Abstract

The interferometric coupling of pairs of resonators in a resonator sequence generates coupled ring induced transparency (CRIT) resonances. These have quality factors an order of magnitude greater than those of single resonators. We show that it is possible to engineer CRIT resonances in tapered SCISSOR (Side Coupled Integrated Space Sequence of Resonator) to realize fast and efficient reconfigurable optical switches and routers handling several channels while keeping single channel addressing capabilities. Tapered SCISSORs are fabricated in silicon-on-insulator technology. Furthermore, tapered SCISSORs show multiple-channel switching behavior that can be exploited in DWDM applications.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Lipson, “Guiding, modulating, and emitting light on silicon - Challenges and opportunities,” J. Lightwave Technol.23(12), 4222–4238 (2005).
    [CrossRef]
  2. Y. Vlasov, W. M. J. Green, and F. Xia, “High-Through put silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics2(4), 242–246 (2008).
    [CrossRef]
  3. A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput.57(9), 1246–1260 (2008).
    [CrossRef]
  4. X. Z. Zheng, F. Y. Liu, J. Lexau, D. Patil, G. L. Li, Y. Luo, H. D. Thacker, I. Shubin, J. Yao, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultralow power 80 gb/s arrayed cmos silicon photonic transceivers for wdm optical links,” J. Lightwave Technol.30(4), 641–650 (2012).
    [CrossRef]
  5. S. Feng, T. Lei, H. Chen, H. Cai, X. Luo, and A. W. Poon, “Silicon photonics: from a microresonator perspective,” Laser Photon. Rev.6(2), 145–177 (2012).
    [CrossRef]
  6. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012).
    [CrossRef]
  7. J. E. Heebner, R. W. Boyd, and Q. H. Park, “SCISSOR solitons and other novel propagation effects in microresonator-modified waveguides,” J. Opt. Soc. Am. B19(4), 722–731 (2002).
    [CrossRef]
  8. S.-Y. Cho and R. Soref, “Apodized SCISSORs for filtering and switching,” Opt. Express16(23), 19078–19090 (2008).
    [CrossRef] [PubMed]
  9. Q. F. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. H. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
    [CrossRef] [PubMed]
  10. B. E. Little, J. P. Laine, and S. T. Chu, “Surface-roughness-induced contradirectional coupling in ring and disk resonators,” Opt. Lett.22(1), 4–6 (1997).
    [CrossRef] [PubMed]
  11. J. E. Heebner, P. Chak, S. Pereira, J. E. Sipe, and R. W. Boyd, “Distributed and localized feedback in microresonator sequences for linear and nonlinear optics,” J. Opt. Soc. Am. B21(10), 1818–1832 (2004).
    [CrossRef]
  12. M. Mancinelli, R. Guider, P. Bettotti, M. Masi, M. R. Vanacharla, and L. Pavesi, “Coupled-resonator-induced-transparency concept for wavelength routing applications,” Opt. Express19(13), 12227–12240 (2011).
    [CrossRef] [PubMed]
  13. M. Mancinelli, R. Guider, M. Masi, P. Bettotti, M. R. Vanacharla, J.-M. Fedeli, and L. Pavesi, “Optical characterization of a SCISSOR device,” Opt. Express19(14), 13664–13674 (2011).
    [CrossRef] [PubMed]
  14. S. F. Mingaleev, A. E. Miroshnichenko, and Y. S. Kivshar, “Coupled-resonator-induced reflection in photonic-crystal waveguide structures,” Opt. Express16(15), 11647–11659 (2008).
    [CrossRef] [PubMed]
  15. Y.-F. Xiao, X.-B. Zou, W. Jiang, Y.-L. Chen, and G.-C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A75(6), 063833 (2007).
    [CrossRef]
  16. X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett.102(17), 173902 (2009).
    [CrossRef] [PubMed]
  17. X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photon. Technol. Lett.20(11), 936–938 (2008).
    [CrossRef]
  18. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express18(19), 20298–20304 (2010).
    [CrossRef] [PubMed]
  19. F. Y. Gardes, D. J. Thomson, N. G. Emerson, and G. T. Reed, “40 Gb/s silicon photonics modulator for TE and TM polarisations,” Opt. Express19(12), 11804–11814 (2011).
    [CrossRef] [PubMed]
  20. E. J. Klein, P. Urban, G. Sengo, L. T. H. Hilderink, M. Hoekman, R. Pellens, P. van Dijk, and A. Driessen, “Densely integrated microring resonator based photonic devices for use in access networks,” Opt. Express15(16), 10346–10355 (2007).
    [CrossRef] [PubMed]
  21. H. Shen, M. H. Khan, L. Fan, L. Zhao, Y. Xuan, J. Ouyang, L. T. Varghese, and M. Qi, “Eight-channel reconfigurable microring filters with tunable frequency, extinction ratio and bandwidth,” Opt. Express18(17), 18067–18076 (2010).
    [CrossRef] [PubMed]
  22. M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kärtner, H. I. Smith, and E. P. Ippen, “Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems,” Opt. Express19(1), 306–316 (2011).
    [CrossRef] [PubMed]

