Abstract

We present two types of designs for plasmonic switches based on hybridization between single interface surface plasmon polaritons and modes of a thin film of transition metal oxide material, vanadium dioxide (VO2). The design includes integrated, localized heaters that activate the VO2 transition. The device operation is investigated and optimized by electromagnetic, electrical, and thermal simulations. The large change in the VO2 refractive index in the infrared wavelength range enables highly compact and efficient plasmonic switches. The proposed designs achieve extinction ratios of 23–32 dB using only a 5 μm active region, a switching voltage of about 60 mV, and a switching power of about 9 mW.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
    [Crossref] [PubMed]
  2. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
    [Crossref] [PubMed]
  3. K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photonics Rev. 4, 562–567 (2010).
    [Crossref]
  4. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
    [Crossref] [PubMed]
  5. C. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express 17, 10757–10766 (2009).
    [Crossref] [PubMed]
  6. W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9, 4403–4411 (2009).
    [Crossref] [PubMed]
  7. A. Melikyan, N. Lindenmann, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, Th. Schimmel, C. Koos, W. Freude, and J. Leuthold, “Surface plasmon polariton absorption modulator,” Opt. Express 19, 8855–8869 (2011).
    [Crossref] [PubMed]
  8. M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternback, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
    [PubMed]
  9. M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487, 459–462 (2012).
    [Crossref] [PubMed]
  10. G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transitions in VO2,” J. Phys. Condens. Matter 12, 8837–8845 (2000).
    [Crossref]
  11. A. Crunteanu, J. Givernaud, P. Blondy, J.-C. Orlianges, C. Champeaux, and A. Catherinot, “Exploiting the semiconductor-metal phase transition of VO2 materials: a novel direction towards tuneable devices and systems for RF-microwave applications,” in Advanced Microwave and Millimeter Wave Technologies Semiconductor Devices Circuits and Systems, M. Mukherjee, ed. (Intech, 2010), pp. 35–66.
  12. A. Cavalleri, Cs. Tóth, C. W. Siders, and J. A. Squier, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
    [Crossref] [PubMed]
  13. S. Lysenko, A. Rua, F. Fernandez, and H. Liu, “Optical nonlinearity and structural dynamics of VO2 films,” J. Appl. Phys. 105, 043502 (2009).
    [Crossref]
  14. H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172, 788–798 (1968).
    [Crossref]
  15. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
    [Crossref] [PubMed]
  16. H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96, 221103 (2010).
    [Crossref]
  17. V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
    [Crossref]
  18. M. Komatsu, K. Saitoh, and M. Koshiba, “Compact polarization rotator based on surface plasmon polariton with low insertion loss,” IEEE Photonics J. 4, 707–714 (2012).
    [Crossref]
  19. R. M. Briggs, I. M. Pryce, and H. A. Atwater, “Compact silicon photonic waveguide modulator based on the the vanadium dioxide metal-insulator phase transition,” Opt. Express 18, 11192–11201 (2010).
    [Crossref] [PubMed]
  20. J. Nag, J. D. Ryckman, M. T. Hertkorn, B. K. Choi, R. F. Haglund, and S. M. Weiss, “Ultrafast compact silicon-based ring resonator modulators using metal-insulator switching of vanadium dioxide,” Proc. SPIE 7597, 759710 (2010).
    [Crossref]
  21. L. A. Sweatlock and K. Diest, “Vanadium dioxide based plasmonic modulators,” Opt. Express 20, 8700–8709 (2012).
    [Crossref] [PubMed]
  22. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  23. S.- L. Chuang, “A coupled mode formulation by reciprocity and a variational principle,” J. Lightwave Technol. 5, 5–15 (1987).
    [Crossref]
  24. C. N. Berglund and H. J. Guggenheim, “Electronic properties of VO2 near the semiconductor-metal transition,” Phys. Rev. 185, 1022–1033 (1969).
    [Crossref]
  25. W. Zhao and Z. Lu, “Nanoplasmonic optical switch based on Ga-Si3N4-Ga waveguide,” Opt. Eng. 50, 074002 (2011).
    [Crossref]
  26. M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8, 4048–4052 (2008).
    [Crossref] [PubMed]
  27. A. Agrawal, C. Susut, G. Stafford, B. McMorran, H. Lezec, and A. A. Talin, “Integrated electrochromic nanoplasmonic optical switch,” in Conference on Lasers and Electro-Optics, p. QTuE5 (2011).
  28. S. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators,” Opt. Express 18, 27802–27819 (2010).
    [Crossref]
  29. J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18, 1207–1216 (2010).
    [Crossref] [PubMed]
  30. J. S. T. Smalley, Y. Zhao, A. A. Nawaz, Q. Hao, Y. Ma, I.-C. Khoo, and T. J. Huang, “High contrast modulation of plasmonic signals using nanoscale dual-frequency liquid crystals,” Opt. Express 19, 15265–15274 (2011).
    [Crossref] [PubMed]

