Abstract

In traditional interpretation of surface plasmon resonance (SPR) sensing and imaging data, total surface coverage of adsorbed or deposited chemical and biological molecules is generally assumed. This homogenous assumption leads to the modeling of monomodal propagation of plasmons on the surface of the metallic film corresponding to a certain relative permittivity and thickness of the medium—such as molecular thin film—next to the metal. In actual SPR Imaging (SPRI) and SPR sensing situations, the plasmonics-active platforms (e.g., biochips) employed may capture the biomolecular targets as aggregates of different domain sizes on the surface of the thin metallic films. Indeed, such binding of target material always has a finite thickness and is characterized by aggregate lateral sizes possibly varying from tens of nanometers to hundreds of micrometers. This paper studies the propagation of surface plasmons in metallic films, with dielectric domain sizes varying within such ranges. Through rigorous coupled wave analysis (RCWA) calculations, it is indicated that when the domain size is small, only a single mode of propagation—i.e. ‘monomodal’ propagation behavior—occurs as indicated by only one dip in the angular reflectance curves associated with metallic film having a periodically structured array of molecules on its surface. On the other hand, as the domain size is increased, there is a transition from the ‘monomodal propagation behavior’ to the existence of a ‘mixture of monomodal and bimodal propagation behavior’, which changes to a purely ‘bimodal behavior’ after the size of the domain periodicity is increased beyond about ten micron. Such a transition pathway clearly exhibits isobestic points. The calculations presented in this paper can enable correct interpretation of experimental angular or spectral reflectance data.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988)
  2. E. Kretschmann, “Determination of optical constants of metals by excitation of surface plasmons,” Z. Phys.241(4), 313–324 (1971).
    [CrossRef]
  3. J. Homola, Surface Plasmon Resonance Based Sensors (Springer, 2006).
  4. M. Malmqvist, “Surface plasmon resonance for detection and measurement of antibody-antigen affinity and kinetics,” Curr. Opin. Immunol.5(2), 282–286 (1993).
    [CrossRef] [PubMed]
  5. P. Schuck, “Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules,” Annu. Rev. Biophys. Biomol. Struct.26(1), 541–566 (1997).
    [CrossRef] [PubMed]
  6. R. Slavı́k, J. Homola, J. Čtyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem.74(1-3), 106–111 (2001).
    [CrossRef]
  7. R. C. Jorgenson and S. S. Yee, “A fiber optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem.12(3), 213–220 (1993).
    [CrossRef]
  8. U. Schröter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B60(7), 4992–4999 (1999).
    [CrossRef]
  9. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir20(12), 4813–4815 (2004).
    [CrossRef] [PubMed]
  10. A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt.7(2), S90–S96 (2005).
    [CrossRef]
  11. H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express12(16), 3629–3651 (2004).
    [CrossRef] [PubMed]
  12. F. Bardin, A. Bellemain, G. Roger, and M. Canva, “Surface plasmon resonance spectro-imaging sensor for biomolecular surface interaction characterization,” Biosens. Bioelectron.24(7), 2100–2105 (2009).
    [CrossRef] [PubMed]
  13. J. Hottin, J. Moreau, G. Roger, J. Spadavecchia, M. C. Millot, M. Goossens, and M. Canva, “Plasmonic DNA: towards genetic diagnosis chips,” Plasmonics2(4), 201–215 (2007).
    [CrossRef]
  14. P. Lisboa, A. Valsesia, I. Mannelli, S. Mornet, P. Colpo, and F. Rossi, “Sensitivity enhancement of surface-plasmon resonance imaging by nanoarrayed organothiols,” Adv. Mater. (Deerfield Beach Fla.)20(12), 2352–2358 (2008).
    [CrossRef]
  15. M. Nakkach, A. Duval, B. Ea-Kim, J. Moreau, and M. Canva, “Angulo-spectral surface plasmon resonance imaging of nanofabricated grating surfaces,” Opt. Lett.35(13), 2209–2211 (2010).
    [CrossRef] [PubMed]
  16. P. Lecaruyer, E. Maillart, M. Canva, and J. Rolland, “Generalization of the Rouard method to an absorbing thin-film stack and application to surface plasmon resonance,” Appl. Opt.45(33), 8419–8423 (2006).
    [CrossRef] [PubMed]
  17. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A3(11), 1780–787 (1986).
    [CrossRef]
  18. A. Dhawan, S. J. Norton, M. D. Gerhold, and T. Vo-Dinh, “Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers,” Opt. Express17(12), 9688–9703 (2009).
    [CrossRef] [PubMed]
  19. A. Dhawan, A. Duval, M. Nakkach, G. Barbillon, J. Moreau, M. Canva, and T. Vo-Dinh, “Deep UV nano-micro-structuring of substrates for surface plasmon resonance imaging,” Nanotechnology22(16), 165301 (2011).
    [CrossRef] [PubMed]
  20. A. Dhawan, M. Canva, and T. Vo-Dinh, “Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing,” Opt. Express19(2), 787–813 (2011).
    [CrossRef] [PubMed]
  21. W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt.8(4), S87–S93 (2006).
    [CrossRef]

