Abstract

A lateral shearing interferometer is used for direct holographic imaging of microorganisms. This is achieved by increasing the shear to be larger than the object size and results in a very simple and inexpensive common-path imaging device that can be easily coupled to the output of an inverted microscope. The shear is created by reflections from the front and back surface of a glass plate. Stability measurements show a standard deviation of the phase measurements of less than 1nm over 8 min. without any vibration compensation. The setup is applied to imaging both microorganisms in a microfluidic channel and red blood cells and reconstructions are presented.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Zernike, “Phase-contrast, a new method for microscopic observation of transparent objects,” Physica9(7), 686–698 (1942).
    [CrossRef]
  2. G. Nomarski, “Microinterférométrie differential et ondes polarizés,” J. Phys. Radium16, 9–135 (1955).
  3. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, “Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells,” Opt. Express17(15), 13080–13094 (2009).
    [CrossRef] [PubMed]
  4. M. V. R. K. Murty, “The use of a single plane parallel plate as a lateral shearing interferometer with a visible gas laser,” Appl. Opt.3(4), 531–534 (1964).
    [CrossRef]
  5. R. S. Sirohi and M. P. Kothiyal, “Double wedge plate shearing interferometer for collimation test,” Appl. Opt.26(19), 4054–4056 (1987).
    [CrossRef] [PubMed]
  6. G. S. Sarkisov, “Shearing interferometer with an air wedge for electron density diagnostics in a dense plasma,” Instrum. Exp. Tech.39, 727–731 (1996).
  7. S. V. Granov, V. I. Konov, A. A. Malyutin, O. G. Tsarkova, I. S. Yatskovsky, and F. Dausinger, “High resolution interferometric diagnostics of plasmas produced by ultrashort laser pulses,” Laser Phys.13, 386–396 (2003).
  8. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett.24(5), 291–293 (1999).
    [CrossRef] [PubMed]
  9. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett.22(16), 1268–1270 (1997).
    [CrossRef] [PubMed]
  10. P. Ferraro, L. Miccio, S. Grilli, S. De Nicola, A. Finizio, and L. De Petrocellis, “Quantitative phase-contrast microscopy for analysis of live cells by using lateral shearing approach in digital holography” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, OSA Technical Digest (CD) (Optical Society of America, 2007), paper DMA4.
  11. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, “Diffraction phase microscopy for quantifying cell structure and dynamics,” Opt. Lett.31(6), 775–777 (2006).
    [CrossRef] [PubMed]
  12. J. Jang, C. Y. Bae, J.-K. Park, and J. C. Ye, “Self-reference quantitative phase microscopy for microfluidic devices,” Opt. Lett.35(4), 514–516 (2010).
    [CrossRef] [PubMed]
  13. W. Bishara, H. Zhu, and A. Ozcan, “Holographic opto-fluidic microscopy,” Opt. Express18(26), 27499–27510 (2010).
    [CrossRef] [PubMed]
  14. B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt.16(2), 026014 (2011).
    [CrossRef] [PubMed]
  15. N. T. Shaked, “Quantitative phase microscopy of biological samples using a portable interferometer,” Opt. Lett.37(11), 2016–2018 (2012).
    [CrossRef] [PubMed]
  16. G. Coppola, G. Di Caprio, M. Gioffré, R. Puglisi, D. Balduzzi, A. Galli, L. Miccio, M. Paturzo, S. Grilli, A. Finizio, and P. Ferraro, “Digital self-referencing quantitative phase microscopy by wavefront folding in holographic image reconstruction,” Opt. Lett.35(20), 3390–3392 (2010).
    [CrossRef] [PubMed]
  17. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt.39(23), 4070–4075 (2000).
    [CrossRef] [PubMed]
  18. R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: two dimensional phase unwrapping,” Radio Sci.23(4), 713–720 (1988).
    [CrossRef]
  19. D. Shin, M. Daneshpanah, A. Anand, and B. Javidi, “Optofluidic system for three-dimensional sensing and identification of micro-organisms with digital holographic microscopy,” Opt. Lett.35(23), 4066–4068 (2010).
    [CrossRef] [PubMed]
  20. M. Hammer, D. Schweitzer, B. Michel, E. Thamm, and A. Kolb, “Single scattering by red blood cells,” Appl. Opt.37(31), 7410–7418 (1998).
    [CrossRef] [PubMed]
  21. R. P. Shukla and D. Malacara, “Some Applications of the Murty Interferometer: A Review,” Opt. Lasers Eng.26(1), 1–42 (1997).
    [CrossRef]
  22. D. Malacara, “Testing of optical surfaces”, Ph.D. Thesis, Institute of Optics, University of Rochester (1965)
  23. M.-L. Cruz, A. Anand, and B.Javidi are preparing a manuscript to be called “Classification of red blood cells infected with malaria using a robust shearing system and statistical methods”.

