Abstract
We propose a method and present applications of this method that converts a diffraction pattern into an elemental image set in order to display them on an integral imaging based display setup. We generate elemental images based on diffraction calculations as an alternative to commonly used ray tracing methods. Ray tracing methods do not accommodate the interference and diffraction phenomena. Our proposed method enables us to obtain elemental images from a holographic recording of a 3D object/scene. The diffraction pattern can be either numerically generated data or digitally acquired optical data. The method shows the connection between a hologram (diffraction pattern) and an elemental image set of the same 3D object. We showed three examples, one of which is the digitally captured optical diffraction tomography data of an epithelium cell. We obtained optical reconstructions with our integral imaging display setup where we used a digital lenslet array. We also obtained numerical reconstructions, again by using the diffraction calculations, for comparison. The digital and optical reconstruction results are in good agreement.
© 2012 OSA
Full Article  PDF ArticleOSA Recommended Articles
JaeHyeung Park, SungKeun Lee, NaYoung Jo, HeeJae Kim, YongSoo Kim, and HongGi Lim
Opt. Express 22(21) 2544425454 (2014)
Ali Özgür Yöntem and Levent Onural
J. Opt. Soc. Am. A 28(11) 23592375 (2011)
G. Bora Esmer
Opt. Express 23(10) 1263612647 (2015)
References
 View by:
 Article Order
 
 Year
 
 Author
 
 Publication
 G. Lippmann, “La photographie intégrale,” C.R. Hebd. Seances Acad. Sci. 146, 446–451 (1908).
 F. Okano, H. Hoshino, H. A. Jun, and I. Yuyama, “Realtime pickup method for a threedimensional image based on the integral photography,” Appl. Opt. 36, 1–14 (1997).
[Crossref]  S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, and N. G. Theofanous, “Photorealistic integral photography using a raytraced model of capturing optics,” J. Electron Imaging 15, 0430071–0430078 (2006).
[Crossref]  S.W. Min, K. S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computergenerated integral imaging system,” Jpn. J. Appl. Phys. 45, L744–L747 (2006).
[Crossref]  S.H. Lee, S.C. Kim, and E.S. Kim, “Reconstruction of digital hologram generated by subimage of integral imaging,” Proc. of SPIE 6912, 69121F1–69121F10 (2008).
 S.W. Min, S. Jung, J.H. Park, and B. Lee, “Threedimensional display system based on computergenerated integral photgraphy,” Proc. of SPIE 4297, 187–195 (2001).
[Crossref]  J.K. Lee, S.C. Kim, and E.S. Kim, “Reconstruction of threedimensional object and system analysis using ray tracing in practical integral imaging system,” Proc. of SPIE 6695, 6695191–66951912 (2007).
 B.N.R. Lee, Y. Cho, K.. S. Park, S.W. Min, J.S. Lim, M. C. Whang, and K. R. Park, “Design and implementation of a fast integral image rendering method,” Lect. Notes Comput. Sc. 4161, 135–140 (2006).
[Crossref]  U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. and Tech. 13, R85–R110 (2002).
[Crossref] 
L. Onural, “Sampling of the diffraction field,” Appl. Opt. 39, 5929–5935 (2000).
[Crossref] 
A. Ö. Yöntem and Levent Onural, “Integral imaging using phaseonly LCoS spatial light modulators as Fresnel lenslet arrays,” J. Opt. Soc. Am. A 28, 2359–2375 (2011).
[Crossref]  B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley and Sons, Inc., 1991).
[Crossref]  J. W. Goodman, Introduction to Fourier Optics (McGrawHill, 1996).
 T. Mishina, M. Okui, and F. Okano, “Generation of holograms using integral photography,” Proc. of SPIE 5599, 114–122 (2004).
[Crossref]  R. V. Pole, “3D imagery and holograms of objects illuminated in white light,” Appl. Phys. Lett. 10, 20–22 (1967).
[Crossref]  B. Javidi and S.H. Hong, “Threedimensional holographic image sensing and integral imaging display,” J. Disp. Technol 1, 341–346 (2005).
[Crossref]  C. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng. 461158011–1158016 (2007).
[Crossref]  J. G.Sucerquia, J. A. H. Ramírez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik 116, 44–48 (2005).
[Crossref] 
T. Baumbach, E. Kolenović, V. Kebbel, and W. Jüptner, “Improvement of accuracy in digital holography by use of multiple holograms,” Appl. Opt. 45, 6077–6085 (2006).
[Crossref] [PubMed] 
T. Ito and K. Okano, “Color electroholography by three colored reference lights simultaneously incident upon one hologram panel,” Opt. Express 12, 4320–4325 (2004).
[Crossref] [PubMed]  F. Yaraş and L. Onural, “Color holographic reconstruction using multiple SLMs and LED illumination,” Proc. of SPIE 7237, 72370O1–72370O5 (2010).
 I. Bergoënd, C. Arfire, N. Pavillon, and C. Depeursinge, “Diffraction tomography for biological cells imaging using digital holographic microscopy,” Proc. of SPIE 7376, 7376131–7376138 (2010).
 D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for freespace diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).
[Crossref]  H. Kang, T. Fujii, T. Yamaguchi, and H. Yoshikawa, “Compensated phaseadded stereogram for realtime holographic display,” Opt. Eng. 46, 0958021–09580211 (2007).
[Crossref]  T. Shimobaba, T. Ito, N. Masuda, Y. Abe, Y. Ichihashi, H. Nakayama, N. Takada, A. Shiraki, and T. Sugie, “Numerical calculation library for diffraction integrals using the graphic processing unit: the GPUbased wave optics library,” J. Opt. APure and Appl. Opt. 10, 0753081–0753085 (2009).

J.S. Jang and B. Javidi, “Threedimensional integral imaging with electronically synthesized lenslet arrays,” Opt. Lett. 27, 1767–1769 (2002).