2012

X. Z. Zheng, F. Y. Liu, J. Lexau, D. Patil, G. L. Li, Y. Luo, H. D. Thacker, I. Shubin, J. Yao, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultralow power 80 gb/s arrayed cmos silicon photonic transceivers for wdm optical links,” J. Lightwave Technol.30(4), 641–650 (2012).
[CrossRef]

S. Feng, T. Lei, H. Chen, H. Cai, X. Luo, and A. W. Poon, “Silicon photonics: from a microresonator perspective,” Laser Photon. Rev.6(2), 145–177 (2012).
[CrossRef]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012).
[CrossRef]

2011

2010

2009

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett.102(17), 173902 (2009).
[CrossRef] [PubMed]

2008

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photon. Technol. Lett.20(11), 936–938 (2008).
[CrossRef]

S. F. Mingaleev, A. E. Miroshnichenko, and Y. S. Kivshar, “Coupled-resonator-induced reflection in photonic-crystal waveguide structures,” Opt. Express16(15), 11647–11659 (2008).
[CrossRef] [PubMed]

Y. Vlasov, W. M. J. Green, and F. Xia, “High-Through put silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics2(4), 242–246 (2008).
[CrossRef]

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput.57(9), 1246–1260 (2008).
[CrossRef]

S.-Y. Cho and R. Soref, “Apodized SCISSORs for filtering and switching,” Opt. Express16(23), 19078–19090 (2008).
[CrossRef] [PubMed]

2007

Y.-F. Xiao, X.-B. Zou, W. Jiang, Y.-L. Chen, and G.-C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A75(6), 063833 (2007).
[CrossRef]

E. J. Klein, P. Urban, G. Sengo, L. T. H. Hilderink, M. Hoekman, R. Pellens, P. van Dijk, and A. Driessen, “Densely integrated microring resonator based photonic devices for use in access networks,” Opt. Express15(16), 10346–10355 (2007).
[CrossRef] [PubMed]

2006

Q. F. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. H. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

2005

2004

2002

1997

Asghari, M.

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012).
[CrossRef]

Bergman, K.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput.57(9), 1246–1260 (2008).
[CrossRef]

Bettotti, P.

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012).
[CrossRef]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012).
[CrossRef]

Boyd, R. W.

Cai, H.

S. Feng, T. Lei, H. Chen, H. Cai, X. Luo, and A. W. Poon, “Silicon photonics: from a microresonator perspective,” Laser Photon. Rev.6(2), 145–177 (2012).
[CrossRef]

Carloni, L. P.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput.57(9), 1246–1260 (2008).
[CrossRef]

Chak, P.

Chen, H.

S. Feng, T. Lei, H. Chen, H. Cai, X. Luo, and A. W. Poon, “Silicon photonics: from a microresonator perspective,” Laser Photon. Rev.6(2), 145–177 (2012).
[CrossRef]

Chen, Y.-L.

Y.-F. Xiao, X.-B. Zou, W. Jiang, Y.-L. Chen, and G.-C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A75(6), 063833 (2007).
[CrossRef]

Cho, S.-Y.

