Abstract

A periodically patterned metal-dielectric composite material is designed, fabricated and characterized that spatially splits incoming microwave radiation into two spectral ranges, individually channeling the separate spectral bands to different cavities within each spatially repeating unit cell. Further, the target spectral bands are absorbed within each associated set of cavities. The photon sorting mechanism, the design methodology, and experimental methods used are all described in detail. A spectral splitting efficiency of 93–96% and absorption of 91–92% at the two spectral bands is obtained for the structure. This corresponds to an absorption enhancement over 600% as compared to the absorption in the same thickness of absorbing material. Methods to apply these concepts to other spectral bands are also described.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [CrossRef] [PubMed]
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef] [PubMed]
  3. M. Lester and D. C. Skigin, “An optical nanoantenna made of plasmonic chain resonators,” J. Opt. 13, 035105 (2011).
    [CrossRef]
  4. T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97, 261113 (2010).
    [CrossRef]
  5. R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489–491 (2001).
    [CrossRef]
  6. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
    [CrossRef] [PubMed]
  7. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
    [CrossRef] [PubMed]
  8. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
    [CrossRef] [PubMed]
  9. D. Crouse, “Numerical modeling and electromagnetic resonant modes in complex grating structures and opto-electronic device applications,” IEEE Trans. Electron Devices 52, 2365–2373 (2005).
    [CrossRef]
  10. D. Crouse, A. P. Hibbins, and M. J. Lockyear, “Tuning the polarization state of enhanced transmission in gratings,” Appl. Phys. Lett. 92, 191105 (2008).
    [CrossRef]
  11. D. Crouse, E. Jaquay, A. Maikal, and A. P. Hibbins, “Light circulation and weaving in periodically patterned structures,” Phys. Rev. B 77, 195437 (2008).
  12. D. Crouse and P. Keshavareddy, “Polarization independent enhanced optical transmission in one-dimensional gratings and device applications,” Opt. Express 15, 1415–1427 (2007).
    [CrossRef] [PubMed]
  13. D. Crouse and P. Keshavareddy, “A method for designing electromagnetic resonance enhanced silicon-on-insulator metal-semiconductor-metal photodetectors,” J. Opt. A: Pure Appl. Opt. 8, 175–181 (2006).
    [CrossRef]
  14. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
    [CrossRef] [PubMed]
  15. W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based on metal-dielectric composites,” Phys. Rev. B 72, 193101 (2005).
  16. A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and J. R. Brown, “Squeezing millimeter waves into microns,” Phys. Rev. Lett. 92, 143904 (2004).
    [CrossRef] [PubMed]
  17. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450, 397–401 (2007).
    [CrossRef] [PubMed]
  18. A. Reza, M. M. Dignam, and S. Hughes, “Can light be stopped in realistic metamaterials?” Nature 455, E10–E11 (2008).
    [CrossRef]
  19. J. Huang, T.-K. Wu, and S.-W. Lee, “Tri-band frequency selective surface with circular ring elements,” IEEE Trans. Antennas Propag. 42, 166–175 (1994).
    [CrossRef]
  20. T.-K. Wu, “Four-band frequency selective surface with double-square-loop patch elements,” IEEE Trans. Antennas Propag. 42, 1659–1663 (1994).
    [CrossRef]
  21. M. Ohira, H. Deguchi, M. Tsuji, and H. Shigesawa, “Multiband single-layer frequency selective surface designed by combination of genetic algorithm and geometry-refinement technique,” IEEE Trans. Antennas Propag. 52, 2925–2931 (2004).
    [CrossRef]
  22. T. Shegai, S. Chen, V. D. Miljkovic, G. Zengin, P. Johansson, and M. Kall, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2, 481 (2011).
    [CrossRef] [PubMed]
  23. E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
    [CrossRef]
  24. J. D. Edmunds, E. Hendry, A. P. Hibbins, J. R. Sambles, and I. J. Youngs, “Multi-modal transmission of microwaves through hole arrays,” Opt. Express 19, 13793–13805 (2011).
    [CrossRef] [PubMed]
  25. J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34, 686–688 (2009).
    [CrossRef] [PubMed]
  26. J. Le Perchec, Y. Desieres, N. Rochat, and R. E. de Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100, 113305 (2012).
    [CrossRef]
  27. J. Koch, A. A. Houck, K. L. Hur, and S. M. Girvin, “Time-reversal-symmetry breaking in circuit-qed-based photon lattices,” Phys. Rev. A 82, 043811 (2010).
    [CrossRef]
  28. J. Jackson, Classical Electrodynamics, 2nd ed. (John Wiley & Sons, Inc., 1975).
  29. G. Airy, “On the diffraction of an object-glass with circular aperture,” Trans. Cambridge Philos. Soc. 5, 283–291 (1835).
  30. E. Lansey, I. M. Mandel, J. N. Gollub, and D. T. Crouse, “An effective cavity resonance model for enhanced optical transmission through arrays of subwavelength apertures in metal films,” Submitted (2012).
  31. S. Herminghaus, M. Klopfleisch, and H. J. Schmidt, “Attenuated total reflectance as a quantum interference phenomenon,” Opt. Lett. 19, 293–295 (1994).
    [CrossRef] [PubMed]
  32. A. M. Nicolson and G. F. Ross, “Measurement of the intrinsic properties of materials by time-domain techniques,” IEEE Trans. Instrum. Meas. 19, 377–382 (1970).
    [CrossRef]
  33. W. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,”Proc. IEEE 62, 33–36 (1974).
    [CrossRef]
  34. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemil, T. Thiol, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [CrossRef]

