Abstract

Cells distribution for visible light communication can enhance the capacity of the data transmission by the reuse of optical spectrum. In this paper, we adopt three modulation formats as OOK, PPM and PWM for neighboring cells A, B and C respectively. The prototype experiment results demonstrate the error free transmission of 1.0Mbit/s and 6.25Mbit/s visible light communication system with our scheme. With the available LED, we can expect that the data rate of a visible light communication system with seamless connectivity can be up to 71.4Mbit/s.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science308(5726), 1274–1278 (2005).
    [CrossRef] [PubMed]
  2. C. C. Sun, C. Y. Chen, C. C. Chen, C. Y. Chiu, Y. N. Peng, Y. H. Wang, T. H. Yang, T. Y. Chung, and C. Y. Chung, “High uniformity in angular correlated-colortemperature distribution of white LEDs from 2800K to 6500K,” Opt. Express20(6), 6622–6630 (2012).
    [CrossRef] [PubMed]
  3. C. C. Sun, I. Moreno, Y. C. Lo, B. C. Chiu, and W. T. Chien, “Collimating lamp with well color mixing of red/green/blue LEDs,” Opt. Express20(S1), A75–A84 (2012).
    [CrossRef] [PubMed]
  4. K. H. Lee, S. H. Park, H. S. Yoon, Y.-I. Kim, H. G. Jang, and W. B. Im, “Bredigite-structure orthosilicate phosphor as a green component for white LED: the structural and optical properties,” Opt. Express20(6), 6248–6257 (2012).
    [CrossRef] [PubMed]
  5. Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible light data transmission system utilizing white LED lights,” IEICE Trans. Commun. E86-B(8), 2440–2454 (2003).
  6. D. O'Brien, H. L. Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. J. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” in Proceedings of the SPIE - The International Society for Optical Engineering, (2008).
  7. S. Rajagopal, R. D. Roberts, and S.-K. Lim, “IEEE 802.15.7 visible light communication modulation schemes and dimming support,” IEEE Commun. Mag.50(3), 72–82 (2012).
    [CrossRef]
  8. H. S. Kim, D. R. Kim, S. H. Yang, Y. H. Son, and S. K. Han, “Mitigation of inter-cell interference utilizing carrier allocation in visible light communication system,” IEEE Commun. Lett.16(4), 526–529 (2012).
    [CrossRef]
  9. A. M. Vegni and T. D. C. Little, “Handover in VLC systems with cooperating mobile devices,” 2012 International Conference on Computing, Networking and Communications (ICNC'12), 126–130 (2012).
  10. F. Xu, M. A. Khalighi, and S. Bourennane, “Coded PPM and multipulse PPM and iterative detection for free-space optical links,” IEEE/OSA J. Opt. Commun. Netw.1(5), 404–415 (2009).
    [CrossRef]
  11. B. Bai, Z. Y. Xu, and Y. Y. Fan, “Joint LED dimming and high capacity visible light communication by overlapping PPM,” in Proc. 19th Annu. Wireless Opt. Commun. Conf., 71–75 (2010).
  12. Z. X. Wang, C. Y. Yu, W. D. Zhong, J. Chen, and W. Chen, “Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems,” Opt. Express20(4), 4564–4573 (2012).
    [CrossRef] [PubMed]
  13. Y. Kim, J. Hwang, J. Lee, and M. Yoo, “Position estimation algorithm based on tracking of received light intensity for indoor visible light communication systems,” in 2011 Third International Conference on Ubiquitous and Future Networks (ICUFN 2011), 15–17 (2011).
  14. K. Langer, J. Vucic, C. Kottke, L. Fernandez, K. Habe, A. Paraskevopoulos, M. Wendl, and V. Markov, “Exploring the potentials of optical-wireless communication using white LEDs,” in 13th Annual Conference on Transparent Optical Networks (ICTON), 1–5 (2011).

2012 (6)

2009 (1)

F. Xu, M. A. Khalighi, and S. Bourennane, “Coded PPM and multipulse PPM and iterative detection for free-space optical links,” IEEE/OSA J. Opt. Commun. Netw.1(5), 404–415 (2009).
[CrossRef]

2005 (1)

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

2003 (1)

Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible light data transmission system utilizing white LED lights,” IEICE Trans. Commun. E86-B(8), 2440–2454 (2003).

