Abstract

Dispersive fiber is well-regarded as the most viable candidate for realizing efficient optical time-stretch process – an ultrafast spectroscopic measurement technique based on the wavelength-to-time mapping via group velocity dispersion (GVD). Despite optical time-stretch has been anticipated to benefit a wide range of high-throughput biomedical diagnoses, the lack of commercially-available dispersive fibers which can operate in the “biomedically-favorable” short near-infrared (~800 nm – 1100 nm) range hinders practical time-stretch-based biomedical spectroscopy and microscopy. We here explore and demonstrate the feasibility of using the standard telecommunication single-mode fibers (e.g. SMF28 and dispersion compensation fiber (DCF)) as few-mode fibers (FMFs) for optical time-stretch confocal microscopy in the 1μm range. By evaluating GVD of different FMF modes and thus the corresponding time-stretch performances, we show that the fundamental modes (LP01) of SMF28 and DCF, having sufficiently high dispersion-to-loss ratios, are particularly useful for practical time-stretch spectroscopy and microscopy at 1 μm, without the need for the specialty 1 μm SMF. More intriguingly, we also show that the higher-order FMF modes (e.g. LP11) could be excited and utilized for time-stretch imaging. Such additional degree of freedom creates a new avenue for optimizing and designing the time-stretch operations, such as by tailored engineering of the modal-dispersion as well as the GVD of the individual FMF modes.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics2(1), 48–51 (2008).
    [CrossRef]
  2. K. Goda, D. R. Solli, K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A80(4), 043821 (2009).
    [CrossRef]
  3. J. Chou, D. R. Solli, and B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett.92(11), 111102 (2008).
    [CrossRef]
  4. S. Moon and D. Y. Kim, “Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source,” Opt. Express14(24), 11575–11584 (2006).
    [CrossRef] [PubMed]
  5. T.-J. Ahn, Y. Park, and J. Azaña, “Ultrarapid optical frequency-domain reflectometry based upon dispersion-induced time stretching: principle and applications,” IEEE J. Sel. Top. Quantum Electron.18(1), 148–165 (2012).
    [CrossRef]
  6. K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett.93(13), 131109 (2008).
    [CrossRef]
  7. A. M. Fard, A. Mahjoubfar, K. Goda, D. R. Gossett, D. Di Carlo, and B. Jalali, “Nomarski serial time-encoded amplified microscopy for high-speed contrast-enhanced imaging of transparent media,” Biomed. Opt. Express2(12), 3387–3392 (2011).
    [CrossRef] [PubMed]
  8. K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express18(10), 10016–10028 (2010).
    [CrossRef] [PubMed]
  9. K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature458(7242), 1145–1149 (2009).
    [CrossRef] [PubMed]
  10. C. Zhang, Y. Qiu, R. Zhu, K. K. Y. Wong, and K. K. Tsia, “Serial time-encoded amplified microscopy based on picosecond supercontinuum source,” Opt. Express19, 15810–15816 (2011).
    [CrossRef] [PubMed]
  11. T.-J. Ahn, Y. Jung, K. Oh, and D. Y. Kim, “Optical frequency-domain chromatic dispersion measurement method for higher-order modes in an optical fiber,” Opt. Express13(25), 10040–10048 (2005).
    [CrossRef] [PubMed]
  12. F. Yaman, N. Bai, B. Zhu, T. Wang, and G. Li, “Long distance transmission in few-mode fibers,” Opt. Express18(12), 13250–13257 (2010).
    [CrossRef] [PubMed]
  13. F. Yaman, N. Bai, Y. K. Huang, M. F. Huang, B. Zhu, T. Wang, and G. Li, “10 x 112Gb/s PDM-QPSK transmission over 5032 km in few-mode fibers,” Opt. Express18(20), 21342–21349 (2010).
    [CrossRef] [PubMed]
  14. S. Ramachandran, “Dispersion-tailored few-mode Fibers: A versatile platform for in-fiber photonic devices,” J. Lightwave Technol.23(11), 3426–3443 (2005).
    [CrossRef]
  15. T. T. W. Wong, A. K. S. Lau, K. K. Y. Wong, and K. K. Tsia, “Optical time-stretch confocal microscopy at 1um,” Opt. Lett.37(16), 3330–3332 (2012).
    [CrossRef]
  16. K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser Scanner,” Sci Rep2(445), 1–8 (2012).
    [PubMed]
  17. P. Hamel, Y. Jaouën, R. Gabet, and S. Ramachandran, “Optical low-coherence reflectometry for complete chromatic dispersion characterization of few-mode fibers,” Opt. Lett.32(9), 1029–1031 (2007).
    [CrossRef] [PubMed]
  18. S. Ramachandran, Fiber Based Dispersion Compensation, 1st ed. (Springer, 2007).
  19. A. F. Zuluaga, R. Drezek, T. Collier, R. Lotan, M. Follen, and R. Richards-Kortum, “Contrast agents for confocal microscopy: how simple chemicals affect confocal images of normal and cancer cells in suspension,” J. Biomed. Opt.7(3), 398–403 (2002).
    [CrossRef] [PubMed]
  20. D. Yelin, C. Boudoux, B. E. Bouma, and G. J. Tearney, “Large area confocal microscopy,” Opt. Lett.32(9), 1102–1104 (2007).
    [CrossRef] [PubMed]
  21. K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery,” Opt. Lett.34(14), 2099–2101 (2009).
    [CrossRef] [PubMed]
  22. C. Boudoux, S. Yun, W. Oh, W. White, N. Iftimia, M. Shishkov, B. Bouma, and G. Tearney, “Rapid wavelength-swept spectrally encoded confocal microscopy,” Opt. Express13(20), 8214–8221 (2005).
    [CrossRef] [PubMed]