[Crossref]  M. Kovachev, R. Ilieva, P. Benzie, G. B. Esmer, L. Onural, J. Watson, and T. Reyhan, “Holographic 3DTV displays using spatial light modulators,” in ThreeDimensional TelevisionCapture, Transmission, Display, H. Ozaktas and L. Onural, eds. (Springer, 2008), pp. 529–555.
 L. Onural, F. Yaraş, and H. Kang, “Digital holographic threedimensional video displays,” Proc. of IEEE 99, 576–589 (2011).
[Crossref] 
F. Yaraş, H. Kang, and L. Onural, “Circular holographic video display system,” Opt. Express 19, 9147–9156 (2011).
[Crossref] 
S.W. Min, S. Jung, H. Choi, Y. Kim, J.H. Park, and B. Lee, “Wideviewingangle integral threedimensional imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546–552 (2005).
[Crossref] [PubMed]  D.H. Shin, B.G. Lee, J. Hyun, D.C. Hwang, and E.S. Kim, “Curved projection integral imaging using an additional largeaperture convex lens for viewing angle improvement,” ETRI J. 31, 105–110 (2009).
[Crossref]
2011 (3)
L. Onural, F. Yaraş, and H. Kang, “Digital holographic threedimensional video displays,” Proc. of IEEE 99, 576–589 (2011).
[Crossref]
F. Yaraş, H. Kang, and L. Onural, “Circular holographic video display system,” Opt. Express 19, 9147–9156 (2011).
[Crossref]
A. Ö. Yöntem and Levent Onural, “Integral imaging using phaseonly LCoS spatial light modulators as Fresnel lenslet arrays,” J. Opt. Soc. Am. A 28, 2359–2375 (2011).
[Crossref]
2010 (2)
F. Yaraş and L. Onural, “Color holographic reconstruction using multiple SLMs and LED illumination,” Proc. of SPIE 7237, 72370O1–72370O5 (2010).
I. Bergoënd, C. Arfire, N. Pavillon, and C. Depeursinge, “Diffraction tomography for biological cells imaging using digital holographic microscopy,” Proc. of SPIE 7376, 7376131–7376138 (2010).
2009 (2)
D.H. Shin, B.G. Lee, J. Hyun, D.C. Hwang, and E.S. Kim, “Curved projection integral imaging using an additional largeaperture convex lens for viewing angle improvement,” ETRI J. 31, 105–110 (2009).
[Crossref]
T. Shimobaba, T. Ito, N. Masuda, Y. Abe, Y. Ichihashi, H. Nakayama, N. Takada, A. Shiraki, and T. Sugie, “Numerical calculation library for diffraction integrals using the graphic processing unit: the GPUbased wave optics library,” J. Opt. APure and Appl. Opt. 10, 0753081–0753085 (2009).
2008 (1)
S.H. Lee, S.C. Kim, and E.S. Kim, “Reconstruction of digital hologram generated by subimage of integral imaging,” Proc. of SPIE 6912, 69121F1–69121F10 (2008).
2007 (3)
J.K. Lee, S.C. Kim, and E.S. Kim, “Reconstruction of threedimensional object and system analysis using ray tracing in practical integral imaging system,” Proc. of SPIE 6695, 6695191–66951912 (2007).
H. Kang, T. Fujii, T. Yamaguchi, and H. Yoshikawa, “Compensated phaseadded stereogram for realtime holographic display,” Opt. Eng. 46, 0958021–09580211 (2007).
[Crossref]
C. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng. 461158011–1158016 (2007).
[Crossref]
2006 (4)
B.N.R. Lee, Y. Cho, K.. S. Park, S.W. Min, J.S. Lim, M. C. Whang, and K. R. Park, “Design and implementation of a fast integral image rendering method,” Lect. Notes Comput. Sc. 4161, 135–140 (2006).
[Crossref]
S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, and N. G. Theofanous, “Photorealistic integral photography using a raytraced model of capturing optics,” J. Electron Imaging 15, 0430071–0430078 (2006).
[Crossref]
S.W. Min, K. S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computergenerated integral imaging system,” Jpn. J. Appl. Phys. 45, L744–L747 (2006).
[Crossref]
T. Baumbach, E. Kolenović, V. Kebbel, and W. Jüptner, “Improvement of accuracy in digital holography by use of multiple holograms,” Appl. Opt. 45, 6077–6085 (2006).
[Crossref]
[PubMed]
2005 (3)
S.W. Min, S. Jung, H. Choi, Y. Kim, J.H. Park, and B. Lee, “Wideviewingangle integral threedimensional imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546–552 (2005).
[Crossref]
[PubMed]
J. G.Sucerquia, J. A. H. Ramírez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik 116, 44–48 (2005).
[Crossref]
B. Javidi and S.H. Hong, “Threedimensional holographic image sensing and integral imaging display,” J. Disp. Technol 1, 341–346 (2005).
[Crossref]
2004 (2)
T. Mishina, M. Okui, and F. Okano, “Generation of holograms using integral photography,” Proc. of SPIE 5599, 114–122 (2004).
[Crossref]
T. Ito and K. Okano, “Color electroholography by three colored reference lights simultaneously incident upon one hologram panel,” Opt. Express 12, 4320–4325 (2004).
[Crossref]
[PubMed]
2002 (2)
J.S. Jang and B. Javidi, “Threedimensional integral imaging with electronically synthesized lenslet arrays,” Opt. Lett. 27, 1767–1769 (2002).
[Crossref]
U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. and Tech. 13, R85–R110 (2002).
[Crossref]
2001 (1)
S.W. Min, S. Jung, J.H. Park, and B. Lee, “Threedimensional display system based on computergenerated integral photgraphy,” Proc. of SPIE 4297, 187–195 (2001).