2012 (4)

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternback, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[PubMed]

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487, 459–462 (2012).
[Crossref] [PubMed]

M. Komatsu, K. Saitoh, and M. Koshiba, “Compact polarization rotator based on surface plasmon polariton with low insertion loss,” IEEE Photonics J. 4, 707–714 (2012).
[Crossref]

L. A. Sweatlock and K. Diest, “Vanadium dioxide based plasmonic modulators,” Opt. Express 20, 8700–8709 (2012).
[Crossref] [PubMed]

2011 (4)

2010 (7)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photonics Rev. 4, 562–567 (2010).
[Crossref]

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96, 221103 (2010).
[Crossref]

R. M. Briggs, I. M. Pryce, and H. A. Atwater, “Compact silicon photonic waveguide modulator based on the the vanadium dioxide metal-insulator phase transition,” Opt. Express 18, 11192–11201 (2010).
[Crossref] [PubMed]

J. Nag, J. D. Ryckman, M. T. Hertkorn, B. K. Choi, R. F. Haglund, and S. M. Weiss, “Ultrafast compact silicon-based ring resonator modulators using metal-insulator switching of vanadium dioxide,” Proc. SPIE 7597, 759710 (2010).
[Crossref]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators,” Opt. Express 18, 27802–27819 (2010).
[Crossref]

J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18, 1207–1216 (2010).
[Crossref] [PubMed]

2009 (5)

S. Lysenko, A. Rua, F. Fernandez, and H. Liu, “Optical nonlinearity and structural dynamics of VO2 films,” J. Appl. Phys. 105, 043502 (2009).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[Crossref] [PubMed]

C. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express 17, 10757–10766 (2009).
[Crossref] [PubMed]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9, 4403–4411 (2009).
[Crossref] [PubMed]

2008 (1)

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8, 4048–4052 (2008).
[Crossref] [PubMed]

2006 (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref] [PubMed]

2001 (1)

A. Cavalleri, Cs. Tóth, C. W. Siders, and J. A. Squier, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref] [PubMed]

2000 (1)

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transitions in VO2,” J. Phys. Condens. Matter 12, 8837–8845 (2000).
[Crossref]

1987 (1)

S.- L. Chuang, “A coupled mode formulation by reciprocity and a variational principle,” J. Lightwave Technol. 5, 5–15 (1987).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

1969 (1)

C. N. Berglund and H. J. Guggenheim, “Electronic properties of VO2 near the semiconductor-metal transition,” Phys. Rev. 185, 1022–1033 (1969).
[Crossref]

1968 (1)

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172, 788–798 (1968).
[Crossref]

Agrawal, A.

A. Agrawal, C. Susut, G. Stafford, B. McMorran, H. Lezec, and A. A. Talin, “Integrated electrochromic nanoplasmonic optical switch,” in Conference on Lasers and Electro-Optics, p. QTuE5 (2011).

Andersen, T. B.

Atwater, H. A.

R. M. Briggs, I. M. Pryce, and H. A. Atwater, “Compact silicon photonic waveguide modulator based on the the vanadium dioxide metal-insulator phase transition,” Opt. Express 18, 11192–11201 (2010).
[Crossref] [PubMed]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[Crossref] [PubMed]

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8, 4048–4052 (2008).
[Crossref] [PubMed]

Averitt, R. D.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternback, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[PubMed]

Bai, P.

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96, 221103 (2010).
[Crossref]

Barker, A. S.

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172, 788–798 (1968).
[Crossref]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Bartal, G.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Berglund, C. N.

C. N. Berglund and H. J. Guggenheim, “Electronic properties of VO2 near the semiconductor-metal transition,” Phys. Rev. 185, 1022–1033 (1969).
[Crossref]

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172, 788–798 (1968).
[Crossref]

Bhattacharya, K.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8, 4048–4052 (2008).
[Crossref] [PubMed]

Blondy, P.