2012 (3)

T.-J. Ahn, Y. Park, and J. Azaña, “Ultrarapid optical frequency-domain reflectometry based upon dispersion-induced time stretching: principle and applications,” IEEE J. Sel. Top. Quantum Electron.18(1), 148–165 (2012).
[CrossRef]

T. T. W. Wong, A. K. S. Lau, K. K. Y. Wong, and K. K. Tsia, “Optical time-stretch confocal microscopy at 1um,” Opt. Lett.37(16), 3330–3332 (2012).
[CrossRef]

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser Scanner,” Sci Rep2(445), 1–8 (2012).
[PubMed]

2011 (2)

2010 (3)

2009 (3)

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

K. Goda, D. R. Solli, K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A80(4), 043821 (2009).
[CrossRef]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery,” Opt. Lett.34(14), 2099–2101 (2009).
[CrossRef] [PubMed]

2008 (3)

J. Chou, D. R. Solli, and B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett.92(11), 111102 (2008).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett.93(13), 131109 (2008).
[CrossRef]

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics2(1), 48–51 (2008).
[CrossRef]

2007 (2)

2006 (1)

2005 (3)

2002 (1)

A. F. Zuluaga, R. Drezek, T. Collier, R. Lotan, M. Follen, and R. Richards-Kortum, “Contrast agents for confocal microscopy: how simple chemicals affect confocal images of normal and cancer cells in suspension,” J. Biomed. Opt.7(3), 398–403 (2002).
[CrossRef] [PubMed]

Adam, J.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser Scanner,” Sci Rep2(445), 1–8 (2012).
[PubMed]

Ahn, T.-J.

T.-J. Ahn, Y. Park, and J. Azaña, “Ultrarapid optical frequency-domain reflectometry based upon dispersion-induced time stretching: principle and applications,” IEEE J. Sel. Top. Quantum Electron.18(1), 148–165 (2012).
[CrossRef]

T.-J. Ahn, Y. Jung, K. Oh, and D. Y. Kim, “Optical frequency-domain chromatic dispersion measurement method for higher-order modes in an optical fiber,” Opt. Express13(25), 10040–10048 (2005).
[CrossRef] [PubMed]

Ayazi, A.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser Scanner,” Sci Rep2(445), 1–8 (2012).
[PubMed]

Azaña, J.