[Crossref]
2000 (1)
1999 (1)
D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for freespace diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).
[Crossref]
1997 (1)
F. Okano, H. Hoshino, H. A. Jun, and I. Yuyama, “Realtime pickup method for a threedimensional image based on the integral photography,” Appl. Opt. 36, 1–14 (1997).
[Crossref]
1967 (1)
R. V. Pole, “3D imagery and holograms of objects illuminated in white light,” Appl. Phys. Lett. 10, 20–22 (1967).
[Crossref]
1908 (1)
G. Lippmann, “La photographie intégrale,” C.R. Hebd. Seances Acad. Sci. 146, 446–451 (1908).
Abe, Y.
T. Shimobaba, T. Ito, N. Masuda, Y. Abe, Y. Ichihashi, H. Nakayama, N. Takada, A. Shiraki, and T. Sugie, “Numerical calculation library for diffraction integrals using the graphic processing unit: the GPUbased wave optics library,” J. Opt. APure and Appl. Opt. 10, 0753081–0753085 (2009).
Arfire, C.
I. Bergoënd, C. Arfire, N. Pavillon, and C. Depeursinge, “Diffraction tomography for biological cells imaging using digital holographic microscopy,” Proc. of SPIE 7376, 7376131–7376138 (2010).
Athineos, S. S.
S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, and N. G. Theofanous, “Photorealistic integral photography using a raytraced model of capturing optics,” J. Electron Imaging 15, 0430071–0430078 (2006).
[Crossref]
Baumbach, T.
T. Baumbach, E. Kolenović, V. Kebbel, and W. Jüptner, “Improvement of accuracy in digital holography by use of multiple holograms,” Appl. Opt. 45, 6077–6085 (2006).
[Crossref]
[PubMed]
Benzie, P.
M. Kovachev, R. Ilieva, P. Benzie, G. B. Esmer, L. Onural, J. Watson, and T. Reyhan, “Holographic 3DTV displays using spatial light modulators,” in ThreeDimensional TelevisionCapture, Transmission, Display, H. Ozaktas and L. Onural, eds. (Springer, 2008), pp. 529–555.
Bergoënd, I.
I. Bergoënd, C. Arfire, N. Pavillon, and C. Depeursinge, “Diffraction tomography for biological cells imaging using digital holographic microscopy,” Proc. of SPIE 7376, 7376131–7376138 (2010).
Bernardo, L. M.
D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for freespace diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).
[Crossref]
Cho, Y.
S.W. Min, K. S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computergenerated integral imaging system,” Jpn. J. Appl. Phys. 45, L744–L747 (2006).
[Crossref]
B.N.R. Lee, Y. Cho, K.. S. Park, S.W. Min, J.S. Lim, M. C. Whang, and K. R. Park, “Design and implementation of a fast integral image rendering method,” Lect. Notes Comput. Sc. 4161, 135–140 (2006).
[Crossref]
Choi, H.
S.W. Min, S. Jung, H. Choi, Y. Kim, J.H. Park, and B. Lee, “Wideviewingangle integral threedimensional imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546–552 (2005).
[Crossref]
[PubMed]
Depeursinge, C.
I. Bergoënd, C. Arfire, N. Pavillon, and C. Depeursinge, “Diffraction tomography for biological cells imaging using digital holographic microscopy,” Proc. of SPIE 7376, 7376131–7376138 (2010).
Esmer, G. B.
M. Kovachev, R. Ilieva, P. Benzie, G. B. Esmer, L. Onural, J. Watson, and T. Reyhan, “Holographic 3DTV displays using spatial light modulators,” in ThreeDimensional TelevisionCapture, Transmission, Display, H. Ozaktas and L. Onural, eds. (Springer, 2008), pp. 529–555.
Ferreira, C.
D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for freespace diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).
[Crossref]
Fujii, T.
H. Kang, T. Fujii, T. Yamaguchi, and H. Yoshikawa, “Compensated phaseadded stereogram for realtime holographic display,” Opt. Eng. 46, 0958021–09580211 (2007).
[Crossref]
G.Sucerquia, J.
J. G.Sucerquia, J. A. H. Ramírez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik 116, 44–48 (2005).
[Crossref]
Garcia, J.
D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for freespace diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).
[Crossref]
Goodman, J. W.
J. W. Goodman, Introduction to Fourier Optics (McGrawHill, 1996).
Hahn, M.
S.W. Min, K. S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computergenerated integral imaging system,” Jpn. J. Appl. Phys. 45, L744–L747 (2006).
[Crossref]
Hong, S.H.
B. Javidi and S.H. Hong, “Threedimensional holographic image sensing and integral imaging display,” J. Disp. Technol 1, 341–346 (2005).
[Crossref]
Hoshino, H.
F. Okano, H. Hoshino, H. A. Jun, and I. Yuyama, “Realtime pickup method for a threedimensional image based on the integral photography,” Appl. Opt. 36, 1–14 (1997).
[Crossref]
Hwang, D.C.
D.H. Shin, B.G. Lee, J. Hyun, D.C. Hwang, and E.S. Kim, “Curved projection integral imaging using an additional largeaperture convex lens for viewing angle improvement,” ETRI J. 31, 105–110 (2009).
[Crossref]
Hyun, J.
D.H. Shin, B.G. Lee, J. Hyun, D.C. Hwang, and E.S. Kim, “Curved projection integral imaging using an additional largeaperture convex lens for viewing angle improvement,” ETRI J. 31, 105–110 (2009).
[Crossref]
Ichihashi, Y.
T. Shimobaba, T. Ito, N. Masuda, Y. Abe, Y. Ichihashi, H. Nakayama, N. Takada, A. Shiraki, and T. Sugie, “Numerical calculation library for diffraction integrals using the graphic processing unit: the GPUbased wave optics library,” J. Opt. APure and Appl. Opt. 10, 0753081–0753085 (2009).