2011 (2)

A. Dhawan, A. Duval, M. Nakkach, G. Barbillon, J. Moreau, M. Canva, and T. Vo-Dinh, “Deep UV nano-micro-structuring of substrates for surface plasmon resonance imaging,” Nanotechnology22(16), 165301 (2011).
[CrossRef] [PubMed]

A. Dhawan, M. Canva, and T. Vo-Dinh, “Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing,” Opt. Express19(2), 787–813 (2011).
[CrossRef] [PubMed]

2010 (1)

2009 (2)

F. Bardin, A. Bellemain, G. Roger, and M. Canva, “Surface plasmon resonance spectro-imaging sensor for biomolecular surface interaction characterization,” Biosens. Bioelectron.24(7), 2100–2105 (2009).
[CrossRef] [PubMed]

A. Dhawan, S. J. Norton, M. D. Gerhold, and T. Vo-Dinh, “Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers,” Opt. Express17(12), 9688–9703 (2009).
[CrossRef] [PubMed]

2008 (1)

P. Lisboa, A. Valsesia, I. Mannelli, S. Mornet, P. Colpo, and F. Rossi, “Sensitivity enhancement of surface-plasmon resonance imaging by nanoarrayed organothiols,” Adv. Mater. (Deerfield Beach Fla.)20(12), 2352–2358 (2008).
[CrossRef]

2007 (1)

J. Hottin, J. Moreau, G. Roger, J. Spadavecchia, M. C. Millot, M. Goossens, and M. Canva, “Plasmonic DNA: towards genetic diagnosis chips,” Plasmonics2(4), 201–215 (2007).
[CrossRef]

2006 (2)

2005 (1)

A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt.7(2), S90–S96 (2005).
[CrossRef]

2004 (2)

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir20(12), 4813–4815 (2004).
[CrossRef] [PubMed]

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express12(16), 3629–3651 (2004).
[CrossRef] [PubMed]

2001 (1)

R. Slavı́k, J. Homola, J. Čtyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem.74(1-3), 106–111 (2001).
[CrossRef]

1999 (1)

U. Schröter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B60(7), 4992–4999 (1999).
[CrossRef]

1997 (1)

P. Schuck, “Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules,” Annu. Rev. Biophys. Biomol. Struct.26(1), 541–566 (1997).
[CrossRef] [PubMed]

1993 (2)

R. C. Jorgenson and S. S. Yee, “A fiber optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem.12(3), 213–220 (1993).
[CrossRef]

M. Malmqvist, “Surface plasmon resonance for detection and measurement of antibody-antigen affinity and kinetics,” Curr. Opin. Immunol.5(2), 282–286 (1993).
[CrossRef] [PubMed]

1986 (1)

1971 (1)

E. Kretschmann, “Determination of optical constants of metals by excitation of surface plasmons,” Z. Phys.241(4), 313–324 (1971).
[CrossRef]

Barbillon, G.

A. Dhawan, A. Duval, M. Nakkach, G. Barbillon, J. Moreau, M. Canva, and T. Vo-Dinh, “Deep UV nano-micro-structuring of substrates for surface plasmon resonance imaging,” Nanotechnology22(16), 165301 (2011).
[CrossRef] [PubMed]

Bardin, F.

F. Bardin, A. Bellemain, G. Roger, and M. Canva, “Surface plasmon resonance spectro-imaging sensor for biomolecular surface interaction characterization,” Biosens. Bioelectron.24(7), 2100–2105 (2009).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt.8(4), S87–S93 (2006).
[CrossRef]

Bellemain, A.

