourier transform for fringe pattern analysis,” Appl. Opt.43(13), 2695–2702 (2004).

[CrossRef]
[PubMed]

M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Eliminating the zero spectrum in Fourier transform profilometry using a two-dimensional continuous wavelet transform,” Opt. Commun.266(2), 482–489 (2006).

[CrossRef]

J. F. Lin and X. Y. Su, “Two-dimensional Fourier transform profilometry for the automatic measurement of three-dimensional object shapes,” Opt. Eng.34(11), 3297–3302 (1995).

[CrossRef]

A. Linderhed, “Variable sampling of the empirical mode decomposition of two-dimensional signals,” Int. J. Wavelets Multiresolution Inf. Process.03(03), 435–452 (2005).

[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. L. C. Wu, H. H. Shih, Q. N. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci.454(1971), 903–995 (1998).

[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. L. C. Wu, H. H. Shih, Q. N. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci.454(1971), 903–995 (1998).

[CrossRef]

C. Damerval, S. Meignen, and V. Perrier, “A fast algorithm for bidimensional EMD,” IEEE. Signal Proc. Lett.12(10), 701–704 (2005).

[CrossRef]

J. C. Nunes, Y. Bouaoune, E. Delechelle, O. Niang, and P. Bunel, “Image analysis by bidimensional empirical mode decomposition,” Image Vis. Comput.21(12), 1019–1026 (2003).

[CrossRef]

J. Nunes, S. Guyot, and E. Delechelle, “Texture analysis based on local analysis of the bidimensional empirical mode decomposition,” Mach. Vis. Appl.16, 177–188 (2005).

[CrossRef]

J. C. Nunes, Y. Bouaoune, E. Delechelle, O. Niang, and P. Bunel, “Image analysis by bidimensional empirical mode decomposition,” Image Vis. Comput.21(12), 1019–1026 (2003).

[CrossRef]

C. Damerval, S. Meignen, and V. Perrier, “A fast algorithm for bidimensional EMD,” IEEE. Signal Proc. Lett.12(10), 701–704 (2005).

[CrossRef]

J. A. Quiroga, J. Antonio Gómez-Pedrero, and Á. García-Botella, “Algorithm for fringe pattern normalization,” Opt. Commun.197(1-3), 43–51 (2001).

[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. L. C. Wu, H. H. Shih, Q. N. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci.454(1971), 903–995 (1998).

[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. L. C. Wu, H. H. Shih, Q. N. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci.454(1971), 903–995 (1998).

[CrossRef]

J. F. Lin and X. Y. Su, “Two-dimensional Fourier transform profilometry for the automatic measurement of three-dimensional object shapes,” Opt. Eng.34(11), 3297–3302 (1995).

[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. L. C. Wu, H. H. Shih, Q. N. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci.454(1971), 903–995 (1998).

[CrossRef]

H. A. Aebischer and S. Waldner, “A simple and effective method for filtering speckle-interferometric phase fringe patterns,” Opt. Commun.162(4-6), 205–210 (1999).

[CrossRef]

Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Proc. Lett.9(3), 81–84 (2002).

[CrossRef]

J. Zhong and J. Weng, “Dilating Gabor transform for the fringe analysis of 3-D shape measurement,” Opt. Eng.43(4), 895 (2004).

[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. L. C. Wu, H. H. Shih, Q. N. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci.454(1971), 903–995 (1998).

[CrossRef]

X. Guanlei, W. Xiaotong, and X. Xiaogang, “Improved bi-dimensional EMD and Hilbert spectrum for the analysis of textures,” Pattern Recognit.42(5), 718–734 (2009).

[CrossRef]

X. Guanlei, W. Xiaotong, and X. Xiaogang, “Improved bi-dimensional EMD and Hilbert spectrum for the analysis of textures,” Pattern Recognit.42(5), 718–734 (2009).

[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. L. C. Wu, H. H. Shih, Q. N. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci.454(1971), 903–995 (1998).

