Abstract

Speed enhancement of integral imaging based incoherent Fourier hologram capture using a graphic processing unit is reported. Integral imaging based method enables exact hologram capture of real-existing three-dimensional objects under regular incoherent illumination. In our implementation, we apply parallel computation scheme using the graphic processing unit, accelerating the processing speed. Using enhanced speed of hologram capture, we also implement a pseudo real-time hologram capture and optical reconstruction system. The overall operation speed is measured to be 1 frame per second.

© 2012 OSA

Full Article  |  PDF Article
Related Articles
Hologram synthesis for photorealistic reconstruction

Martin Janda, Ivo Hanák, and Levent Onural
J. Opt. Soc. Am. A 25(12) 3083-3096 (2008)

Fast CGH computation using S-LUT on GPU

Yuechao Pan, Xuewu Xu, Sanjeev Solanki, Xinan Liang, Ridwan Bin Adrian Tanjung, Chiwei Tan, and Tow-Chong Chong
Opt. Express 17(21) 18543-18555 (2009)

Recent progress in three-dimensional information processing based on integral imaging

Jae-Hyeung Park, Keehoon Hong, and Byoungho Lee
Appl. Opt. 48(34) H77-H94 (2009)

References

  • View by:
  • |
  • |
  • |

  1. N. T. Shaked and J. Rosen, “Modified Fresnel computer-generated hologram directly recorded by multiple-viewpoint projections,” Appl. Opt. 47(19), D21–D27 (2008).
    [Crossref] [PubMed]
  2. N. T. Shaked, B. Katz, and J. Rosen, “Review of three-dimensional holographic imaging by multiple-viewpoint-projection based methods,” Appl. Opt. 48(34), H120–H136 (2009).
    [Crossref] [PubMed]
  3. K. Wakunami and M. Yamaguchi, “Calculation for computer generated hologram using ray-sampling plane,” Opt. Express 19(10), 9086–9101 (2011).
    [Crossref] [PubMed]
  4. J.-H. Park, M.-S. Kim, G. Baasantseren, and N. Kim, “Fresnel and Fourier hologram generation using orthographic projection images,” Opt. Express 17(8), 6320–6334 (2009).
    [Crossref] [PubMed]
  5. N. Chen, J.-H. Park, and N. Kim, “Parameter analysis of integral Fourier hologram and its resolution enhancement,” Opt. Express 18(3), 2152–2167 (2010).
    [Crossref] [PubMed]
  6. Y. Ichihashi, H. Nakayama, T. Ito, N. Masuda, T. Shimobaba, A. Shiraki, and T. Sugie, “HORN-6 special-purpose clustered computing system for electroholography,” Opt. Express 17(16), 13895–13903 (2009).
    [Crossref] [PubMed]
  7. T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express 16(16), 11776–11781 (2008).
    [Crossref] [PubMed]
  8. K. Yamamoto, T. Mishina, R. Oi, T. Senoh, and T. Kurita, “Real-time color holography system for live scene using 4K2K video system,” Proc. SPIE 7619, 761906 (2010).
    [Crossref]
  9. T. Mishina, M. Okui, and F. Okano, “Calculation of holograms from elemental images captured by integral photography,” Appl. Opt. 45(17), 4026–4036 (2006).
    [Crossref] [PubMed]

2011 (1)

2010 (2)

N. Chen, J.-H. Park, and N. Kim, “Parameter analysis of integral Fourier hologram and its resolution enhancement,” Opt. Express 18(3), 2152–2167 (2010).
[Crossref] [PubMed]

K. Yamamoto, T. Mishina, R. Oi, T. Senoh, and T. Kurita, “Real-time color holography system for live scene using 4K2K video system,” Proc. SPIE 7619, 761906 (2010).
[Crossref]

2009 (3)

2008 (2)

2006 (1)

Baasantseren, G.

Chen, N.

Ichihashi, Y.

Ito, T.

Katz, B.

Kim, M.-S.

Kim, N.

Kurita, T.

K. Yamamoto, T. Mishina, R. Oi, T. Senoh, and T. Kurita, “Real-time color holography system for live scene using 4K2K video system,” Proc. SPIE 7619, 761906 (2010).
[Crossref]

Masuda, N.

Mishina, T.

K. Yamamoto, T. Mishina, R. Oi, T. Senoh, and T. Kurita, “Real-time color holography system for live scene using 4K2K video system,” Proc. SPIE 7619, 761906 (2010).
[Crossref]

T. Mishina, M. Okui, and F. Okano, “Calculation of holograms from elemental images captured by integral photography,” Appl. Opt. 45(17), 4026–4036 (2006).
[Crossref] [PubMed]

Miura, J.

Nakayama, H.

Oi, R.

K. Yamamoto, T. Mishina, R. Oi, T. Senoh, and T. Kurita, “Real-time color holography system for live scene using 4K2K video system,” Proc. SPIE 7619, 761906 (2010).
[Crossref]

Okano, F.

Okui, M.

Park, J.-H.

Rosen, J.

Sato, Y.

Senoh, T.

K. Yamamoto, T. Mishina, R. Oi, T. Senoh, and T. Kurita, “Real-time color holography system for live scene using 4K2K video system,” Proc. SPIE 7619, 761906 (2010).
[Crossref]

Shaked, N. T.

Shimobaba, T.

Shiraki, A.

Sugie, T.

Takenouchi, M.

Wakunami, K.

Yamaguchi, M.

Yamamoto, K.

K. Yamamoto, T. Mishina, R. Oi, T. Senoh, and T. Kurita, “Real-time color holography system for live scene using 4K2K video system,” Proc. SPIE 7619, 761906 (2010).
[Crossref]

Appl. Opt. (3)

Opt. Express (5)

Proc. SPIE (1)

K. Yamamoto, T. Mishina, R. Oi, T. Senoh, and T. Kurita, “Real-time color holography system for live scene using 4K2K video system,” Proc. SPIE 7619, 761906 (2010).
[Crossref]

Supplementary Material (2)

» Media 1: MOV (1195 KB)     
» Media 2: MOV (1441 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Fourier hologram capture process using integral imaging.

Fig. 2
Fig. 2

Comparison of the operation processes using CPU and GPU.

Fig. 3
Fig. 3

Elemental image acquisition system for obtaining a holographic image and orthographic view image.

Fig. 4
Fig. 4

Comparison of generated Fourier holograms using a CPU and a GPU.

Fig. 5
Fig. 5

Numerical reconstruction results of hologram image.

Fig. 6
Fig. 6

Comparison of holographic image generation rates.

Fig. 7
Fig. 7

Configuration of the implemented pseudo real-time hologram capture and display system.

Fig. 8
Fig. 8

Implemented setup of pseudo real-time hologram incoherent capture and coherent reconstruction system.

Fig. 9
Fig. 9

Capture system and acquisition image.

Fig. 10
Fig. 10

Optical reconstruction result of the pseudo real-time capture and display system (Media 1 and Media 2).

Metrics