T.-J. Ahn, Y. Park, and J. Azaña, “Ultrarapid optical frequency-domain reflectometry based upon dispersion-induced time stretching: principle and applications,” IEEE J. Sel. Top. Quantum Electron.18(1), 148–165 (2012).
[CrossRef]

Bai, N.

Boudoux, C.

Bouma, B.

Bouma, B. E.

Brown, R.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser Scanner,” Sci Rep2(445), 1–8 (2012).
[PubMed]

Capewell, D.

Chen, E.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser Scanner,” Sci Rep2(445), 1–8 (2012).
[PubMed]

Chou, J.

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics2(1), 48–51 (2008).
[CrossRef]

J. Chou, D. R. Solli, and B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett.92(11), 111102 (2008).
[CrossRef]

Collier, T.

A. F. Zuluaga, R. Drezek, T. Collier, R. Lotan, M. Follen, and R. Richards-Kortum, “Contrast agents for confocal microscopy: how simple chemicals affect confocal images of normal and cancer cells in suspension,” J. Biomed. Opt.7(3), 398–403 (2002).
[CrossRef] [PubMed]

Di Carlo, D.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser Scanner,” Sci Rep2(445), 1–8 (2012).
[PubMed]

A. M. Fard, A. Mahjoubfar, K. Goda, D. R. Gossett, D. Di Carlo, and B. Jalali, “Nomarski serial time-encoded amplified microscopy for high-speed contrast-enhanced imaging of transparent media,” Biomed. Opt. Express2(12), 3387–3392 (2011).
[CrossRef] [PubMed]

Drezek, R.

A. F. Zuluaga, R. Drezek, T. Collier, R. Lotan, M. Follen, and R. Richards-Kortum, “Contrast agents for confocal microscopy: how simple chemicals affect confocal images of normal and cancer cells in suspension,” J. Biomed. Opt.7(3), 398–403 (2002).
[CrossRef] [PubMed]

Fard, A.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser Scanner,” Sci Rep2(445), 1–8 (2012).
[PubMed]

Fard, A. M.

Follen, M.

A. F. Zuluaga, R. Drezek, T. Collier, R. Lotan, M. Follen, and R. Richards-Kortum, “Contrast agents for confocal microscopy: how simple chemicals affect confocal images of normal and cancer cells in suspension,” J. Biomed. Opt.7(3), 398–403 (2002).
[CrossRef] [PubMed]

Gabet, R.

Goda, K.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser Scanner,” Sci Rep2(445), 1–8 (2012).
[PubMed]

A. M. Fard, A. Mahjoubfar, K. Goda, D. R. Gossett, D. Di Carlo, and B. Jalali, “Nomarski serial time-encoded amplified microscopy for high-speed contrast-enhanced imaging of transparent media,” Biomed. Opt. Express2(12), 3387–3392 (2011).
[CrossRef] [PubMed]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express18(10), 10016–10028 (2010).
[CrossRef] [PubMed]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery,” Opt. Lett.34(14), 2099–2101 (2009).
[CrossRef] [PubMed]

K. Goda, D. R. Solli, K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A80(4), 043821 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett.93(13), 131109 (2008).
[CrossRef]

Gossett, D. R.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser Scanner,” Sci Rep2(445), 1–8 (2012).
[PubMed]

A. M. Fard, A. Mahjoubfar, K. Goda, D. R. Gossett, D. Di Carlo, and B. Jalali, “Nomarski serial time-encoded amplified microscopy for high-speed contrast-enhanced imaging of transparent media,” Biomed. Opt. Express2(12), 3387–3392 (2011).
[CrossRef] [PubMed]

Hamel, P.

Huang, M. F.

Huang, Y. K.

Iftimia, N.