A. Crunteanu, J. Givernaud, P. Blondy, J.-C. Orlianges, C. Champeaux, and A. Catherinot, “Exploiting the semiconductor-metal phase transition of VO2 materials: a novel direction towards tuneable devices and systems for RF-microwave applications,” in Advanced Microwave and Millimeter Wave Technologies Semiconductor Devices Circuits and Systems, M. Mukherjee, ed. (Intech, 2010), pp. 35–66.

Bozhevolnyi, S. I.

Briggs, R. M.

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9, 4403–4411 (2009).
[Crossref] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9, 4403–4411 (2009).
[Crossref] [PubMed]

Catherinot, A.

A. Crunteanu, J. Givernaud, P. Blondy, J.-C. Orlianges, C. Champeaux, and A. Catherinot, “Exploiting the semiconductor-metal phase transition of VO2 materials: a novel direction towards tuneable devices and systems for RF-microwave applications,” in Advanced Microwave and Millimeter Wave Technologies Semiconductor Devices Circuits and Systems, M. Mukherjee, ed. (Intech, 2010), pp. 35–66.

Cavalleri, A.

A. Cavalleri, Cs. Tóth, C. W. Siders, and J. A. Squier, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref] [PubMed]

Champeaux, C.

A. Crunteanu, J. Givernaud, P. Blondy, J.-C. Orlianges, C. Champeaux, and A. Catherinot, “Exploiting the semiconductor-metal phase transition of VO2 materials: a novel direction towards tuneable devices and systems for RF-microwave applications,” in Advanced Microwave and Millimeter Wave Technologies Semiconductor Devices Circuits and Systems, M. Mukherjee, ed. (Intech, 2010), pp. 35–66.

Choi, B. K.

J. Nag, J. D. Ryckman, M. T. Hertkorn, B. K. Choi, R. F. Haglund, and S. M. Weiss, “Ultrafast compact silicon-based ring resonator modulators using metal-insulator switching of vanadium dioxide,” Proc. SPIE 7597, 759710 (2010).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Chu, H.-S.

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96, 221103 (2010).
[Crossref]

Chuang, S.- L.

S.- L. Chuang, “A coupled mode formulation by reciprocity and a variational principle,” J. Lightwave Technol. 5, 5–15 (1987).
[Crossref]

Crunteanu, A.

A. Crunteanu, J. Givernaud, P. Blondy, J.-C. Orlianges, C. Champeaux, and A. Catherinot, “Exploiting the semiconductor-metal phase transition of VO2 materials: a novel direction towards tuneable devices and systems for RF-microwave applications,” in Advanced Microwave and Millimeter Wave Technologies Semiconductor Devices Circuits and Systems, M. Mukherjee, ed. (Intech, 2010), pp. 35–66.

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Dereux, A.

Dicken, M. J.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8, 4048–4052 (2008).
[Crossref] [PubMed]

Diest, K.

L. A. Sweatlock and K. Diest, “Vanadium dioxide based plasmonic modulators,” Opt. Express 20, 8700–8709 (2012).
[Crossref] [PubMed]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[Crossref] [PubMed]

Dionne, J. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[Crossref] [PubMed]

Fan, K.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternback, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[PubMed]

Fernandez, F.

S. Lysenko, A. Rua, F. Fernandez, and H. Liu, “Optical nonlinearity and structural dynamics of VO2 films,” J. Appl. Phys. 105, 043502 (2009).
[Crossref]

Freude, W.

Givernaud, J.

A. Crunteanu, J. Givernaud, P. Blondy, J.-C. Orlianges, C. Champeaux, and A. Catherinot, “Exploiting the semiconductor-metal phase transition of VO2 materials: a novel direction towards tuneable devices and systems for RF-microwave applications,” in Advanced Microwave and Millimeter Wave Technologies Semiconductor Devices Circuits and Systems, M. Mukherjee, ed. (Intech, 2010), pp. 35–66.

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Gosciniak, J.

Guggenheim, H. J.

C. N. Berglund and H. J. Guggenheim, “Electronic properties of VO2 near the semiconductor-metal transition,” Phys. Rev. 185, 1022–1033 (1969).
[Crossref]

Haglund, R. F.