Chu, S. T.

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012).
[CrossRef]

Cunningham, J. E.

Dahlem, M. S.

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012).
[CrossRef]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012).
[CrossRef]

Dong, P.

Driessen, A.

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012).
[CrossRef]

Emerson, N. G.

Fan, L.

Fan, S. H.

Q. F. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. H. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

Fedeli, J.-M.

Feng, D.

Feng, S.

S. Feng, T. Lei, H. Chen, H. Cai, X. Luo, and A. W. Poon, “Silicon photonics: from a microresonator perspective,” Laser Photon. Rev.6(2), 145–177 (2012).
[CrossRef]

Gardes, F. Y.

Green, W. M. J.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-Through put silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics2(4), 242–246 (2008).
[CrossRef]

Guider, R.

Guo, G.-C.

Y.-F. Xiao, X.-B. Zou, W. Jiang, Y.-L. Chen, and G.-C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A75(6), 063833 (2007).
[CrossRef]

Heebner, J. E.

Hilderink, L. T. H.

Ho, R.

Hoekman, M.

Holzwarth, C. W.

Ippen, E. P.

Jiang, W.

Y.-F. Xiao, X.-B. Zou, W. Jiang, Y.-L. Chen, and G.-C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A75(6), 063833 (2007).
[CrossRef]

Kärtner, F. X.

Khan, M. H.

Khilo, A.

Kivshar, Y. S.

Klein, E. J.

Krishnamoorthy, A. V.

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012).
[CrossRef]

Kwong, D.-L.

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett.102(17), 173902 (2009).
[CrossRef] [PubMed]

Laine, J. P.

Lei, T.

S. Feng, T. Lei, H. Chen, H. Cai, X. Luo, and A. W. Poon, “Silicon photonics: from a microresonator perspective,” Laser Photon. Rev.6(2), 145–177 (2012).
[CrossRef]

Lexau, J.

Li, G.

Li, G. L.

Liang, H.

Lipson, M.

Q. F. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. H. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

M. Lipson, “Guiding, modulating, and emitting light on silicon - Challenges and opportunities,” J. Lightwave Technol.23(12), 4222–4238 (2005).
[CrossRef]

Little, B. E.

Liu, F. Y.

Luo, X.

S. Feng, T. Lei, H. Chen, H. Cai, X. Luo, and A. W. Poon, “Silicon photonics: from a microresonator perspective,” Laser Photon. Rev.6(2), 145–177 (2012).
[CrossRef]

Luo, Y.

Mancinelli, M.

Martinez, J. A.

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photon. Technol. Lett.20(11), 936–938 (2008).
[CrossRef]

Masi, M.

Mingaleev, S. F.

Miroshnichenko, A. E.

Nawrocka, M. S.

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photon. Technol. Lett.20(11), 936–938 (2008).
[CrossRef]

Ouyang, J.

Panepucci, R. R.

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photon. Technol. Lett.20(11), 936–938 (2008).
[CrossRef]

Park, Q. H.

Patil, D.

Pavesi, L.

Pellens, R.

Pereira, S.

Poon, A. W.

S. Feng, T. Lei, H. Chen, H. Cai, X. Luo, and A. W. Poon, “Silicon photonics: from a microresonator perspective,” Laser Photon. Rev.6(2), 145–177 (2012).
[CrossRef]

Povinelli, M. L.

Q. F. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. H. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

Qi, M.

Qian, W.

Raj, K.

Reed, G. T.

Sandhu, S.

Q. F. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. H. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

Sengo, G.

Shacham, A.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput.57(9), 1246–1260 (2008).
[CrossRef]

Shafiiha, R.

Shakya, J.

Q. F. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. H. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

Shen, H.

Shubin, I.

Sipe, J. E.

Smith, H. I.

Soref, R.

Thacker, H. D.

Thomson, D. J.

Urban, P.

van Dijk, P.

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012).
[CrossRef]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012).
[CrossRef]

Vanacharla, M. R.

Varghese, L. T.

Vlasov, Y.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-Through put silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics2(4), 242–246 (2008).
[CrossRef]

Wang, X.