2012 (2)

J. Le Perchec, Y. Desieres, N. Rochat, and R. E. de Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100, 113305 (2012).
[CrossRef]

E. Lansey, I. M. Mandel, J. N. Gollub, and D. T. Crouse, “An effective cavity resonance model for enhanced optical transmission through arrays of subwavelength apertures in metal films,” Submitted (2012).

2011 (3)

T. Shegai, S. Chen, V. D. Miljkovic, G. Zengin, P. Johansson, and M. Kall, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2, 481 (2011).
[CrossRef] [PubMed]

J. D. Edmunds, E. Hendry, A. P. Hibbins, J. R. Sambles, and I. J. Youngs, “Multi-modal transmission of microwaves through hole arrays,” Opt. Express 19, 13793–13805 (2011).
[CrossRef] [PubMed]

M. Lester and D. C. Skigin, “An optical nanoantenna made of plasmonic chain resonators,” J. Opt. 13, 035105 (2011).
[CrossRef]

2010 (2)

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97, 261113 (2010).
[CrossRef]

J. Koch, A. A. Houck, K. L. Hur, and S. M. Girvin, “Time-reversal-symmetry breaking in circuit-qed-based photon lattices,” Phys. Rev. A 82, 043811 (2010).
[CrossRef]

2009 (2)

2008 (4)

D. Crouse, A. P. Hibbins, and M. J. Lockyear, “Tuning the polarization state of enhanced transmission in gratings,” Appl. Phys. Lett. 92, 191105 (2008).
[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[CrossRef] [PubMed]

A. Reza, M. M. Dignam, and S. Hughes, “Can light be stopped in realistic metamaterials?” Nature 455, E10–E11 (2008).
[CrossRef]

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[CrossRef]

2007 (2)

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450, 397–401 (2007).
[CrossRef] [PubMed]

D. Crouse and P. Keshavareddy, “Polarization independent enhanced optical transmission in one-dimensional gratings and device applications,” Opt. Express 15, 1415–1427 (2007).
[CrossRef] [PubMed]

2006 (2)

D. Crouse and P. Keshavareddy, “A method for designing electromagnetic resonance enhanced silicon-on-insulator metal-semiconductor-metal photodetectors,” J. Opt. A: Pure Appl. Opt. 8, 175–181 (2006).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

2005 (1)

D. Crouse, “Numerical modeling and electromagnetic resonant modes in complex grating structures and opto-electronic device applications,” IEEE Trans. Electron Devices 52, 2365–2373 (2005).
[CrossRef]

2004 (2)

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and J. R. Brown, “Squeezing millimeter waves into microns,” Phys. Rev. Lett. 92, 143904 (2004).
[CrossRef] [PubMed]

M. Ohira, H. Deguchi, M. Tsuji, and H. Shigesawa, “Multiband single-layer frequency selective surface designed by combination of genetic algorithm and geometry-refinement technique,” IEEE Trans. Antennas Propag. 52, 2925–2931 (2004).
[CrossRef]

2001 (2)

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489–491 (2001).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[CrossRef] [PubMed]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemil, T. Thiol, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

1994 (3)