Ilieva, R.
M. Kovachev, R. Ilieva, P. Benzie, G. B. Esmer, L. Onural, J. Watson, and T. Reyhan, “Holographic 3DTV displays using spatial light modulators,” in ThreeDimensional TelevisionCapture, Transmission, Display, H. Ozaktas and L. Onural, eds. (Springer, 2008), pp. 529–555.
Ito, T.
T. Shimobaba, T. Ito, N. Masuda, Y. Abe, Y. Ichihashi, H. Nakayama, N. Takada, A. Shiraki, and T. Sugie, “Numerical calculation library for diffraction integrals using the graphic processing unit: the GPUbased wave optics library,” J. Opt. APure and Appl. Opt. 10, 0753081–0753085 (2009).
T. Ito and K. Okano, “Color electroholography by three colored reference lights simultaneously incident upon one hologram panel,” Opt. Express 12, 4320–4325 (2004).
[Crossref]
[PubMed]
Jang, J.S.
J.S. Jang and B. Javidi, “Threedimensional integral imaging with electronically synthesized lenslet arrays,” Opt. Lett. 27, 1767–1769 (2002).
[Crossref]
Javidi, B.
B. Javidi and S.H. Hong, “Threedimensional holographic image sensing and integral imaging display,” J. Disp. Technol 1, 341–346 (2005).
[Crossref]
J.S. Jang and B. Javidi, “Threedimensional integral imaging with electronically synthesized lenslet arrays,” Opt. Lett. 27, 1767–1769 (2002).
[Crossref]
Jun, H. A.
F. Okano, H. Hoshino, H. A. Jun, and I. Yuyama, “Realtime pickup method for a threedimensional image based on the integral photography,” Appl. Opt. 36, 1–14 (1997).
[Crossref]
Jung, S.
S.W. Min, S. Jung, H. Choi, Y. Kim, J.H. Park, and B. Lee, “Wideviewingangle integral threedimensional imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546–552 (2005).
[Crossref]
[PubMed]
S.W. Min, S. Jung, J.H. Park, and B. Lee, “Threedimensional display system based on computergenerated integral photgraphy,” Proc. of SPIE 4297, 187–195 (2001).
[Crossref]
Jüptner, W.
T. Baumbach, E. Kolenović, V. Kebbel, and W. Jüptner, “Improvement of accuracy in digital holography by use of multiple holograms,” Appl. Opt. 45, 6077–6085 (2006).
[Crossref]
[PubMed]
Jüptner, W. P. O.
U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. and Tech. 13, R85–R110 (2002).
[Crossref]
Kang, H.
L. Onural, F. Yaraş, and H. Kang, “Digital holographic threedimensional video displays,” Proc. of IEEE 99, 576–589 (2011).
[Crossref]
F. Yaraş, H. Kang, and L. Onural, “Circular holographic video display system,” Opt. Express 19, 9147–9156 (2011).
[Crossref]
H. Kang, T. Fujii, T. Yamaguchi, and H. Yoshikawa, “Compensated phaseadded stereogram for realtime holographic display,” Opt. Eng. 46, 0958021–09580211 (2007).
[Crossref]
Kang, X.
C. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng. 461158011–1158016 (2007).
[Crossref]
Kebbel, V.
T. Baumbach, E. Kolenović, V. Kebbel, and W. Jüptner, “Improvement of accuracy in digital holography by use of multiple holograms,” Appl. Opt. 45, 6077–6085 (2006).
[Crossref]
[PubMed]
Kim, E.S.
D.H. Shin, B.G. Lee, J. Hyun, D.C. Hwang, and E.S. Kim, “Curved projection integral imaging using an additional largeaperture convex lens for viewing angle improvement,” ETRI J. 31, 105–110 (2009).
[Crossref]
S.H. Lee, S.C. Kim, and E.S. Kim, “Reconstruction of digital hologram generated by subimage of integral imaging,” Proc. of SPIE 6912, 69121F1–69121F10 (2008).
J.K. Lee, S.C. Kim, and E.S. Kim, “Reconstruction of threedimensional object and system analysis using ray tracing in practical integral imaging system,” Proc. of SPIE 6695, 6695191–66951912 (2007).
Kim, S.C.
S.H. Lee, S.C. Kim, and E.S. Kim, “Reconstruction of digital hologram generated by subimage of integral imaging,” Proc. of SPIE 6912, 69121F1–69121F10 (2008).
J.K. Lee, S.C. Kim, and E.S. Kim, “Reconstruction of threedimensional object and system analysis using ray tracing in practical integral imaging system,” Proc. of SPIE 6695, 6695191–66951912 (2007).
Kim, Y.
S.W. Min, S. Jung, H. Choi, Y. Kim, J.H. Park, and B. Lee, “Wideviewingangle integral threedimensional imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546–552 (2005).
[Crossref]
[PubMed]
Kolenovic, E.
T. Baumbach, E. Kolenović, V. Kebbel, and W. Jüptner, “Improvement of accuracy in digital holography by use of multiple holograms,” Appl. Opt. 45, 6077–6085 (2006).
[Crossref]
[PubMed]
Kovachev, M.
M. Kovachev, R. Ilieva, P. Benzie, G. B. Esmer, L. Onural, J. Watson, and T. Reyhan, “Holographic 3DTV displays using spatial light modulators,” in ThreeDimensional TelevisionCapture, Transmission, Display, H. Ozaktas and L. Onural, eds. (Springer, 2008), pp. 529–555.
Lee, B.
S.W. Min, K. S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computergenerated integral imaging system,” Jpn. J. Appl. Phys. 45, L744–L747 (2006).
[Crossref]
S.W. Min, S. Jung, H. Choi, Y. Kim, J.H. Park, and B. Lee, “Wideviewingangle integral threedimensional imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546–552 (2005).