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photon. Technol. Lett.20(11), 936–938 (2008).
[CrossRef]

Wong, C. W.

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett.102(17), 173902 (2009).
[CrossRef] [PubMed]

Xia, F.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-Through put silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics2(4), 242–246 (2008).
[CrossRef]

Xiao, Y.-F.

Y.-F. Xiao, X.-B. Zou, W. Jiang, Y.-L. Chen, and G.-C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A75(6), 063833 (2007).
[CrossRef]

Xu, Q. F.

Q. F. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. H. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

Xuan, Y.

Yang, X.

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett.102(17), 173902 (2009).
[CrossRef] [PubMed]

Yao, J.

Yu, M.

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett.102(17), 173902 (2009).
[CrossRef] [PubMed]

Zhao, L.

Zheng, X. Z.

Zou, X.-B.

Y.-F. Xiao, X.-B. Zou, W. Jiang, Y.-L. Chen, and G.-C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A75(6), 063833 (2007).
[CrossRef]

IEEE Photon. Technol. Lett.

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photon. Technol. Lett.20(11), 936–938 (2008).
[CrossRef]

IEEE Trans. Comput.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput.57(9), 1246–1260 (2008).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Laser Photon. Rev.

S. Feng, T. Lei, H. Chen, H. Cai, X. Luo, and A. W. Poon, “Silicon photonics: from a microresonator perspective,” Laser Photon. Rev.6(2), 145–177 (2012).
[CrossRef]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev.6(1), 47–73 (2012).
[CrossRef]

Nat. Photonics

Y. Vlasov, W. M. J. Green, and F. Xia, “High-Through put silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics2(4), 242–246 (2008).
[CrossRef]

Opt. Express

S.-Y. Cho and R. Soref, “Apodized SCISSORs for filtering and switching,” Opt. Express16(23), 19078–19090 (2008).
[CrossRef] [PubMed]

M. Mancinelli, R. Guider, P. Bettotti, M. Masi, M. R. Vanacharla, and L. Pavesi, “Coupled-resonator-induced-transparency concept for wavelength routing applications,” Opt. Express19(13), 12227–12240 (2011).
[CrossRef] [PubMed]

M. Mancinelli, R. Guider, M. Masi, P. Bettotti, M. R. Vanacharla, J.-M. Fedeli, and L. Pavesi, “Optical characterization of a SCISSOR device,” Opt. Express19(14), 13664–13674 (2011).
[CrossRef] [PubMed]

S. F. Mingaleev, A. E. Miroshnichenko, and Y. S. Kivshar, “Coupled-resonator-induced reflection in photonic-crystal waveguide structures,” Opt. Express16(15), 11647–11659 (2008).
[CrossRef] [PubMed]

P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express18(19), 20298–20304 (2010).
[CrossRef] [PubMed]

F. Y. Gardes, D. J. Thomson, N. G. Emerson, and G. T. Reed, “40 Gb/s silicon photonics modulator for TE and TM polarisations,” Opt. Express19(12), 11804–11814 (2011).
[CrossRef] [PubMed]

E. J. Klein, P. Urban, G. Sengo, L. T. H. Hilderink, M. Hoekman, R. Pellens, P. van Dijk, and A. Driessen, “Densely integrated microring resonator based photonic devices for use in access networks,” Opt. Express15(16), 10346–10355 (2007).
[CrossRef] [PubMed]

H. Shen, M. H. Khan, L. Fan, L. Zhao, Y. Xuan, J. Ouyang, L. T. Varghese, and M. Qi, “Eight-channel reconfigurable microring filters with tunable frequency, extinction ratio and bandwidth,” Opt. Express18(17), 18067–18076 (2010).
[CrossRef] [PubMed]

M. S. Dahlem, C. W. Holzwarth, A. Khilo, F. X. Kärtner, H. I. Smith, and E. P. Ippen, “Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems,” Opt. Express19(1), 306–316 (2011).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. A

Y.-F. Xiao, X.-B. Zou, W. Jiang, Y.-L. Chen, and G.-C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A75(6), 063833 (2007).
[CrossRef]

Phys. Rev. Lett.