F. Bardin, A. Bellemain, G. Roger, and M. Canva, “Surface plasmon resonance spectro-imaging sensor for biomolecular surface interaction characterization,” Biosens. Bioelectron.24(7), 2100–2105 (2009).
[CrossRef] [PubMed]

Brolo, A. G.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir20(12), 4813–4815 (2004).
[CrossRef] [PubMed]

Brynda, E.

R. Slavı́k, J. Homola, J. Čtyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem.74(1-3), 106–111 (2001).
[CrossRef]

Canva, M.

A. Dhawan, M. Canva, and T. Vo-Dinh, “Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing,” Opt. Express19(2), 787–813 (2011).
[CrossRef] [PubMed]

A. Dhawan, A. Duval, M. Nakkach, G. Barbillon, J. Moreau, M. Canva, and T. Vo-Dinh, “Deep UV nano-micro-structuring of substrates for surface plasmon resonance imaging,” Nanotechnology22(16), 165301 (2011).
[CrossRef] [PubMed]

M. Nakkach, A. Duval, B. Ea-Kim, J. Moreau, and M. Canva, “Angulo-spectral surface plasmon resonance imaging of nanofabricated grating surfaces,” Opt. Lett.35(13), 2209–2211 (2010).
[CrossRef] [PubMed]

F. Bardin, A. Bellemain, G. Roger, and M. Canva, “Surface plasmon resonance spectro-imaging sensor for biomolecular surface interaction characterization,” Biosens. Bioelectron.24(7), 2100–2105 (2009).
[CrossRef] [PubMed]

J. Hottin, J. Moreau, G. Roger, J. Spadavecchia, M. C. Millot, M. Goossens, and M. Canva, “Plasmonic DNA: towards genetic diagnosis chips,” Plasmonics2(4), 201–215 (2007).
[CrossRef]

P. Lecaruyer, E. Maillart, M. Canva, and J. Rolland, “Generalization of the Rouard method to an absorbing thin-film stack and application to surface plasmon resonance,” Appl. Opt.45(33), 8419–8423 (2006).
[CrossRef] [PubMed]

Colpo, P.

P. Lisboa, A. Valsesia, I. Mannelli, S. Mornet, P. Colpo, and F. Rossi, “Sensitivity enhancement of surface-plasmon resonance imaging by nanoarrayed organothiols,” Adv. Mater. (Deerfield Beach Fla.)20(12), 2352–2358 (2008).
[CrossRef]

Ctyroký, J.

R. Slavı́k, J. Homola, J. Čtyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem.74(1-3), 106–111 (2001).
[CrossRef]

Degiron, A.

A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt.7(2), S90–S96 (2005).
[CrossRef]

Dhawan, A.

Duval, A.

A. Dhawan, A. Duval, M. Nakkach, G. Barbillon, J. Moreau, M. Canva, and T. Vo-Dinh, “Deep UV nano-micro-structuring of substrates for surface plasmon resonance imaging,” Nanotechnology22(16), 165301 (2011).
[CrossRef] [PubMed]

M. Nakkach, A. Duval, B. Ea-Kim, J. Moreau, and M. Canva, “Angulo-spectral surface plasmon resonance imaging of nanofabricated grating surfaces,” Opt. Lett.35(13), 2209–2211 (2010).
[CrossRef] [PubMed]

Ea-Kim, B.

Ebbesen, T. W.

A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt.7(2), S90–S96 (2005).
[CrossRef]

Gaylord, T. K.

Gerhold, M. D.

Goossens, M.

J. Hottin, J. Moreau, G. Roger, J. Spadavecchia, M. C. Millot, M. Goossens, and M. Canva, “Plasmonic DNA: towards genetic diagnosis chips,” Plasmonics2(4), 201–215 (2007).
[CrossRef]

Gordon, R.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir20(12), 4813–4815 (2004).
[CrossRef] [PubMed]

Heitmann, D.

U. Schröter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B60(7), 4992–4999 (1999).
[CrossRef]

Homola, J.

R. Slavı́k, J. Homola, J. Čtyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem.74(1-3), 106–111 (2001).
[CrossRef]

Hottin, J.

J. Hottin, J. Moreau, G. Roger, J. Spadavecchia, M. C. Millot, M. Goossens, and M. Canva, “Plasmonic DNA: towards genetic diagnosis chips,” Plasmonics2(4), 201–215 (2007).
[CrossRef]

Jorgenson, R. C.