Bourennane, S.

F. Xu, M. A. Khalighi, and S. Bourennane, “Coded PPM and multipulse PPM and iterative detection for free-space optical links,” IEEE/OSA J. Opt. Commun. Netw.1(5), 404–415 (2009).
[CrossRef]

Chen, C. C.

Chen, C. Y.

Chen, J.

Chen, W.

Chien, W. T.

Chiu, B. C.

Chiu, C. Y.

Chung, C. Y.

Chung, T. Y.

Han, S. K.

H. S. Kim, D. R. Kim, S. H. Yang, Y. H. Son, and S. K. Han, “Mitigation of inter-cell interference utilizing carrier allocation in visible light communication system,” IEEE Commun. Lett.16(4), 526–529 (2012).
[CrossRef]

Haruyama, S.

Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible light data transmission system utilizing white LED lights,” IEICE Trans. Commun. E86-B(8), 2440–2454 (2003).

Im, W. B.

Jang, H. G.

Khalighi, M. A.

F. Xu, M. A. Khalighi, and S. Bourennane, “Coded PPM and multipulse PPM and iterative detection for free-space optical links,” IEEE/OSA J. Opt. Commun. Netw.1(5), 404–415 (2009).
[CrossRef]

Kim, D. R.

H. S. Kim, D. R. Kim, S. H. Yang, Y. H. Son, and S. K. Han, “Mitigation of inter-cell interference utilizing carrier allocation in visible light communication system,” IEEE Commun. Lett.16(4), 526–529 (2012).
[CrossRef]

Kim, H. S.

H. S. Kim, D. R. Kim, S. H. Yang, Y. H. Son, and S. K. Han, “Mitigation of inter-cell interference utilizing carrier allocation in visible light communication system,” IEEE Commun. Lett.16(4), 526–529 (2012).
[CrossRef]

Kim, J. K.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

Kim, Y.-I.

Komine, T.

Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible light data transmission system utilizing white LED lights,” IEICE Trans. Commun. E86-B(8), 2440–2454 (2003).

Lee, K. H.

Lim, S.-K.

S. Rajagopal, R. D. Roberts, and S.-K. Lim, “IEEE 802.15.7 visible light communication modulation schemes and dimming support,” IEEE Commun. Mag.50(3), 72–82 (2012).
[CrossRef]

Lo, Y. C.

Moreno, I.

Nakagawa, M.

Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible light data transmission system utilizing white LED lights,” IEICE Trans. Commun. E86-B(8), 2440–2454 (2003).

Park, S. H.

Peng, Y. N.

Rajagopal, S.

S. Rajagopal, R. D. Roberts, and S.-K. Lim, “IEEE 802.15.7 visible light communication modulation schemes and dimming support,” IEEE Commun. Mag.50(3), 72–82 (2012).
[CrossRef]

Roberts, R. D.

S. Rajagopal, R. D. Roberts, and S.-K. Lim, “IEEE 802.15.7 visible light communication modulation schemes and dimming support,” IEEE Commun. Mag.50(3), 72–82 (2012).
[CrossRef]

Schubert, E. F.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

Son, Y. H.

H. S. Kim, D. R. Kim, S. H. Yang, Y. H. Son, and S. K. Han, “Mitigation of inter-cell interference utilizing carrier allocation in visible light communication system,” IEEE Commun. Lett.16(4), 526–529 (2012).
[CrossRef]

Sun, C. C.

Tanaka, Y.

Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible light data transmission system utilizing white LED lights,” IEICE Trans. Commun. E86-B(8), 2440–2454 (2003).

Wang, Y. H.

Wang, Z. X.

Xu, F.

F. Xu, M. A. Khalighi, and S. Bourennane, “Coded PPM and multipulse PPM and iterative detection for free-space optical links,” IEEE/OSA J. Opt. Commun. Netw.1(5), 404–415 (2009).
[CrossRef]

Yang, S. H.

H. S. Kim, D. R. Kim, S. H. Yang, Y. H. Son, and S. K. Han, “Mitigation of inter-cell interference utilizing carrier allocation in visible light communication system,” IEEE Commun. Lett.16(4), 526–529 (2012).
[CrossRef]

Yang, T. H.

Yoon, H. S.

Yu, C. Y.

Zhong, W. D.