Jalali, B.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser Scanner,” Sci Rep2(445), 1–8 (2012).
[PubMed]

A. M. Fard, A. Mahjoubfar, K. Goda, D. R. Gossett, D. Di Carlo, and B. Jalali, “Nomarski serial time-encoded amplified microscopy for high-speed contrast-enhanced imaging of transparent media,” Biomed. Opt. Express2(12), 3387–3392 (2011).
[CrossRef] [PubMed]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express18(10), 10016–10028 (2010).
[CrossRef] [PubMed]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery,” Opt. Lett.34(14), 2099–2101 (2009).
[CrossRef] [PubMed]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

K. Goda, D. R. Solli, K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A80(4), 043821 (2009).
[CrossRef]

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics2(1), 48–51 (2008).
[CrossRef]

J. Chou, D. R. Solli, and B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett.92(11), 111102 (2008).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett.93(13), 131109 (2008).
[CrossRef]

Jaouën, Y.

Jung, Y.

Kim, D. Y.

Lau, A. K. S.

Li, G.

Liu, Y.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser Scanner,” Sci Rep2(445), 1–8 (2012).
[PubMed]

Lotan, R.

A. F. Zuluaga, R. Drezek, T. Collier, R. Lotan, M. Follen, and R. Richards-Kortum, “Contrast agents for confocal microscopy: how simple chemicals affect confocal images of normal and cancer cells in suspension,” J. Biomed. Opt.7(3), 398–403 (2002).
[CrossRef] [PubMed]

Mahjoubfar, A.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser Scanner,” Sci Rep2(445), 1–8 (2012).
[PubMed]

A. M. Fard, A. Mahjoubfar, K. Goda, D. R. Gossett, D. Di Carlo, and B. Jalali, “Nomarski serial time-encoded amplified microscopy for high-speed contrast-enhanced imaging of transparent media,” Biomed. Opt. Express2(12), 3387–3392 (2011).
[CrossRef] [PubMed]

Malik, O.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser Scanner,” Sci Rep2(445), 1–8 (2012).
[PubMed]

Moon, S.

Oh, K.

Oh, W.

Park, Y.

T.-J. Ahn, Y. Park, and J. Azaña, “Ultrarapid optical frequency-domain reflectometry based upon dispersion-induced time stretching: principle and applications,” IEEE J. Sel. Top. Quantum Electron.18(1), 148–165 (2012).
[CrossRef]

Qiu, Y.

Ramachandran, S.

Richards-Kortum, R.

A. F. Zuluaga, R. Drezek, T. Collier, R. Lotan, M. Follen, and R. Richards-Kortum, “Contrast agents for confocal microscopy: how simple chemicals affect confocal images of normal and cancer cells in suspension,” J. Biomed. Opt.7(3), 398–403 (2002).
[CrossRef] [PubMed]

Sarkhosh, N.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser Scanner,” Sci Rep2(445), 1–8 (2012).
[PubMed]

Shishkov, M.

Solli, D. R.

K. Goda, D. R. Solli, K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A80(4), 043821 (2009).
[CrossRef]

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics2(1), 48–51 (2008).
[CrossRef]

J. Chou, D. R. Solli, and B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett.92(11), 111102 (2008).
[CrossRef]

Sollier, E.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser Scanner,” Sci Rep2(445), 1–8 (2012).
[PubMed]

Tearney, G.

Tearney, G. J.

Tsia, K.

K. Goda, D. R. Solli, K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A80(4), 043821 (2009).
[CrossRef]

Tsia, K. K.

Wang, C.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser Scanner,” Sci Rep2(445), 1–8 (2012).
[PubMed]

Wang, T.

White, W.

Wong, K. K. Y.

Wong, T. T. W.

Yaman, F.

Yelin, D.

Yun, S.

Zhang, C.

Zhu, B.

Zhu, R.

Zuluaga, A. F.