R. C. Jorgenson and S. S. Yee, “A fiber optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem.12(3), 213–220 (1993).
[CrossRef]

Kavanagh, K. L.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir20(12), 4813–4815 (2004).
[CrossRef] [PubMed]

Kretschmann, E.

E. Kretschmann, “Determination of optical constants of metals by excitation of surface plasmons,” Z. Phys.241(4), 313–324 (1971).
[CrossRef]

Leathem, B.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir20(12), 4813–4815 (2004).
[CrossRef] [PubMed]

Lecaruyer, P.

Lezec, H. J.

Lisboa, P.

P. Lisboa, A. Valsesia, I. Mannelli, S. Mornet, P. Colpo, and F. Rossi, “Sensitivity enhancement of surface-plasmon resonance imaging by nanoarrayed organothiols,” Adv. Mater. (Deerfield Beach Fla.)20(12), 2352–2358 (2008).
[CrossRef]

Maillart, E.

Malmqvist, M.

M. Malmqvist, “Surface plasmon resonance for detection and measurement of antibody-antigen affinity and kinetics,” Curr. Opin. Immunol.5(2), 282–286 (1993).
[CrossRef] [PubMed]

Mannelli, I.

P. Lisboa, A. Valsesia, I. Mannelli, S. Mornet, P. Colpo, and F. Rossi, “Sensitivity enhancement of surface-plasmon resonance imaging by nanoarrayed organothiols,” Adv. Mater. (Deerfield Beach Fla.)20(12), 2352–2358 (2008).
[CrossRef]

Millot, M. C.

J. Hottin, J. Moreau, G. Roger, J. Spadavecchia, M. C. Millot, M. Goossens, and M. Canva, “Plasmonic DNA: towards genetic diagnosis chips,” Plasmonics2(4), 201–215 (2007).
[CrossRef]

Moharam, M. G.

Moreau, J.

A. Dhawan, A. Duval, M. Nakkach, G. Barbillon, J. Moreau, M. Canva, and T. Vo-Dinh, “Deep UV nano-micro-structuring of substrates for surface plasmon resonance imaging,” Nanotechnology22(16), 165301 (2011).
[CrossRef] [PubMed]

M. Nakkach, A. Duval, B. Ea-Kim, J. Moreau, and M. Canva, “Angulo-spectral surface plasmon resonance imaging of nanofabricated grating surfaces,” Opt. Lett.35(13), 2209–2211 (2010).
[CrossRef] [PubMed]

J. Hottin, J. Moreau, G. Roger, J. Spadavecchia, M. C. Millot, M. Goossens, and M. Canva, “Plasmonic DNA: towards genetic diagnosis chips,” Plasmonics2(4), 201–215 (2007).
[CrossRef]

Mornet, S.

P. Lisboa, A. Valsesia, I. Mannelli, S. Mornet, P. Colpo, and F. Rossi, “Sensitivity enhancement of surface-plasmon resonance imaging by nanoarrayed organothiols,” Adv. Mater. (Deerfield Beach Fla.)20(12), 2352–2358 (2008).
[CrossRef]

Nakkach, M.

A. Dhawan, A. Duval, M. Nakkach, G. Barbillon, J. Moreau, M. Canva, and T. Vo-Dinh, “Deep UV nano-micro-structuring of substrates for surface plasmon resonance imaging,” Nanotechnology22(16), 165301 (2011).
[CrossRef] [PubMed]

M. Nakkach, A. Duval, B. Ea-Kim, J. Moreau, and M. Canva, “Angulo-spectral surface plasmon resonance imaging of nanofabricated grating surfaces,” Opt. Lett.35(13), 2209–2211 (2010).
[CrossRef] [PubMed]

Norton, S. J.

Roger, G.

F. Bardin, A. Bellemain, G. Roger, and M. Canva, “Surface plasmon resonance spectro-imaging sensor for biomolecular surface interaction characterization,” Biosens. Bioelectron.24(7), 2100–2105 (2009).
[CrossRef] [PubMed]

J. Hottin, J. Moreau, G. Roger, J. Spadavecchia, M. C. Millot, M. Goossens, and M. Canva, “Plasmonic DNA: towards genetic diagnosis chips,” Plasmonics2(4), 201–215 (2007).
[CrossRef]

Rolland, J.

Rossi, F.