2012

2011

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt.16(2), 026014 (2011).
[CrossRef] [PubMed]

2010

2009

2006

2003

S. V. Granov, V. I. Konov, A. A. Malyutin, O. G. Tsarkova, I. S. Yatskovsky, and F. Dausinger, “High resolution interferometric diagnostics of plasmas produced by ultrashort laser pulses,” Laser Phys.13, 386–396 (2003).

2000

1999

1998

1997

I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett.22(16), 1268–1270 (1997).
[CrossRef] [PubMed]

R. P. Shukla and D. Malacara, “Some Applications of the Murty Interferometer: A Review,” Opt. Lasers Eng.26(1), 1–42 (1997).
[CrossRef]

1996

G. S. Sarkisov, “Shearing interferometer with an air wedge for electron density diagnostics in a dense plasma,” Instrum. Exp. Tech.39, 727–731 (1996).

1988

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: two dimensional phase unwrapping,” Radio Sci.23(4), 713–720 (1988).
[CrossRef]

1987

1964

1955

G. Nomarski, “Microinterférométrie differential et ondes polarizés,” J. Phys. Radium16, 9–135 (1955).

1942

F. Zernike, “Phase-contrast, a new method for microscopic observation of transparent objects,” Physica9(7), 686–698 (1942).
[CrossRef]

Anand, A.

Bae, C. Y.

Balduzzi, D.

Bevilacqua, F.

Bishara, W.

Bon, P.

Coppola, G.

Cuche, E.

Daneshpanah, M.

Dasari, R. R.

Dausinger, F.

S. V. Granov, V. I. Konov, A. A. Malyutin, O. G. Tsarkova, I. S. Yatskovsky, and F. Dausinger, “High resolution interferometric diagnostics of plasmas produced by ultrashort laser pulses,” Laser Phys.13, 386–396 (2003).

Depeursinge, C.

Di Caprio, G.

Feld, M. S.

Ferraro, P.

Finizio, A.

Galli, A.

Gioffré, M.

Goldstein, R. M.

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: two dimensional phase unwrapping,” Radio Sci.23(4), 713–720 (1988).
[CrossRef]

Granov, S. V.

S. V. Granov, V. I. Konov, A. A. Malyutin, O. G. Tsarkova, I. S. Yatskovsky, and F. Dausinger, “High resolution interferometric diagnostics of plasmas produced by ultrashort laser pulses,” Laser Phys.13, 386–396 (2003).

Grilli, S.

Hammer, M.

Ikeda, T.

Jang, J.

Javidi, B.

Kemper, B.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt.16(2), 026014 (2011).
[CrossRef] [PubMed]

Kolb, A.

Konov, V. I.

S. V. Granov, V. I. Konov, A. A. Malyutin, O. G. Tsarkova, I. S. Yatskovsky, and F. Dausinger, “High resolution interferometric diagnostics of plasmas produced by ultrashort laser pulses,” Laser Phys.13, 386–396 (2003).

Kothiyal, M. P.

Malacara, D.

R. P. Shukla and D. Malacara, “Some Applications of the Murty Interferometer: A Review,” Opt. Lasers Eng.26(1), 1–42 (1997).
[CrossRef]

Malyutin, A. A.

S. V. Granov, V. I. Konov, A. A. Malyutin, O. G. Tsarkova, I. S. Yatskovsky, and F. Dausinger, “High resolution interferometric diagnostics of plasmas produced by ultrashort laser pulses,” Laser Phys.13, 386–396 (2003).

Marquet, P.

Maucort, G.

Miccio, L.

Michel, B.

Monneret, S.

Murty, M. V. R. K.

Nomarski, G.

G. Nomarski, “Microinterférométrie differential et ondes polarizés,” J. Phys. Radium16, 9–135 (1955).

Ozcan, A.

Park, J.-K.

Paturzo, M.

Popescu, G.

Puglisi, R.

Rommel, C. E.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt.16(2), 026014 (2011).
[CrossRef] [PubMed]

Sarkisov, G. S.

G. S. Sarkisov, “Shearing interferometer with an air wedge for electron density diagnostics in a dense plasma,” Instrum. Exp. Tech.39, 727–731 (1996).

Schnekenburger, J.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt.16(2), 026014 (2011).
[CrossRef] [PubMed]

Schweitzer, D.

Shaked, N. T.

Shin, D.

Shukla, R. P.

R. P. Shukla and D. Malacara, “Some Applications of the Murty Interferometer: A Review,” Opt. Lasers Eng.26(1), 1–42 (1997).
[CrossRef]

Sirohi, R. S.

Thamm, E.