A. F. Zuluaga, R. Drezek, T. Collier, R. Lotan, M. Follen, and R. Richards-Kortum, “Contrast agents for confocal microscopy: how simple chemicals affect confocal images of normal and cancer cells in suspension,” J. Biomed. Opt.7(3), 398–403 (2002).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

J. Chou, D. R. Solli, and B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett.92(11), 111102 (2008).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett.93(13), 131109 (2008).
[CrossRef]

Biomed. Opt. Express (1)

IEEE J. Sel. Top. Quantum Electron. (1)

T.-J. Ahn, Y. Park, and J. Azaña, “Ultrarapid optical frequency-domain reflectometry based upon dispersion-induced time stretching: principle and applications,” IEEE J. Sel. Top. Quantum Electron.18(1), 148–165 (2012).
[CrossRef]

J. Biomed. Opt. (1)

A. F. Zuluaga, R. Drezek, T. Collier, R. Lotan, M. Follen, and R. Richards-Kortum, “Contrast agents for confocal microscopy: how simple chemicals affect confocal images of normal and cancer cells in suspension,” J. Biomed. Opt.7(3), 398–403 (2002).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

Nat. Photonics (1)

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics2(1), 48–51 (2008).
[CrossRef]

Nature (1)

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

Opt. Express (7)

Opt. Lett. (4)

Phys. Rev. A (1)

K. Goda, D. R. Solli, K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A80(4), 043821 (2009).
[CrossRef]

Sci Rep (1)

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser Scanner,” Sci Rep2(445), 1–8 (2012).
[PubMed]

Other (1)

S. Ramachandran, Fiber Based Dispersion Compensation, 1st ed. (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Experimental set up of time-stretch confocal microscopy at 1μm using FMF. Right upper inset: an image of the fused fiber (between a SMF and a FMF). The controlled offset between the two fibers can be observed at the connecting facets. SC: supercontimuum, BS: beam splitter, DG: transmission diffraction grating, OBJ: objective lens, FC: fiber collimator, PD: photodetector, OSC: real-time oscilloscope.

Fig. 2
Fig. 2

(a) Measured GVD curves and the loss values of different fiber modes in the FMFs and the 1μm SMF. (b)-(e) Captured images of the fiber output mode patterns using the NIR camera. (f) Measured output spectra of the SMF28 when an alignment offset is varied at the fiber input. The fringes are attributed to the beating between the fundamental mode (LP01) and higher-order mode (LP11).

Fig. 3
Fig. 3

Wavelength-to-time mapping based on different FMF modes as well as the 1μm SMF. (a) The input shaped spectrum to the fiber-under-test. The time-stretched signals of (b) 1μm SMF, (c) LP01 of SMF28, (d) LP01 of DCF and (e) LP11 of SMF28. The input misalignment offset is 4 mm in (d). Note that all the spectral information can in general be mapped into time well within few ns in all of the cases – demonstrating the ultrafast spectral acquisition speed enabled by the time-stretch process.

Fig. 4
Fig. 4

Time-stretch confocal images of a resolution target (USAF-1951) captured based on different fiber modes: (a) LP01 mode of a 9km-long SMF28, (b) LP01 mode of a 5 km-long 1μm SMF, (c) LP01 mode of a 1.44km-long DCF, and (d) LP11 mode of a 0.35km-long SMF 28. The input misalignment offset is 4 μm in (d). The scale bars represent 50 μm in (a)-(c), and 100μm in (d)

Fig. 5
Fig. 5

Raw images of the nasopharyngeal epithelial cells captured by (a) the spectrally-encoding approach, and (b) time-stretch confocal microscopy based on the LP01 mode of a 6km SMF28. The scale bars represent 50 μm.

Tables (2)

Tables Icon

Table 1 Key specifications of different fiber modes investigated in the experiment, namely the GVD, fiber loss, the fiber length, total dispersion and the GVD-to-loss ratio R. Note that the GVD and the total dispersion are the average values taken across the spectrum of 1050 nm – 1140 nm.

Tables Icon

Table 2 Three different limiting regimes governing the spatial resolution of time-stretch microscopy based on different fiber modes. The final resolution is defined as δx = max{ δxsd , δxSPA, δxdig}, where δxSPA = C·δλSPA and δxdig = C·δλdig. C is the conversion factor between the space and wavelength [9].

Metrics