S. Herminghaus, M. Klopfleisch, and H. J. Schmidt, “Attenuated total reflectance as a quantum interference phenomenon,” Opt. Lett. 19, 293–295 (1994).
[CrossRef] [PubMed]

J. Huang, T.-K. Wu, and S.-W. Lee, “Tri-band frequency selective surface with circular ring elements,” IEEE Trans. Antennas Propag. 42, 166–175 (1994).
[CrossRef]

T.-K. Wu, “Four-band frequency selective surface with double-square-loop patch elements,” IEEE Trans. Antennas Propag. 42, 1659–1663 (1994).
[CrossRef]

1987 (2)

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

1974 (1)

W. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,”Proc. IEEE 62, 33–36 (1974).
[CrossRef]

1970 (1)

A. M. Nicolson and G. F. Ross, “Measurement of the intrinsic properties of materials by time-domain techniques,” IEEE Trans. Instrum. Meas. 19, 377–382 (1970).
[CrossRef]

1835 (1)

G. Airy, “On the diffraction of an object-glass with circular aperture,” Trans. Cambridge Philos. Soc. 5, 283–291 (1835).

Airy, G.

G. Airy, “On the diffraction of an object-glass with circular aperture,” Trans. Cambridge Philos. Soc. 5, 283–291 (1835).

Barnard, E. S.

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[CrossRef] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[CrossRef] [PubMed]

Boardman, A. D.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450, 397–401 (2007).
[CrossRef] [PubMed]

Brongersma, M. L.

Brown, J. R.

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and J. R. Brown, “Squeezing millimeter waves into microns,” Phys. Rev. Lett. 92, 143904 (2004).
[CrossRef] [PubMed]

Cai, W.

W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based on metal-dielectric composites,” Phys. Rev. B 72, 193101 (2005).

Cao, J. X.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97, 261113 (2010).
[CrossRef]

Chandran, A.

Chen, S.

T. Shegai, S. Chen, V. D. Miljkovic, G. Zengin, P. Johansson, and M. Kall, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2, 481 (2011).
[CrossRef] [PubMed]

Crouse, D.

D. Crouse, A. P. Hibbins, and M. J. Lockyear, “Tuning the polarization state of enhanced transmission in gratings,” Appl. Phys. Lett. 92, 191105 (2008).
[CrossRef]

D. Crouse and P. Keshavareddy, “Polarization independent enhanced optical transmission in one-dimensional gratings and device applications,” Opt. Express 15, 1415–1427 (2007).
[CrossRef] [PubMed]

D. Crouse and P. Keshavareddy, “A method for designing electromagnetic resonance enhanced silicon-on-insulator metal-semiconductor-metal photodetectors,” J. Opt. A: Pure Appl. Opt. 8, 175–181 (2006).
[CrossRef]

D. Crouse, “Numerical modeling and electromagnetic resonant modes in complex grating structures and opto-electronic device applications,” IEEE Trans. Electron Devices 52, 2365–2373 (2005).
[CrossRef]

D. Crouse, E. Jaquay, A. Maikal, and A. P. Hibbins, “Light circulation and weaving in periodically patterned structures,” Phys. Rev. B 77, 195437 (2008).

Crouse, D. T.

E. Lansey, I. M. Mandel, J. N. Gollub, and D. T. Crouse, “An effective cavity resonance model for enhanced optical transmission through arrays of subwavelength apertures in metal films,” Submitted (2012).

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

de Lamaestre, R. E.

J. Le Perchec, Y. Desieres, N. Rochat, and R. E. de Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100, 113305 (2012).
[CrossRef]

Deguchi, H.

M. Ohira, H. Deguchi, M. Tsuji, and H. Shigesawa, “Multiband single-layer frequency selective surface designed by combination of genetic algorithm and geometry-refinement technique,” IEEE Trans. Antennas Propag. 52, 2925–2931 (2004).
[CrossRef]

Desieres, Y.

J. Le Perchec, Y. Desieres, N. Rochat, and R. E. de Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100, 113305 (2012).
[CrossRef]

Dignam, M. M.

A. Reza, M. M. Dignam, and S. Hughes, “Can light be stopped in realistic metamaterials?” Nature 455, E10–E11 (2008).
[CrossRef]

Ebbesen, T. W.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemil, T. Thiol, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Edmunds, J. D.

Fan, S.