J. Nag, J. D. Ryckman, M. T. Hertkorn, B. K. Choi, R. F. Haglund, and S. M. Weiss, “Ultrafast compact silicon-based ring resonator modulators using metal-insulator switching of vanadium dioxide,” Proc. SPIE 7597, 759710 (2010).
[Crossref]

Hahn, H.

Hao, Q.

Hatano, T.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487, 459–462 (2012).
[Crossref] [PubMed]

Hegde, R.

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96, 221103 (2010).
[Crossref]

Hertkorn, M. T.

J. Nag, J. D. Ryckman, M. T. Hertkorn, B. K. Choi, R. F. Haglund, and S. M. Weiss, “Ultrafast compact silicon-based ring resonator modulators using metal-insulator switching of vanadium dioxide,” Proc. SPIE 7597, 759710 (2010).
[Crossref]

Huang, T. J.

Hwang, H. Y.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternback, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[PubMed]

Iwasa, Y.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487, 459–462 (2012).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Kawasaki, M.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487, 459–462 (2012).
[Crossref] [PubMed]

Keiser, G. R.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternback, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[PubMed]

Khoo, I.-C.

Kittiwatanakul, S.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternback, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[PubMed]

Kjelstrup-Hansen, J.

Komatsu, M.

M. Komatsu, K. Saitoh, and M. Koshiba, “Compact polarization rotator based on surface plasmon polariton with low insertion loss,” IEEE Photonics J. 4, 707–714 (2012).
[Crossref]

Koos, C.

Koshiba, M.

M. Komatsu, K. Saitoh, and M. Koshiba, “Compact polarization rotator based on surface plasmon polariton with low insertion loss,” IEEE Photonics J. 4, 707–714 (2012).
[Crossref]

Kwong, D. L.

Leufke, P. M.

Leuthold, J.

Lezec, H.

A. Agrawal, C. Susut, G. Stafford, B. McMorran, H. Lezec, and A. A. Talin, “Integrated electrochromic nanoplasmonic optical switch,” in Conference on Lasers and Electro-Optics, p. QTuE5 (2011).

Lezec, H. J.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8, 4048–4052 (2008).
[Crossref] [PubMed]

Li, E.-P.

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96, 221103 (2010).
[Crossref]

Lindenmann, N.

Liu, H.

S. Lysenko, A. Rua, F. Fernandez, and H. Liu, “Optical nonlinearity and structural dynamics of VO2 films,” J. Appl. Phys. 105, 043502 (2009).
[Crossref]

Liu, M.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternback, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[PubMed]

Lo, G. Q.

Lu, J.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternback, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[PubMed]

Lu, Z.

W. Zhao and Z. Lu, “Nanoplasmonic optical switch based on Ga-Si3N4-Ga waveguide,” Opt. Eng. 50, 074002 (2011).
[Crossref]

Lysenko, S.

S. Lysenko, A. Rua, F. Fernandez, and H. Liu, “Optical nonlinearity and structural dynamics of VO2 films,” J. Appl. Phys. 105, 043502 (2009).
[Crossref]

Ma, R.-M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Ma, Y.

MacDonald, K. F.

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photonics Rev. 4, 562–567 (2010).
[Crossref]

Markey, L.

McMorran, B.

A. Agrawal, C. Susut, G. Stafford, B. McMorran, H. Lezec, and A. A. Talin, “Integrated electrochromic nanoplasmonic optical switch,” in Conference on Lasers and Electro-Optics, p. QTuE5 (2011).

Melikyan, A.

Min, C.

Nag, J.

J. Nag, J. D. Ryckman, M. T. Hertkorn, B. K. Choi, R. F. Haglund, and S. M. Weiss, “Ultrafast compact silicon-based ring resonator modulators using metal-insulator switching of vanadium dioxide,” Proc. SPIE 7597, 759710 (2010).
[Crossref]

Nakano, M.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487, 459–462 (2012).
[Crossref] [PubMed]

Nawaz, A. A.

Nelson, K. A.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternback, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[PubMed]

Okuyama, D.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487, 459–462 (2012).
[Crossref] [PubMed]

Omenetto, F. G.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternback, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[PubMed]

Ono, S.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487, 459–462 (2012).
[Crossref] [PubMed]

Orlianges, J.-C.

A. Crunteanu, J. Givernaud, P. Blondy, J.-C. Orlianges, C. Champeaux, and A. Catherinot, “Exploiting the semiconductor-metal phase transition of VO2 materials: a novel direction towards tuneable devices and systems for RF-microwave applications,” in Advanced Microwave and Millimeter Wave Technologies Semiconductor Devices Circuits and Systems, M. Mukherjee, ed. (Intech, 2010), pp. 35–66.