[Crossref]
[PubMed]
S.W. Min, S. Jung, J.H. Park, and B. Lee, “Threedimensional display system based on computergenerated integral photgraphy,” Proc. of SPIE 4297, 187–195 (2001).
[Crossref]
Lee, B.G.
D.H. Shin, B.G. Lee, J. Hyun, D.C. Hwang, and E.S. Kim, “Curved projection integral imaging using an additional largeaperture convex lens for viewing angle improvement,” ETRI J. 31, 105–110 (2009).
[Crossref]
Lee, B.N.R.
B.N.R. Lee, Y. Cho, K.. S. Park, S.W. Min, J.S. Lim, M. C. Whang, and K. R. Park, “Design and implementation of a fast integral image rendering method,” Lect. Notes Comput. Sc. 4161, 135–140 (2006).
[Crossref]
Lee, J.K.
J.K. Lee, S.C. Kim, and E.S. Kim, “Reconstruction of threedimensional object and system analysis using ray tracing in practical integral imaging system,” Proc. of SPIE 6695, 6695191–66951912 (2007).
Lee, S.H.
S.H. Lee, S.C. Kim, and E.S. Kim, “Reconstruction of digital hologram generated by subimage of integral imaging,” Proc. of SPIE 6912, 69121F1–69121F10 (2008).
Lim, J.S.
B.N.R. Lee, Y. Cho, K.. S. Park, S.W. Min, J.S. Lim, M. C. Whang, and K. R. Park, “Design and implementation of a fast integral image rendering method,” Lect. Notes Comput. Sc. 4161, 135–140 (2006).
[Crossref]
Lippmann, G.
G. Lippmann, “La photographie intégrale,” C.R. Hebd. Seances Acad. Sci. 146, 446–451 (1908).
Marinho, F.
D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for freespace diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).
[Crossref]
Maroulis, D. E.
S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, and N. G. Theofanous, “Photorealistic integral photography using a raytraced model of capturing optics,” J. Electron Imaging 15, 0430071–0430078 (2006).
[Crossref]
Mas, D.
D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for freespace diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).
[Crossref]
Masuda, N.
T. Shimobaba, T. Ito, N. Masuda, Y. Abe, Y. Ichihashi, H. Nakayama, N. Takada, A. Shiraki, and T. Sugie, “Numerical calculation library for diffraction integrals using the graphic processing unit: the GPUbased wave optics library,” J. Opt. APure and Appl. Opt. 10, 0753081–0753085 (2009).
Min, S.W.
B.N.R. Lee, Y. Cho, K.. S. Park, S.W. Min, J.S. Lim, M. C. Whang, and K. R. Park, “Design and implementation of a fast integral image rendering method,” Lect. Notes Comput. Sc. 4161, 135–140 (2006).
[Crossref]
S.W. Min, K. S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computergenerated integral imaging system,” Jpn. J. Appl. Phys. 45, L744–L747 (2006).
[Crossref]
S.W. Min, S. Jung, H. Choi, Y. Kim, J.H. Park, and B. Lee, “Wideviewingangle integral threedimensional imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546–552 (2005).
[Crossref]
[PubMed]
S.W. Min, S. Jung, J.H. Park, and B. Lee, “Threedimensional display system based on computergenerated integral photgraphy,” Proc. of SPIE 4297, 187–195 (2001).
[Crossref]
Mishina, T.
T. Mishina, M. Okui, and F. Okano, “Generation of holograms using integral photography,” Proc. of SPIE 5599, 114–122 (2004).
[Crossref]
Nakayama, H.
T. Shimobaba, T. Ito, N. Masuda, Y. Abe, Y. Ichihashi, H. Nakayama, N. Takada, A. Shiraki, and T. Sugie, “Numerical calculation library for diffraction integrals using the graphic processing unit: the GPUbased wave optics library,” J. Opt. APure and Appl. Opt. 10, 0753081–0753085 (2009).
Okano, F.
T. Mishina, M. Okui, and F. Okano, “Generation of holograms using integral photography,” Proc. of SPIE 5599, 114–122 (2004).
[Crossref]
F. Okano, H. Hoshino, H. A. Jun, and I. Yuyama, “Realtime pickup method for a threedimensional image based on the integral photography,” Appl. Opt. 36, 1–14 (1997).
[Crossref]
Okano, K.
T. Ito and K. Okano, “Color electroholography by three colored reference lights simultaneously incident upon one hologram panel,” Opt. Express 12, 4320–4325 (2004).
[Crossref]
[PubMed]
Okui, M.
T. Mishina, M. Okui, and F. Okano, “Generation of holograms using integral photography,” Proc. of SPIE 5599, 114–122 (2004).
[Crossref]
Onural, L.
F. Yaraş, H. Kang, and L. Onural, “Circular holographic video display system,” Opt. Express 19, 9147–9156 (2011).
[Crossref]
L. Onural, F. Yaraş, and H. Kang, “Digital holographic threedimensional video displays,” Proc. of IEEE 99, 576–589 (2011).
[Crossref]
F. Yaraş and L. Onural, “Color holographic reconstruction using multiple SLMs and LED illumination,” Proc. of SPIE 7237, 72370O1–72370O5 (2010).
L. Onural, “Sampling of the diffraction field,” Appl. Opt. 39, 5929–5935 (2000).
[Crossref]
M. Kovachev, R. Ilieva, P. Benzie, G. B. Esmer, L. Onural, J. Watson, and T. Reyhan, “Holographic 3DTV displays using spatial light modulators,” in ThreeDimensional TelevisionCapture, Transmission, Display, H. Ozaktas and L. Onural, eds. (Springer, 2008), pp. 529–555.