Genet, C.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[CrossRef]

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[CrossRef] [PubMed]

W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based on metal-dielectric composites,” Phys. Rev. B 72, 193101 (2005).

Ghaemil, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemil, T. Thiol, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Girvin, S. M.

J. Koch, A. A. Houck, K. L. Hur, and S. M. Girvin, “Time-reversal-symmetry breaking in circuit-qed-based photon lattices,” Phys. Rev. A 82, 043811 (2010).
[CrossRef]

Gollub, J. N.

E. Lansey, I. M. Mandel, J. N. Gollub, and D. T. Crouse, “An effective cavity resonance model for enhanced optical transmission through arrays of subwavelength apertures in metal films,” Submitted (2012).

Hendry, E.

Herminghaus, S.

Hess, O.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450, 397–401 (2007).
[CrossRef] [PubMed]

Hibbins, A. P.

J. D. Edmunds, E. Hendry, A. P. Hibbins, J. R. Sambles, and I. J. Youngs, “Multi-modal transmission of microwaves through hole arrays,” Opt. Express 19, 13793–13805 (2011).
[CrossRef] [PubMed]

D. Crouse, A. P. Hibbins, and M. J. Lockyear, “Tuning the polarization state of enhanced transmission in gratings,” Appl. Phys. Lett. 92, 191105 (2008).
[CrossRef]

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and J. R. Brown, “Squeezing millimeter waves into microns,” Phys. Rev. Lett. 92, 143904 (2004).
[CrossRef] [PubMed]

D. Crouse, E. Jaquay, A. Maikal, and A. P. Hibbins, “Light circulation and weaving in periodically patterned structures,” Phys. Rev. B 77, 195437 (2008).

Houck, A. A.

J. Koch, A. A. Houck, K. L. Hur, and S. M. Girvin, “Time-reversal-symmetry breaking in circuit-qed-based photon lattices,” Phys. Rev. A 82, 043811 (2010).
[CrossRef]

Huang, J.

J. Huang, T.-K. Wu, and S.-W. Lee, “Tri-band frequency selective surface with circular ring elements,” IEEE Trans. Antennas Propag. 42, 166–175 (1994).
[CrossRef]

Hughes, S.

A. Reza, M. M. Dignam, and S. Hughes, “Can light be stopped in realistic metamaterials?” Nature 455, E10–E11 (2008).
[CrossRef]

Hur, K. L.

J. Koch, A. A. Houck, K. L. Hur, and S. M. Girvin, “Time-reversal-symmetry breaking in circuit-qed-based photon lattices,” Phys. Rev. A 82, 043811 (2010).
[CrossRef]

Jackson, J.

J. Jackson, Classical Electrodynamics, 2nd ed. (John Wiley & Sons, Inc., 1975).

Jaquay, E.

D. Crouse, E. Jaquay, A. Maikal, and A. P. Hibbins, “Light circulation and weaving in periodically patterned structures,” Phys. Rev. B 77, 195437 (2008).

Johansson, P.

T. Shegai, S. Chen, V. D. Miljkovic, G. Zengin, P. Johansson, and M. Kall, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2, 481 (2011).
[CrossRef] [PubMed]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

Kall, M.

T. Shegai, S. Chen, V. D. Miljkovic, G. Zengin, P. Johansson, and M. Kall, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2, 481 (2011).
[CrossRef] [PubMed]

Keshavareddy, P.

D. Crouse and P. Keshavareddy, “Polarization independent enhanced optical transmission in one-dimensional gratings and device applications,” Opt. Express 15, 1415–1427 (2007).
[CrossRef] [PubMed]

D. Crouse and P. Keshavareddy, “A method for designing electromagnetic resonance enhanced silicon-on-insulator metal-semiconductor-metal photodetectors,” J. Opt. A: Pure Appl. Opt. 8, 175–181 (2006).
[CrossRef]

Klopfleisch, M.

Koch, J.

J. Koch, A. A. Houck, K. L. Hur, and S. M. Girvin, “Time-reversal-symmetry breaking in circuit-qed-based photon lattices,” Phys. Rev. A 82, 043811 (2010).
[CrossRef]

Lansey, E.

E. Lansey, I. M. Mandel, J. N. Gollub, and D. T. Crouse, “An effective cavity resonance model for enhanced optical transmission through arrays of subwavelength apertures in metal films,” Submitted (2012).

Laux, E.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[CrossRef]

Lawrence, C. R.