P. Lisboa, A. Valsesia, I. Mannelli, S. Mornet, P. Colpo, and F. Rossi, “Sensitivity enhancement of surface-plasmon resonance imaging by nanoarrayed organothiols,” Adv. Mater. (Deerfield Beach Fla.)20(12), 2352–2358 (2008).
[CrossRef]

Schröter, U.

U. Schröter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B60(7), 4992–4999 (1999).
[CrossRef]

Schuck, P.

P. Schuck, “Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules,” Annu. Rev. Biophys. Biomol. Struct.26(1), 541–566 (1997).
[CrossRef] [PubMed]

Slavi´k, R.

R. Slavı́k, J. Homola, J. Čtyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem.74(1-3), 106–111 (2001).
[CrossRef]

Spadavecchia, J.

J. Hottin, J. Moreau, G. Roger, J. Spadavecchia, M. C. Millot, M. Goossens, and M. Canva, “Plasmonic DNA: towards genetic diagnosis chips,” Plasmonics2(4), 201–215 (2007).
[CrossRef]

Thio, T.

Valsesia, A.

P. Lisboa, A. Valsesia, I. Mannelli, S. Mornet, P. Colpo, and F. Rossi, “Sensitivity enhancement of surface-plasmon resonance imaging by nanoarrayed organothiols,” Adv. Mater. (Deerfield Beach Fla.)20(12), 2352–2358 (2008).
[CrossRef]

Vo-Dinh, T.

Yee, S. S.

R. C. Jorgenson and S. S. Yee, “A fiber optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem.12(3), 213–220 (1993).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

P. Lisboa, A. Valsesia, I. Mannelli, S. Mornet, P. Colpo, and F. Rossi, “Sensitivity enhancement of surface-plasmon resonance imaging by nanoarrayed organothiols,” Adv. Mater. (Deerfield Beach Fla.)20(12), 2352–2358 (2008).
[CrossRef]

Annu. Rev. Biophys. Biomol. Struct. (1)

P. Schuck, “Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules,” Annu. Rev. Biophys. Biomol. Struct.26(1), 541–566 (1997).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biosens. Bioelectron. (1)

F. Bardin, A. Bellemain, G. Roger, and M. Canva, “Surface plasmon resonance spectro-imaging sensor for biomolecular surface interaction characterization,” Biosens. Bioelectron.24(7), 2100–2105 (2009).
[CrossRef] [PubMed]

Curr. Opin. Immunol. (1)

M. Malmqvist, “Surface plasmon resonance for detection and measurement of antibody-antigen affinity and kinetics,” Curr. Opin. Immunol.5(2), 282–286 (1993).
[CrossRef] [PubMed]

J. Opt. A, Pure Appl. Opt. (2)

W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt.8(4), S87–S93 (2006).
[CrossRef]

A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt.7(2), S90–S96 (2005).
[CrossRef]

J. Opt. Soc. Am. A (1)

Langmuir (1)

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir20(12), 4813–4815 (2004).
[CrossRef] [PubMed]

Nanotechnology (1)

A. Dhawan, A. Duval, M. Nakkach, G. Barbillon, J. Moreau, M. Canva, and T. Vo-Dinh, “Deep UV nano-micro-structuring of substrates for surface plasmon resonance imaging,” Nanotechnology22(16), 165301 (2011).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (1)

U. Schröter and D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B60(7), 4992–4999 (1999).
[CrossRef]

Plasmonics (1)

J. Hottin, J. Moreau, G. Roger, J. Spadavecchia, M. C. Millot, M. Goossens, and M. Canva, “Plasmonic DNA: towards genetic diagnosis chips,” Plasmonics2(4), 201–215 (2007).
[CrossRef]

Sens. Actuators B Chem. (2)

R. Slavı́k, J. Homola, J. Čtyroký, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem.74(1-3), 106–111 (2001).
[CrossRef]

R. C. Jorgenson and S. S. Yee, “A fiber optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B Chem.12(3), 213–220 (1993).
[CrossRef]

Z. Phys. (1)

E. Kretschmann, “Determination of optical constants of metals by excitation of surface plasmons,” Z. Phys.241(4), 313–324 (1971).
[CrossRef]

Other (2)

J. Homola, Surface Plasmon Resonance Based Sensors (Springer, 2006).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic showing Kretschmann configuration employed for coupling of incident radiation to surface plasmons on the surface of a plasmonic thin film on which molecules form periodic domains on the surface of the metallic film. The incident and reflected radiation are indicated by symbols ‘I’ and ‘R’, respectively. While ‘M’ indicates a plasmonic film such as a silver film, ‘S’ indicates a thin layer of molecules on the surface of the metallic film. ‘P’ shown in the above figure indicates the periodicity of the nano- or micro- structured molecular domain or the periodic “domain size” and ‘D’ indicates the size of the nano- or micro- structured domain that is occupied by the molecules. Fraction (‘f’) of nano- or micro- structured domain occupied by molecules is given by ‘f’ = (D)/(P).