Tsarkova, O. G.

S. V. Granov, V. I. Konov, A. A. Malyutin, O. G. Tsarkova, I. S. Yatskovsky, and F. Dausinger, “High resolution interferometric diagnostics of plasmas produced by ultrashort laser pulses,” Laser Phys.13, 386–396 (2003).

Vollmer, A.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt.16(2), 026014 (2011).
[CrossRef] [PubMed]

von Bally, G.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt.16(2), 026014 (2011).
[CrossRef] [PubMed]

Wattellier, B.

Werner, C. L.

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: two dimensional phase unwrapping,” Radio Sci.23(4), 713–720 (1988).
[CrossRef]

Yamaguchi, I.

Yatskovsky, I. S.

S. V. Granov, V. I. Konov, A. A. Malyutin, O. G. Tsarkova, I. S. Yatskovsky, and F. Dausinger, “High resolution interferometric diagnostics of plasmas produced by ultrashort laser pulses,” Laser Phys.13, 386–396 (2003).

Ye, J. C.

Zebker, H. A.

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: two dimensional phase unwrapping,” Radio Sci.23(4), 713–720 (1988).
[CrossRef]

Zernike, F.

F. Zernike, “Phase-contrast, a new method for microscopic observation of transparent objects,” Physica9(7), 686–698 (1942).
[CrossRef]

Zhang, T.

Zhu, H.

Appl. Opt.

Instrum. Exp. Tech.

G. S. Sarkisov, “Shearing interferometer with an air wedge for electron density diagnostics in a dense plasma,” Instrum. Exp. Tech.39, 727–731 (1996).

J. Biomed. Opt.

B. Kemper, A. Vollmer, C. E. Rommel, J. Schnekenburger, and G. von Bally, “Simplified approach for quantitative digital holographic phase contrast imaging of living cells,” J. Biomed. Opt.16(2), 026014 (2011).
[CrossRef] [PubMed]

J. Phys. Radium

G. Nomarski, “Microinterférométrie differential et ondes polarizés,” J. Phys. Radium16, 9–135 (1955).

Laser Phys.

S. V. Granov, V. I. Konov, A. A. Malyutin, O. G. Tsarkova, I. S. Yatskovsky, and F. Dausinger, “High resolution interferometric diagnostics of plasmas produced by ultrashort laser pulses,” Laser Phys.13, 386–396 (2003).

Opt. Express

Opt. Lasers Eng.

R. P. Shukla and D. Malacara, “Some Applications of the Murty Interferometer: A Review,” Opt. Lasers Eng.26(1), 1–42 (1997).
[CrossRef]

Opt. Lett.

Physica

F. Zernike, “Phase-contrast, a new method for microscopic observation of transparent objects,” Physica9(7), 686–698 (1942).
[CrossRef]

Radio Sci.

R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar interferometry: two dimensional phase unwrapping,” Radio Sci.23(4), 713–720 (1988).
[CrossRef]

Other

D. Malacara, “Testing of optical surfaces”, Ph.D. Thesis, Institute of Optics, University of Rochester (1965)

M.-L. Cruz, A. Anand, and B.Javidi are preparing a manuscript to be called “Classification of red blood cells infected with malaria using a robust shearing system and statistical methods”.

P. Ferraro, L. Miccio, S. Grilli, S. De Nicola, A. Finizio, and L. De Petrocellis, “Quantitative phase-contrast microscopy for analysis of live cells by using lateral shearing approach in digital holography” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, OSA Technical Digest (CD) (Optical Society of America, 2007), paper DMA4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Lateral shearing digital holographic microscope. (a) Experimental setup. (b) Fringe pattern without object. (c) Lateral shearing hologram of glass bead. Spatially separated phase distributions due to the front and back surface of the shearing plate can be seen.

Fig. 2
Fig. 2

(a) Wrapped phase profile of bead after reconstruction. (b) Thickness distribution of investigated bead. (c) 3D rendering of thickness profile on right side in Fig. 2(b). Inset shows 1D thickness profile along line in Fig. 2(b).

Fig. 3
Fig. 3

Histogram of standard deviations of fluctuations of 1024 randomly selected pixels within the field of view over the time of 8 minutes at a frame rate of 2.5 Hz. Inset shows variation of a representative point over time.

Fig. 4
Fig. 4

(a) Hologram showing a Chilomonas protozoa. (b) Phase image after reconstruction of a). Note that the two phase images are conjugates of each other. (c) Optical path length of left reconstructed phase image. (d) 3D rendering of phase in Fig. 4(c). (e) Experimental result of imaging RBCs with diode laser. (f) Reconstruced phase of highlighted RBC in (e). (g) 3D rendering of thickness distribution. Inset shows profile along line in (f).

Metrics