IEEE Commun. Lett. (1)

H. S. Kim, D. R. Kim, S. H. Yang, Y. H. Son, and S. K. Han, “Mitigation of inter-cell interference utilizing carrier allocation in visible light communication system,” IEEE Commun. Lett.16(4), 526–529 (2012).
[CrossRef]

IEEE Commun. Mag. (1)

S. Rajagopal, R. D. Roberts, and S.-K. Lim, “IEEE 802.15.7 visible light communication modulation schemes and dimming support,” IEEE Commun. Mag.50(3), 72–82 (2012).
[CrossRef]

IEEE/OSA J. Opt. Commun. Netw. (1)

F. Xu, M. A. Khalighi, and S. Bourennane, “Coded PPM and multipulse PPM and iterative detection for free-space optical links,” IEEE/OSA J. Opt. Commun. Netw.1(5), 404–415 (2009).
[CrossRef]

IEICE Trans. Commun (1)

Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible light data transmission system utilizing white LED lights,” IEICE Trans. Commun. E86-B(8), 2440–2454 (2003).

Opt. Express (4)

Science (1)

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science308(5726), 1274–1278 (2005).
[CrossRef] [PubMed]

Other (5)

Y. Kim, J. Hwang, J. Lee, and M. Yoo, “Position estimation algorithm based on tracking of received light intensity for indoor visible light communication systems,” in 2011 Third International Conference on Ubiquitous and Future Networks (ICUFN 2011), 15–17 (2011).

K. Langer, J. Vucic, C. Kottke, L. Fernandez, K. Habe, A. Paraskevopoulos, M. Wendl, and V. Markov, “Exploring the potentials of optical-wireless communication using white LEDs,” in 13th Annual Conference on Transparent Optical Networks (ICTON), 1–5 (2011).

B. Bai, Z. Y. Xu, and Y. Y. Fan, “Joint LED dimming and high capacity visible light communication by overlapping PPM,” in Proc. 19th Annu. Wireless Opt. Commun. Conf., 71–75 (2010).

D. O'Brien, H. L. Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. J. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” in Proceedings of the SPIE - The International Society for Optical Engineering, (2008).

A. M. Vegni and T. D. C. Little, “Handover in VLC systems with cooperating mobile devices,” 2012 International Conference on Computing, Networking and Communications (ICNC'12), 126–130 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

The proposed cells distribution.

Fig. 2
Fig. 2

The Cartesian coordinate system.

Fig. 3
Fig. 3

The distribution of the optical power.

Fig. 4
Fig. 4

The proposed modulation schemes.

Fig. 5
Fig. 5

(a) The distribution of optical power in cell A, B and C. (b) The bird view of the distribution of optical power in cell A, B and C.

Fig. 6
Fig. 6

The relative distribution of the optical power.

Fig. 7
Fig. 7

The prototype experiment setup.

Fig. 8
Fig. 8

(a) The temporal response of the used LED. (b) The magnified of the temporal response. (c) Three modulation schemes as OOK, PPM and PWM.

Fig. 9
Fig. 9

Received waveforms at three cells without interference from adjacent cells. (a) Cell A with OOK modulation. (b) Cell B with PPM modulation. (c) Cell C with PWM modulation.

Fig. 10
Fig. 10

Received waveforms in three cells with interference from adjacent cells. (a) Cell A with OOK modulation. (b) Cell B with PPM modulation. (c) Cell C with PWM modulation.

Fig. 11
Fig. 11

The error function for the first four waveforms of subscribed data.

Fig. 12
Fig. 12

Received waveforms at the boundary of cells A and B (a), received waveforms at the boundary of cells A and C (b), received waveforms at the boundary of cells B and C (c), received waveforms at the center of cells A, B and C (d).

Fig. 13
Fig. 13

The results for the first four waveforms of subscribed data.

Fig. 14
Fig. 14

1Mbit/s prototype experiment setup.

Fig. 15
Fig. 15

Three modulation schemes as OOK, PPM and PWM.

Fig. 16
Fig. 16

The output of FPGA. (a) PD is located 10cm away from three LEDs. (b) PD is located 20cm away from three LEDs.

Fig. 17
Fig. 17

Error function corresponds to the first four waveforms of the subscribed data. (a) PD is located 10cm away from three LEDs. (b) PD is located 20cm away from three LEDs.

Metrics