Onural, Levent
A. Ö. Yöntem and Levent Onural, “Integral imaging using phaseonly LCoS spatial light modulators as Fresnel lenslet arrays,” J. Opt. Soc. Am. A 28, 2359–2375 (2011).
[Crossref]
Papageorgas, P. G.
S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, and N. G. Theofanous, “Photorealistic integral photography using a raytraced model of capturing optics,” J. Electron Imaging 15, 0430071–0430078 (2006).
[Crossref]
Park, J.H.
S.W. Min, S. Jung, H. Choi, Y. Kim, J.H. Park, and B. Lee, “Wideviewingangle integral threedimensional imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546–552 (2005).
[Crossref]
[PubMed]
S.W. Min, S. Jung, J.H. Park, and B. Lee, “Threedimensional display system based on computergenerated integral photgraphy,” Proc. of SPIE 4297, 187–195 (2001).
[Crossref]
Park, K. R.
B.N.R. Lee, Y. Cho, K.. S. Park, S.W. Min, J.S. Lim, M. C. Whang, and K. R. Park, “Design and implementation of a fast integral image rendering method,” Lect. Notes Comput. Sc. 4161, 135–140 (2006).
[Crossref]
Park, K. S.
S.W. Min, K. S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computergenerated integral imaging system,” Jpn. J. Appl. Phys. 45, L744–L747 (2006).
[Crossref]
Park, K.. S.
B.N.R. Lee, Y. Cho, K.. S. Park, S.W. Min, J.S. Lim, M. C. Whang, and K. R. Park, “Design and implementation of a fast integral image rendering method,” Lect. Notes Comput. Sc. 4161, 135–140 (2006).
[Crossref]
Pavillon, N.
I. Bergoënd, C. Arfire, N. Pavillon, and C. Depeursinge, “Diffraction tomography for biological cells imaging using digital holographic microscopy,” Proc. of SPIE 7376, 7376131–7376138 (2010).
Pole, R. V.
R. V. Pole, “3D imagery and holograms of objects illuminated in white light,” Appl. Phys. Lett. 10, 20–22 (1967).
[Crossref]
Prieto, D. V.
J. G.Sucerquia, J. A. H. Ramírez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik 116, 44–48 (2005).
[Crossref]
Quan, C.
C. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng. 461158011–1158016 (2007).
[Crossref]
Ramírez, J. A. H.
J. G.Sucerquia, J. A. H. Ramírez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik 116, 44–48 (2005).
[Crossref]
Reyhan, T.
M. Kovachev, R. Ilieva, P. Benzie, G. B. Esmer, L. Onural, J. Watson, and T. Reyhan, “Holographic 3DTV displays using spatial light modulators,” in ThreeDimensional TelevisionCapture, Transmission, Display, H. Ozaktas and L. Onural, eds. (Springer, 2008), pp. 529–555.
Saleh, B. E. A.
B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley and Sons, Inc., 1991).
[Crossref]
Sangriotis, M. S.
S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, and N. G. Theofanous, “Photorealistic integral photography using a raytraced model of capturing optics,” J. Electron Imaging 15, 0430071–0430078 (2006).
[Crossref]
Schnars, U.
U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. and Tech. 13, R85–R110 (2002).
[Crossref]
Sgouros, N. P.
S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, and N. G. Theofanous, “Photorealistic integral photography using a raytraced model of capturing optics,” J. Electron Imaging 15, 0430071–0430078 (2006).
[Crossref]
Shimobaba, T.
T. Shimobaba, T. Ito, N. Masuda, Y. Abe, Y. Ichihashi, H. Nakayama, N. Takada, A. Shiraki, and T. Sugie, “Numerical calculation library for diffraction integrals using the graphic processing unit: the GPUbased wave optics library,” J. Opt. APure and Appl. Opt. 10, 0753081–0753085 (2009).
Shin, D.H.
D.H. Shin, B.G. Lee, J. Hyun, D.C. Hwang, and E.S. Kim, “Curved projection integral imaging using an additional largeaperture convex lens for viewing angle improvement,” ETRI J. 31, 105–110 (2009).
[Crossref]
Shiraki, A.
T. Shimobaba, T. Ito, N. Masuda, Y. Abe, Y. Ichihashi, H. Nakayama, N. Takada, A. Shiraki, and T. Sugie, “Numerical calculation library for diffraction integrals using the graphic processing unit: the GPUbased wave optics library,” J. Opt. APure and Appl. Opt. 10, 0753081–0753085 (2009).
Sugie, T.
T. Shimobaba, T. Ito, N. Masuda, Y. Abe, Y. Ichihashi, H. Nakayama, N. Takada, A. Shiraki, and T. Sugie, “Numerical calculation library for diffraction integrals using the graphic processing unit: the GPUbased wave optics library,” J. Opt. APure and Appl. Opt. 10, 0753081–0753085 (2009).
Takada, N.
T. Shimobaba, T. Ito, N. Masuda, Y. Abe, Y. Ichihashi, H. Nakayama, N. Takada, A. Shiraki, and T. Sugie, “Numerical calculation library for diffraction integrals using the graphic processing unit: the GPUbased wave optics library,” J. Opt. APure and Appl. Opt. 10, 0753081–0753085 (2009).
Tay, C. J.
C. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng. 461158011–1158016 (2007).
[Crossref]
Teich, M. C.
B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley and Sons, Inc., 1991).
[Crossref]
Theofanous, N. G.
S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, and N. G. Theofanous, “Photorealistic integral photography using a raytraced model of capturing optics,” J. Electron Imaging 15, 0430071–0430078 (2006).
[Crossref]
Watson, J.
M. Kovachev, R. Ilieva, P. Benzie, G. B. Esmer, L. Onural, J. Watson, and T. Reyhan, “Holographic 3DTV displays using spatial light modulators,” in ThreeDimensional TelevisionCapture, Transmission, Display, H. Ozaktas and L. Onural, eds. (Springer, 2008), pp. 529–555.