[CrossRef]

X. Zhou, T. Yang, H. Zou, and H. Zhao, “Multivariate empirical mode decomposition approach for adaptive denoising of fringe patterns,” Opt. Lett.37(11), 1904–1906 (2012).

[CrossRef]
[PubMed]

X. Zhou, H. Zhao, and T. Jiang, “Adaptive analysis of optical fringe patterns using ensemble empirical mode decomposition algorithm,” Opt. Lett.34(13), 2033–2035 (2009).

[CrossRef]
[PubMed]

N. E. Huang, Z. Shen, S. R. Long, M. L. C. Wu, H. H. Shih, Q. N. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci.454(1971), 903–995 (1998).

[CrossRef]

J. Zhong and J. Weng, “Dilating Gabor transform for the fringe analysis of 3-D shape measurement,” Opt. Eng.43(4), 895 (2004).

[CrossRef]

X. Zhou, T. Yang, H. Zou, and H. Zhao, “Multivariate empirical mode decomposition approach for adaptive denoising of fringe patterns,” Opt. Lett.37(11), 1904–1906 (2012).

[CrossRef]
[PubMed]

X. Zhou, H. Zhao, and T. Jiang, “Adaptive analysis of optical fringe patterns using ensemble empirical mode decomposition algorithm,” Opt. Lett.34(13), 2033–2035 (2009).

[CrossRef]
[PubMed]

S. M. A. Bhuiyan, N. Attoh-Okine, K. E. Barner, A. Y. Ayenu-Prah, and R. R. Adhami, “Bidimensional empirical mode decomposition using various interpolation techniques,” Adv. Adapt. Data Anal01(02), 309–338 (2009).

[CrossRef]

M. B. Bernini, A. Federico, and G. H. Kaufmann, “Phase measurement in temporal speckle pattern interferometry signals presenting low-modulated regions by means of the bidimensional empirical mode decomposition,” Appl. Opt.50(5), 641–647 (2011).

[CrossRef]
[PubMed]

M. Servin, J. L. Marroquin, and F. J. Cuevas, “Demodulation of a single interferogram by use of a two-dimensional regularized phase-tracking technique,” Appl. Opt.36(19), 4540–4548 (1997).

[CrossRef]
[PubMed]

M. Takeda and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D object shapes,” Appl. Opt.22(24), 3977–3982 (1983).

[CrossRef]
[PubMed]

Q. Kemao, “Windowed Fourier transform for fringe pattern analysis,” Appl. Opt.43(13), 2695–2702 (2004).

[CrossRef]
[PubMed]

J. G. Zhong and J. W. Weng, “Spatial carrier-fringe pattern analysis by means of wavelet transform: wavelet transform profilometry,” Appl. Opt.43(26), 4993–4998 (2004).

[CrossRef]
[PubMed]

A. Federico and G. H. Kaufmann, “Phase retrieval in digital speckle pattern interferometry by use of a smoothed space-frequency distribution,” Appl. Opt.42(35), 7066–7071 (2003).

[CrossRef]
[PubMed]

M. B. Bernini, A. Federico, and G. H. Kaufmann, “Noise reduction in digital speckle pattern interferometry using bidimensional empirical mode decomposition,” Appl. Opt.47(14), 2592–2598 (2008).

[CrossRef]
[PubMed]

M. Wielgus and K. Patorski, “Evaluation of amplitude encoded fringe patterns using the bidimensional empirical mode decomposition and the 2D Hilbert transform generalizations,” Appl. Opt.50(28), 5513–5523 (2011).

[CrossRef]
[PubMed]

Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Proc. Lett.9(3), 81–84 (2002).

[CrossRef]

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-D transform-domain collaborative filtering,” IEEE Trans. Image Process.16(8), 2080–2095 (2007).

[CrossRef]
[PubMed]

C. Damerval, S. Meignen, and V. Perrier, “A fast algorithm for bidimensional EMD,” IEEE. Signal Proc. Lett.12(10), 701–704 (2005).

[CrossRef]

J. C. Nunes, Y. Bouaoune, E. Delechelle, O. Niang, and P. Bunel, “Image analysis by bidimensional empirical mode decomposition,” Image Vis. Comput.21(12), 1019–1026 (2003).