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and J. R. Brown, “Squeezing millimeter waves into microns,” Phys. Rev. Lett. 92, 143904 (2004).
[CrossRef] [PubMed]

Le Perchec, J.

J. Le Perchec, Y. Desieres, N. Rochat, and R. E. de Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100, 113305 (2012).
[CrossRef]

Lee, S.-W.

J. Huang, T.-K. Wu, and S.-W. Lee, “Tri-band frequency selective surface with circular ring elements,” IEEE Trans. Antennas Propag. 42, 166–175 (1994).
[CrossRef]

Lester, M.

M. Lester and D. C. Skigin, “An optical nanoantenna made of plasmonic chain resonators,” J. Opt. 13, 035105 (2011).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemil, T. Thiol, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Li, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[CrossRef] [PubMed]

Li, T.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97, 261113 (2010).
[CrossRef]

Liu, H.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97, 261113 (2010).
[CrossRef]

Lockyear, M. J.

D. Crouse, A. P. Hibbins, and M. J. Lockyear, “Tuning the polarization state of enhanced transmission in gratings,” Appl. Phys. Lett. 92, 191105 (2008).
[CrossRef]

Maikal, A.

D. Crouse, E. Jaquay, A. Maikal, and A. P. Hibbins, “Light circulation and weaving in periodically patterned structures,” Phys. Rev. B 77, 195437 (2008).

Mandel, I. M.

E. Lansey, I. M. Mandel, J. N. Gollub, and D. T. Crouse, “An effective cavity resonance model for enhanced optical transmission through arrays of subwavelength apertures in metal films,” Submitted (2012).

Miljkovic, V. D.

T. Shegai, S. Chen, V. D. Miljkovic, G. Zengin, P. Johansson, and M. Kall, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2, 481 (2011).
[CrossRef] [PubMed]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

Nemat-Nasser, S. C.

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489–491 (2001).
[CrossRef]

Nicolson, A. M.

A. M. Nicolson and G. F. Ross, “Measurement of the intrinsic properties of materials by time-domain techniques,” IEEE Trans. Instrum. Meas. 19, 377–382 (1970).
[CrossRef]

Ohira, M.

M. Ohira, H. Deguchi, M. Tsuji, and H. Shigesawa, “Multiband single-layer frequency selective surface designed by combination of genetic algorithm and geometry-refinement technique,” IEEE Trans. Antennas Propag. 52, 2925–2931 (2004).
[CrossRef]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

Reza, A.

A. Reza, M. M. Dignam, and S. Hughes, “Can light be stopped in realistic metamaterials?” Nature 455, E10–E11 (2008).
[CrossRef]

Rochat, N.

J. Le Perchec, Y. Desieres, N. Rochat, and R. E. de Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100, 113305 (2012).
[CrossRef]

Ross, G. F.

A. M. Nicolson and G. F. Ross, “Measurement of the intrinsic properties of materials by time-domain techniques,” IEEE Trans. Instrum. Meas. 19, 377–382 (1970).
[CrossRef]

Sambles, J. R.

J. D. Edmunds, E. Hendry, A. P. Hibbins, J. R. Sambles, and I. J. Youngs, “Multi-modal transmission of microwaves through hole arrays,” Opt. Express 19, 13793–13805 (2011).
[CrossRef] [PubMed]

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and J. R. Brown, “Squeezing millimeter waves into microns,” Phys. Rev. Lett. 92, 143904 (2004).
[CrossRef] [PubMed]

Schmidt, H. J.

Schultz, S.

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489–491 (2001).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[CrossRef] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

Shalaev, V. M.

W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based on metal-dielectric composites,” Phys. Rev. B 72, 193101 (2005).

Shegai, T.

T. Shegai, S. Chen, V. D. Miljkovic, G. Zengin, P. Johansson, and M. Kall, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2, 481 (2011).
[CrossRef] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489–491 (2001).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[CrossRef] [PubMed]

Shigesawa, H.

M. Ohira, H. Deguchi, M. Tsuji, and H. Shigesawa, “Multiband single-layer frequency selective surface designed by combination of genetic algorithm and geometry-refinement technique,” IEEE Trans. Antennas Propag. 52, 2925–2931 (2004).
[CrossRef]

Skauli, T.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[CrossRef]

Skigin, D. C.