Fig. 2
Fig. 2

(A) A schematic showing monomodal transition (MMT)—on increasing the thickness of continuous molecular layers on plasmonic thin films—as compared with a biomodal transition (BMT) that occurs when the molecular layer forms periodic domains and the size of the domains or the filling factor (for a given domain size) is increased. (B) Classical case of mode shift, i.e. the MMT case, as the thickness (Th) of the molecular film grows from 0 nm to 50 nm, i.e. from 0% to 100% (in intervals of 10%) of the maximum thickness (Thmax = 50 nm). The RCWA calculated reflectance spectra were obtained for a silver film with thickness (ThAg) of 50 nm deposited on SF11 glass (nSF11 = 1.723), the refractive index (RI) of the medium (nmolecule) above the silver film being 1.58 (mode B only, where molecules are present). (C) Schematic of reflectance spectra when molecular layer forms periodic domains on the plasmonic thin film such that two distinct surface plasmon propagation modes exist—mode A in regions where there are no molecules and mode B in regions where the molecules are present. This figure shows the schematic of reflection spectra when % of mode A is decreased and % mode B is increased (in intervals of 10%)—exhibiting one isobestic point I1—obtained by proportionately mixing reflectance spectra obtained using RCWA calculations from a silver film either completely covered by molecules (mode B only) or completely covered by surrounding media having a RI (nsolvent) of 1.33 (mode A only). The incident wavelength (λincident) in the calculations is 550 nm.

Fig. 3
Fig. 3

RCWA calculations showing reflectance spectra as the proportion of each periodic domain occupied by molecules i.e. fB is increased from 0% to 100% (in intervals of 10%) for different periodicities: (a) 50 nm and (b) 100 µm. Values of λincident, 'Th', nsolvent, nmolecule, and nSF11 were taken the same as in Fig. 2.

Fig. 4
Fig. 4

(A) Theoretically generated reflectance spectra that represent a mixture of bimodal and monomodal behavior for fB = 50%, clearly showing two isobestic Points I2 and I3. The spectra were obtained by proportionately mixing spectra obtained using RCWA calculations for silver film having fB = 50% and periodicity either being very small i.e. 20 nm (such that complete monomodal behavior is exhibited) or very large i.e. 1000 microns (such that complete bimodal behavior is exhibited). Values of λincident, 'Th', nsolvent, nmolecule, and nSF11 were taken the same as in Fig. 2.(B) RCWA calculations showing reflectance spectra obtained from a silver film—covered with periodic domains of molecules (fB = 50%), domain size being 10 nm and the thickness of the molecular film being 50 nm—as compared with spectra from silver films coated with a continuous layer of molecules (i.e. full coverage) having different molecule thicknesses., λincident being 550 nm.

Fig. 5
Fig. 5

RCWA calculations showing reflectance spectra obtained from a silver film covered with periodic domains of molecules (fB = 50%) such that the periodicity of the domains was varied from 20 nm to 1000 µm. C2 is the curve of the type ‘AB’ when 50% of the silver film is covered with the molecules for each domain size. I2 and I3 are the isobestic points. The values of 'Th', nsolvent, nmolecule, and nSF11 were taken the same as in Fig. 2. The incident wavelength in the calculations was (A) 550 nm, (B) 600 nm, and (C) 700 nm.

Fig. 6
Fig. 6

Transition from “AB” to “(A+ B)/2” as a function of the domain size (half of periodicity). For domain sizes lying between ~1.5 µm to ~10 µm, intermediate behavior between the “AB” and the “(A+ B)/2” modes is observed. Here mode (A) corresponds to metallic film only while mode (B) corresponds to uniform layer of molecules on the surface of the metallic film. Mode “AB” here corresponds to monomodal behavior while mode “(A+ B)/2” corresponds to bimodal behavior.

Metrics