[CrossRef]

A. Linderhed, “Variable sampling of the empirical mode decomposition of two-dimensional signals,” Int. J. Wavelets Multiresolution Inf. Process.03(03), 435–452 (2005).

[CrossRef]

J. Nunes, S. Guyot, and E. Delechelle, “Texture analysis based on local analysis of the bidimensional empirical mode decomposition,” Mach. Vis. Appl.16, 177–188 (2005).

[CrossRef]

H. A. Aebischer and S. Waldner, “A simple and effective method for filtering speckle-interferometric phase fringe patterns,” Opt. Commun.162(4-6), 205–210 (1999).

[CrossRef]

M. A. Gdeisat, D. R. Burton, and M. J. Lalor, “Eliminating the zero spectrum in Fourier transform profilometry using a two-dimensional continuous wavelet transform,” Opt. Commun.266(2), 482–489 (2006).

[CrossRef]

J. A. Quiroga, J. Antonio Gómez-Pedrero, and Á. García-Botella, “Algorithm for fringe pattern normalization,” Opt. Commun.197(1-3), 43–51 (2001).

[CrossRef]

J. Zhong and J. Weng, “Dilating Gabor transform for the fringe analysis of 3-D shape measurement,” Opt. Eng.43(4), 895 (2004).

[CrossRef]

J. F. Lin and X. Y. Su, “Two-dimensional Fourier transform profilometry for the automatic measurement of three-dimensional object shapes,” Opt. Eng.34(11), 3297–3302 (1995).

[CrossRef]

Q. Kemao, “On window size selection in the windowed Fourier ridges algorithm,” Opt. Lasers Eng.45(12), 1186–1192 (2007).

[CrossRef]

M. B. Bernini, G. E. Galizzi, A. Federico, and G. H. Kaufmann, “Evaluation of the 1D empirical mode decomposition method to smooth digital speckle pattern interferometry fringes,” Opt. Lasers Eng.45(6), 723–729 (2007).

[CrossRef]

X. Su and W. Chen, “Reliability-guided phase unwrapping algorithm: a review,” Opt. Lasers Eng.42(3), 245–261 (2004).

[CrossRef]

Q. Kemao, “Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations,” Opt. Lasers Eng.45(2), 304–317 (2007).

[CrossRef]

X. Zhou, T. Yang, H. Zou, and H. Zhao, “Multivariate empirical mode decomposition approach for adaptive denoising of fringe patterns,” Opt. Lett.37(11), 1904–1906 (2012).

[CrossRef]
[PubMed]

L. R. Watkins, S. M. Tan, and T. H. Barnes, “Determination of interferometer phase distributions by use of wavelets,” Opt. Lett.24(13), 905–907 (1999).

[CrossRef]
[PubMed]

J. G. Zhong and J. W. Weng, “Phase retrieval of optical fringe patterns from the ridge of a wavelet transform,” Opt. Lett.30(19), 2560–2562 (2005).

[CrossRef]
[PubMed]

X. Zhou, H. Zhao, and T. Jiang, “Adaptive analysis of optical fringe patterns using ensemble empirical mode decomposition algorithm,” Opt. Lett.34(13), 2033–2035 (2009).

[CrossRef]
[PubMed]

S. Ozder, O. Kocahan, E. Coşkun, and H. Göktaş, “Optical phase distribution evaluation by using an S-transform,” Opt. Lett.32(6), 591–593 (2007).

[CrossRef]
[PubMed]

X. Guanlei, W. Xiaotong, and X. Xiaogang, “Improved bi-dimensional EMD and Hilbert spectrum for the analysis of textures,” Pattern Recognit.42(5), 718–734 (2009).

[CrossRef]

N. E. Huang, Z. Shen, S. R. Long, M. L. C. Wu, H. H. Shih, Q. N. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci.454(1971), 903–995 (1998).

[CrossRef]

T. Yang, Finite element structural analysis (Prentice-Hall, 1986).