M. Lester and D. C. Skigin, “An optical nanoantenna made of plasmonic chain resonators,” J. Opt. 13, 035105 (2011).
[CrossRef]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489–491 (2001).
[CrossRef]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

Thiol, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemil, T. Thiol, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Tsakmakidis, K. L.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450, 397–401 (2007).
[CrossRef] [PubMed]

Tsuji, M.

M. Ohira, H. Deguchi, M. Tsuji, and H. Shigesawa, “Multiband single-layer frequency selective surface designed by combination of genetic algorithm and geometry-refinement technique,” IEEE Trans. Antennas Propag. 52, 2925–2931 (2004).
[CrossRef]

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[CrossRef] [PubMed]

Valentine, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[CrossRef] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[CrossRef] [PubMed]

Veronis, G.

Wang, S. M.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97, 261113 (2010).
[CrossRef]

Weir, W.

W. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,”Proc. IEEE 62, 33–36 (1974).
[CrossRef]

White, J. S.

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemil, T. Thiol, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Wu, T.-K.

T.-K. Wu, “Four-band frequency selective surface with double-square-loop patch elements,” IEEE Trans. Antennas Propag. 42, 1659–1663 (1994).
[CrossRef]

J. Huang, T.-K. Wu, and S.-W. Lee, “Tri-band frequency selective surface with circular ring elements,” IEEE Trans. Antennas Propag. 42, 166–175 (1994).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Youngs, I. J.

Yu, Z.

Zengin, G.

T. Shegai, S. Chen, V. D. Miljkovic, G. Zengin, P. Johansson, and M. Kall, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2, 481 (2011).
[CrossRef] [PubMed]

Zentgraf, T.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[CrossRef] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[CrossRef] [PubMed]

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[CrossRef] [PubMed]

Zhang, X.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[CrossRef] [PubMed]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[CrossRef] [PubMed]

Zhu, S. N.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97, 261113 (2010).
[CrossRef]

Appl. Phys. Lett. (4)

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett. 97, 261113 (2010).
[CrossRef]

R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett. 78, 489–491 (2001).
[CrossRef]

D. Crouse, A. P. Hibbins, and M. J. Lockyear, “Tuning the polarization state of enhanced transmission in gratings,” Appl. Phys. Lett. 92, 191105 (2008).
[CrossRef]

J. Le Perchec, Y. Desieres, N. Rochat, and R. E. de Lamaestre, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys. Lett. 100, 113305 (2012).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

T.-K. Wu, “Four-band frequency selective surface with double-square-loop patch elements,” IEEE Trans. Antennas Propag. 42, 1659–1663 (1994).
[CrossRef]

IEEE Trans. Antennas Propag. (2)

M. Ohira, H. Deguchi, M. Tsuji, and H. Shigesawa, “Multiband single-layer frequency selective surface designed by combination of genetic algorithm and geometry-refinement technique,” IEEE Trans. Antennas Propag. 52, 2925–2931 (2004).
[CrossRef]

J. Huang, T.-K. Wu, and S.-W. Lee, “Tri-band frequency selective surface with circular ring elements,” IEEE Trans. Antennas Propag. 42, 166–175 (1994).
[CrossRef]

IEEE Trans. Electron Devices (1)

D. Crouse, “Numerical modeling and electromagnetic resonant modes in complex grating structures and opto-electronic device applications,” IEEE Trans. Electron Devices 52, 2365–2373 (2005).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

A. M. Nicolson and G. F. Ross, “Measurement of the intrinsic properties of materials by time-domain techniques,” IEEE Trans. Instrum. Meas. 19, 377–382 (1970).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

D. Crouse and P. Keshavareddy, “A method for designing electromagnetic resonance enhanced silicon-on-insulator metal-semiconductor-metal photodetectors,” J. Opt. A: Pure Appl. Opt. 8, 175–181 (2006).
[CrossRef]

J. Opt. (1)

M. Lester and D. C. Skigin, “An optical nanoantenna made of plasmonic chain resonators,” J. Opt. 13, 035105 (2011).
[CrossRef]

Nat. Commun. (1)

T. Shegai, S. Chen, V. D. Miljkovic, G. Zengin, P. Johansson, and M. Kall, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2, 481 (2011).
[CrossRef] [PubMed]

Nat. Mater. (1)

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009).
[CrossRef] [PubMed]

Nat. Photonics (1)

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[CrossRef]

Nature (4)

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450, 397–401 (2007).
[CrossRef] [PubMed]