Whang, M. C.
B.N.R. Lee, Y. Cho, K.. S. Park, S.W. Min, J.S. Lim, M. C. Whang, and K. R. Park, “Design and implementation of a fast integral image rendering method,” Lect. Notes Comput. Sc. 4161, 135–140 (2006).
[Crossref]
Yamaguchi, T.
H. Kang, T. Fujii, T. Yamaguchi, and H. Yoshikawa, “Compensated phaseadded stereogram for realtime holographic display,” Opt. Eng. 46, 0958021–09580211 (2007).
[Crossref]
Yaras, F.
L. Onural, F. Yaraş, and H. Kang, “Digital holographic threedimensional video displays,” Proc. of IEEE 99, 576–589 (2011).
[Crossref]
F. Yaraş, H. Kang, and L. Onural, “Circular holographic video display system,” Opt. Express 19, 9147–9156 (2011).
[Crossref]
F. Yaraş and L. Onural, “Color holographic reconstruction using multiple SLMs and LED illumination,” Proc. of SPIE 7237, 72370O1–72370O5 (2010).
Yöntem, A. Ö.
A. Ö. Yöntem and Levent Onural, “Integral imaging using phaseonly LCoS spatial light modulators as Fresnel lenslet arrays,” J. Opt. Soc. Am. A 28, 2359–2375 (2011).
[Crossref]
Yoshikawa, H.
H. Kang, T. Fujii, T. Yamaguchi, and H. Yoshikawa, “Compensated phaseadded stereogram for realtime holographic display,” Opt. Eng. 46, 0958021–09580211 (2007).
[Crossref]
Yuyama, I.
F. Okano, H. Hoshino, H. A. Jun, and I. Yuyama, “Realtime pickup method for a threedimensional image based on the integral photography,” Appl. Opt. 36, 1–14 (1997).
[Crossref]
Appl. Opt. (4)
F. Okano, H. Hoshino, H. A. Jun, and I. Yuyama, “Realtime pickup method for a threedimensional image based on the integral photography,” Appl. Opt. 36, 1–14 (1997).
[Crossref]
L. Onural, “Sampling of the diffraction field,” Appl. Opt. 39, 5929–5935 (2000).
[Crossref]
T. Baumbach, E. Kolenović, V. Kebbel, and W. Jüptner, “Improvement of accuracy in digital holography by use of multiple holograms,” Appl. Opt. 45, 6077–6085 (2006).
[Crossref]
[PubMed]
S.W. Min, S. Jung, H. Choi, Y. Kim, J.H. Park, and B. Lee, “Wideviewingangle integral threedimensional imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546–552 (2005).
[Crossref]
[PubMed]
Appl. Phys. Lett. (1)
R. V. Pole, “3D imagery and holograms of objects illuminated in white light,” Appl. Phys. Lett. 10, 20–22 (1967).
[Crossref]
C.R. Hebd. Seances Acad. Sci. (1)
G. Lippmann, “La photographie intégrale,” C.R. Hebd. Seances Acad. Sci. 146, 446–451 (1908).
ETRI J. (1)
D.H. Shin, B.G. Lee, J. Hyun, D.C. Hwang, and E.S. Kim, “Curved projection integral imaging using an additional largeaperture convex lens for viewing angle improvement,” ETRI J. 31, 105–110 (2009).
[Crossref]
J. Disp. Technol (1)
B. Javidi and S.H. Hong, “Threedimensional holographic image sensing and integral imaging display,” J. Disp. Technol 1, 341–346 (2005).
[Crossref]
J. Electron Imaging (1)
S. S. Athineos, N. P. Sgouros, P. G. Papageorgas, D. E. Maroulis, M. S. Sangriotis, and N. G. Theofanous, “Photorealistic integral photography using a raytraced model of capturing optics,” J. Electron Imaging 15, 0430071–0430078 (2006).
[Crossref]
J. Opt. APure and Appl. Opt. (1)
T. Shimobaba, T. Ito, N. Masuda, Y. Abe, Y. Ichihashi, H. Nakayama, N. Takada, A. Shiraki, and T. Sugie, “Numerical calculation library for diffraction integrals using the graphic processing unit: the GPUbased wave optics library,” J. Opt. APure and Appl. Opt. 10, 0753081–0753085 (2009).
J. Opt. Soc. Am. A (1)
A. Ö. Yöntem and Levent Onural, “Integral imaging using phaseonly LCoS spatial light modulators as Fresnel lenslet arrays,” J. Opt. Soc. Am. A 28, 2359–2375 (2011).
[Crossref]
Jpn. J. Appl. Phys. (1)
S.W. Min, K. S. Park, B. Lee, Y. Cho, and M. Hahn, “Enhanced image mapping algorithm for computergenerated integral imaging system,” Jpn. J. Appl. Phys. 45, L744–L747 (2006).
[Crossref]
Lect. Notes Comput. Sc. (1)
B.N.R. Lee, Y. Cho, K.. S. Park, S.W. Min, J.S. Lim, M. C. Whang, and K. R. Park, “Design and implementation of a fast integral image rendering method,” Lect. Notes Comput. Sc. 4161, 135–140 (2006).
[Crossref]
Meas. Sci. and Tech. (1)
U. Schnars and W. P. O. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. and Tech. 13, R85–R110 (2002).
[Crossref]
Opt. Commun. (1)
D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, and F. Marinho, “Fast algorithms for freespace diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).
[Crossref]
Opt. Eng. (2)
H. Kang, T. Fujii, T. Yamaguchi, and H. Yoshikawa, “Compensated phaseadded stereogram for realtime holographic display,” Opt. Eng. 46, 0958021–09580211 (2007).
[Crossref]
C. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Opt. Eng. 461158011–1158016 (2007).