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett.102(17), 173902 (2009).
[CrossRef] [PubMed]

Q. F. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. H. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a)A double sided SCISSOR is composed by a chain of N resonators coupled by two side waveguides. The input port is label I, while the two output ports are labeled T, for the Through port, and D for the drop port. In our design, we used racetrack resonators instead of ring resonators because they provide a larger coupling for TE polarized light. Each racetrack resonator is characterized by a radius R and a coupling section C. While L defines the cavity separation. The coupling coefficient between the waveguide and the racetracks is set by the length of the coupling section (C) and by the gap between waveguides and resonator. In a tapered SCISSOR each racetrack resonator has radius which differs by ∆R from its neighbor.(b) Simulations of the Through port transmission in a SCISSOR (black line) and in a tapered SCISSOR (red line) for nondegenerate resonator and Bragg resonances. Simulation parameters: R = 3.250 μm, C = 7 μm, L = 5.105 μm, gap = 200 nm. (c) Simulations of the Through port transmission in a SCISSOR (black line) and for a tapered SCISSOR (red line) when the resonator and Bragg resonances overlap. The inset shows the dependence of the CRIT resonance on ΔR. Simulation parameters: R = 3.250 μm, C = 7 μm, L = 10.210 μm (black line) 10.200 μm (red line), gap = 160 nm.

Fig. 2
Fig. 2

(a) Through port transmission spectra of twenty equal tapered SCISSORs chosen randomly on a 200 mm wafer. (b) Sketch of a tapered SCISSOR with integrated a metal resistor to heat locally racetrack #3, counting from the left, which is paired to racetrack #4 (in red). (c) Experimental and (d) simulated Through port transmission spectra for various injected power in the heater. The vertical arrows define the transmission channels labeled CH0, CH1 and CH2. (e) Extinction ratio of CH1 (black squares), cross talk of CH1 to CH2 (red squares) and shift of the CRIT resonance in CH1 (blue squares) as a function of the heater power (open triangle symbols refer to simulation values).

Fig. 3
Fig. 3

(a) Sketch of the all-optical switching experiment:one of the resonator involved in the CRIT is excited with a Ti:Sa ps pulsed laser while a CW signal resonant with the CRIT resonance is input in the tapered SCISSOR.The Through port transmission is measured.(b) Normalized Through port transmission as a function of time. (c) The eye diagram shows the transmission of a 3 Gbps random sequence through a CRIT resonance.

Fig. 4
Fig. 4

(a) Optical image (top left) and sketch(bottom left) of the tapered SCISSOR. In the optical image, orange refers to the metal lines, dark blue to the waveguide and pale blue to the silicon wafer. In the sketch the difference in radius among the racetracks is greatly enhanced. Theblue, red and black lines indicate the resonators involved in the formation of the CRIT resonances when the heater heats the waveguides. A sketch of the operating principle is shown on the right. (b) Through port transmission for different heater powers: 0 mW (black), 27 mW (red), 52mW (blue).Dashed lines delimit the widths of the transmission channels. Robustness of the CRIT resonance position versus thermal tuning is clearly demonstrated in Fig. 2. (c) Simulated Through port transmission for the tapered SCISSOR. The different lines correspond to L = 10.200μm (black line), 10.220μm (red line) and 10.235μm (blue line).

Fig. 5
Fig. 5

(a) Sketch of the 1 × 4 mux/demux composed by 4 tapered SCISSOR cascaded via the drop waveguide. Each tapered SCISSOR is designed to have different CRIT resonances. The design parameters are R = 3.250 µm, C = 7 µm, gap = 160 nm, ΔR = 5 nm, L1 = 10.230 µm (T1, black), L2 = 10.220 µm (T2, red), L3 = 10.200 µm (T3, blue), L4 = 10.190 µm (T4, green). (b) Insertion losses and cross talks for each CRIT channel.(c) Experimental transmission spectra for the Through ports: T1 black, T2 red, T3 blue and T4 green; (d) Simulated spectra.

Tables (1)

Tables Icon

Table 1 Comparison among recent proposed router schemes and our implementation

Metrics