A. Reza, M. M. Dignam, and S. Hughes, “Can light be stopped in realistic metamaterials?” Nature 455, E10–E11 (2008).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemil, T. Thiol, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
[CrossRef] [PubMed]

Opt. Express (1)

D. Crouse and P. Keshavareddy, “Polarization independent enhanced optical transmission in one-dimensional gratings and device applications,” Opt. Express 15, 1415–1427 (2007).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (1)

J. Koch, A. A. Houck, K. L. Hur, and S. M. Girvin, “Time-reversal-symmetry breaking in circuit-qed-based photon lattices,” Phys. Rev. A 82, 043811 (2010).
[CrossRef]

Phys. Rev. B (2)

D. Crouse, E. Jaquay, A. Maikal, and A. P. Hibbins, “Light circulation and weaving in periodically patterned structures,” Phys. Rev. B 77, 195437 (2008).

W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based on metal-dielectric composites,” Phys. Rev. B 72, 193101 (2005).

Phys. Rev. Lett. (3)

A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and J. R. Brown, “Squeezing millimeter waves into microns,” Phys. Rev. Lett. 92, 143904 (2004).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Proc. IEEE (1)

W. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,”Proc. IEEE 62, 33–36 (1974).
[CrossRef]

Science (2)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006).
[CrossRef] [PubMed]

Trans. Cambridge Philos. Soc. (1)

G. Airy, “On the diffraction of an object-glass with circular aperture,” Trans. Cambridge Philos. Soc. 5, 283–291 (1835).

Other (2)

E. Lansey, I. M. Mandel, J. N. Gollub, and D. T. Crouse, “An effective cavity resonance model for enhanced optical transmission through arrays of subwavelength apertures in metal films,” Submitted (2012).

J. Jackson, Classical Electrodynamics, 2nd ed. (John Wiley & Sons, Inc., 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

A schematic of periodic cylindrical cavities in a metal is shown from top down (a), in a cross section through one set of cavities (b), and the final fabricated device (c). The gray region represents the metal, the light blue regions are the dielectric-filled apertures, and the white is the superstrate (air) above the cavities. Here Λ = 26 mm, a1 = 8.03 mm, a2 = 5.74 mm, h = 7 mm, and θ is the angle of incidence.

Fig. 2
Fig. 2

Variation in the silicone elastomer complex dielectric permittivity ε at 9 GHz as a function of graphite concentration. Blue-solid (red-dashed) curve is the real (imaginary) portion of ε.

Fig. 3
Fig. 3

Variation in resonance properties of a dual-cavity structure as a function of the dielectric loss tangent in the silicone elastomer dielectric. Too small of a loss tangent will not provide enough absorption; too large a loss tangent will overdamp the resonances and ruin the enhanced absorption.

Fig. 4
Fig. 4

Experimental and simulated specular reflection intensity from the material surface for s-polarized radiation at θ = 17° angle of incidence. The two dips in reflection intensity correspond to the two cavity resonances.

Fig. 5
Fig. 5

Simulated total reflection intensity from the material surface for normal incidence compared to energy absorption inside each cavity. The two dips in reflection intensity correspond to the two maxima in cavity absorptions. The dashed black curve is the onset of the first diffraction mode.

Fig. 6
Fig. 6

Pseudo-color plot of the simulated volume loss density at a height of 3.5 mm inside the cavities at the two frequencies. The red (blue) color corresponds to the 8.1 GHz (9.25 GHz) resonances, which are overlayed to see the photon sorting. The dashed circles are the edges of the cavities.

Fig. 7
Fig. 7

The reflection of the material for both s- and p-polarizations. Simulated results shown on the left, with experimental results on the right. For shallow angles, the reflection response varies only slightly.

Tables (1)

Tables Icon

Table 1 Percentage of the total electromagnetic energy absorbed E, enhanced absorption of the structure, and fractional splitting efficiency SE at target frequencies. Here, the subscript 1 (2) corresponds to the cavity tuned to concentrate 8.1 GHz (9.25 GHz) radiation. Note that the absolute absorption numbers do not sum to 100%, as there is some reflected radiation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

f c 2 π Re [ ɛ ] [ ( π h eff ) 2 + ( 1.841 a ) 2 ] 1 / 2 ,
η n = Λ 2 / ( π a n 2 ) ,
S E n E n E T ,

Metrics