[Crossref]
Opt. Express (2)
T. Ito and K. Okano, “Color electroholography by three colored reference lights simultaneously incident upon one hologram panel,” Opt. Express 12, 4320–4325 (2004).
[Crossref]
[PubMed]
F. Yaraş, H. Kang, and L. Onural, “Circular holographic video display system,” Opt. Express 19, 9147–9156 (2011).
[Crossref]
Opt. Lett. (1)
J.S. Jang and B. Javidi, “Threedimensional integral imaging with electronically synthesized lenslet arrays,” Opt. Lett. 27, 1767–1769 (2002).
[Crossref]
Optik (1)
J. G.Sucerquia, J. A. H. Ramírez, and D. V. Prieto, “Reduction of speckle noise in digital holography by using digital image processing,” Optik 116, 44–48 (2005).
[Crossref]
Proc. of IEEE (1)
L. Onural, F. Yaraş, and H. Kang, “Digital holographic threedimensional video displays,” Proc. of IEEE 99, 576–589 (2011).
[Crossref]
Proc. of SPIE (6)
F. Yaraş and L. Onural, “Color holographic reconstruction using multiple SLMs and LED illumination,” Proc. of SPIE 7237, 72370O1–72370O5 (2010).
I. Bergoënd, C. Arfire, N. Pavillon, and C. Depeursinge, “Diffraction tomography for biological cells imaging using digital holographic microscopy,” Proc. of SPIE 7376, 7376131–7376138 (2010).
T. Mishina, M. Okui, and F. Okano, “Generation of holograms using integral photography,” Proc. of SPIE 5599, 114–122 (2004).
[Crossref]
S.H. Lee, S.C. Kim, and E.S. Kim, “Reconstruction of digital hologram generated by subimage of integral imaging,” Proc. of SPIE 6912, 69121F1–69121F10 (2008).
S.W. Min, S. Jung, J.H. Park, and B. Lee, “Threedimensional display system based on computergenerated integral photgraphy,” Proc. of SPIE 4297, 187–195 (2001).
[Crossref]
J.K. Lee, S.C. Kim, and E.S. Kim, “Reconstruction of threedimensional object and system analysis using ray tracing in practical integral imaging system,” Proc. of SPIE 6695, 6695191–66951912 (2007).
Other (3)
B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley and Sons, Inc., 1991).
[Crossref]
J. W. Goodman, Introduction to Fourier Optics (McGrawHill, 1996).
M. Kovachev, R. Ilieva, P. Benzie, G. B. Esmer, L. Onural, J. Watson, and T. Reyhan, “Holographic 3DTV displays using spatial light modulators,” in ThreeDimensional TelevisionCapture, Transmission, Display, H. Ozaktas and L. Onural, eds. (Springer, 2008), pp. 529–555.
Cited By
OSA participates in Crossref's CitedBy Linking service. Citing articles from OSA journals and other participating publishers are listed here.
Alert me when this article is cited.
Figures (17)
(a) A generic sketch of holographic recording. The diffraction pattern at
(a) A generic integral imaging data capture setup. The diffraction pattern in Fig.1 (a) is also depicted. For the same object with the same physical dimensions, the diffraction patterns in both systems are the same. (b) A generic Integral imaging display setup. The reconstruction is pseudoscopic due to employed direct pickup method.(c) Designed model to calculate elemental images from diffraction (hologram) data.
The algorithm to generate elemental images from a diffraction pattern.
Computed and recorded elemental images of two letters at different depths and positions. (We enhanced the brightness of the figure for visual purposes. This is achieved by stretching the contrast. The figure is also used on the LCD display of the integral imaging setup as is. Similar enhancement procedure is used in Figs. 6, 8 and 14–17. In Figs. 14–17, we enhanced only the computer simulation results.)
A sketch of the pyramid object. A square pyramid is sampled (sliced) over the
Computed and recorded elemental images of the pyramid object. (We enhanced the brightness of the figure for visual purposes.)
(a) The amplitude picture of the diffraction pattern of the epithelium cell. (b) The upsampled (interpolated and low pass filtered) version of (a).
Computed and recorded elemental images of the epithelium cell. (We enhanced the brightness of the figure for visual purposes.)
The optical setup
A Fresnel lenslet array pattern with 12×20 lenslets. Each lenslet has a focal length of 10.8
Picture of the entire optical setup.
Top view of the optical setup. There is a wireframe pyramid object next to the reconstruction zone. It is used to compare the reconstructed 3D images of the pyramid object.
The viewing zone of the optical setup. We placed cards labeled as “Bilkent University” at different distances in order to check the reconstruction distances.
3D reconstruction from the elemental images of Fig. 4. At the top, digital reconstructions are shown while at the bottom we observe the optical counterparts. On the left side, the camera, which took this picture, was focused to a distance 8.4
3D reconstruction from the elemental images of Fig. 6. Images at the left are digital reconstructions. Images at the right are optical reconstructions. The top images are focused to the tip of the pyramid object and the images at the bottom are focused to the base of the object. It is clearly seen that the physical (wire) object and the reconstructed 3D images match. (We enhanced the brightness of the computer simulation results for visual purposes.)
The pictures of the pyramid image taken from three different angles. (All are focused to the tip of the pyramid.) The pictures at the top are the digital reconstructions and the bottom ones are the optical reconstructions. The pictures show the parallax and the viewing angle. (We enhanced the brightness of the computer simulation results for visual purposes.)
Reconstruction from the elemental images of Fig. 8. Top picture is the digital reconstruction whereas the bottom one shows the optical reconstruction. Since the object thickness is small relative to the reconstruction distance, a 3D depth is not perceived. However, the planar looking thin object still floats in 3D space. (We enhanced the brightness of the computer simulation results for visual purposes.)
Equations (14)
Equations on this page are rendered with MathJax. Learn more.