Oulton, R. F.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref] [PubMed]

Pacifici, D.

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8, 4048–4052 (2008).
[Crossref] [PubMed]

Pergament, A.

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transitions in VO2,” J. Phys. Condens. Matter 12, 8837–8845 (2000).
[Crossref]

Pryce, I. M.

Rua, A.

S. Lysenko, A. Rua, F. Fernandez, and H. Liu, “Optical nonlinearity and structural dynamics of VO2 films,” J. Appl. Phys. 105, 043502 (2009).
[Crossref]

Ryckman, J. D.

J. Nag, J. D. Ryckman, M. T. Hertkorn, B. K. Choi, R. F. Haglund, and S. M. Weiss, “Ultrafast compact silicon-based ring resonator modulators using metal-insulator switching of vanadium dioxide,” Proc. SPIE 7597, 759710 (2010).
[Crossref]

Saitoh, K.

M. Komatsu, K. Saitoh, and M. Koshiba, “Compact polarization rotator based on surface plasmon polariton with low insertion loss,” IEEE Photonics J. 4, 707–714 (2012).
[Crossref]

Schimmel, Th.

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Shibuya, K.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487, 459–462 (2012).
[Crossref] [PubMed]

Siders, C. W.

A. Cavalleri, Cs. Tóth, C. W. Siders, and J. A. Squier, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref] [PubMed]

Smalley, J. S. T.

Sorger, V. J.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Squier, J. A.

A. Cavalleri, Cs. Tóth, C. W. Siders, and J. A. Squier, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref] [PubMed]

Stafford, G.

A. Agrawal, C. Susut, G. Stafford, B. McMorran, H. Lezec, and A. A. Talin, “Integrated electrochromic nanoplasmonic optical switch,” in Conference on Lasers and Electro-Optics, p. QTuE5 (2011).

Stefanovich, D.

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transitions in VO2,” J. Phys. Condens. Matter 12, 8837–8845 (2000).
[Crossref]

Stefanovich, G.

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transitions in VO2,” J. Phys. Condens. Matter 12, 8837–8845 (2000).
[Crossref]

Sternback, A. J.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternback, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[PubMed]

Strikwerda, A. C.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternback, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[PubMed]

Susut, C.

A. Agrawal, C. Susut, G. Stafford, B. McMorran, H. Lezec, and A. A. Talin, “Integrated electrochromic nanoplasmonic optical switch,” in Conference on Lasers and Electro-Optics, p. QTuE5 (2011).

Sweatlock, L. A.

L. A. Sweatlock and K. Diest, “Vanadium dioxide based plasmonic modulators,” Opt. Express 20, 8700–8709 (2012).
[Crossref] [PubMed]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[Crossref] [PubMed]

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8, 4048–4052 (2008).
[Crossref] [PubMed]

Talin, A. A.

A. Agrawal, C. Susut, G. Stafford, B. McMorran, H. Lezec, and A. A. Talin, “Integrated electrochromic nanoplasmonic optical switch,” in Conference on Lasers and Electro-Optics, p. QTuE5 (2011).

Tao, H.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternback, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[PubMed]

Tokura, Y.

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487, 459–462 (2012).
[Crossref] [PubMed]

Tóth, Cs.

A. Cavalleri, Cs. Tóth, C. W. Siders, and J. A. Squier, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref] [PubMed]

Ulrich, S.

Verleur, H. W.

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172, 788–798 (1968).
[Crossref]

Veronis, G.

Vincze, P.

Volkov, V. S.

Walheim, S.

Wang, Y.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

Weiss, S. M.

J. Nag, J. D. Ryckman, M. T. Hertkorn, B. K. Choi, R. F. Haglund, and S. M. Weiss, “Ultrafast compact silicon-based ring resonator modulators using metal-insulator switching of vanadium dioxide,” Proc. SPIE 7597, 759710 (2010).
[Crossref]

West, K. G.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternback, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[PubMed]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9, 4403–4411 (2009).
[Crossref] [PubMed]

Wolf, S. A.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternback, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[PubMed]

Ye, J.

Ye, Z.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

Yin, X.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Zhang, X.

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternback, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[PubMed]

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Zhao, W.

W. Zhao and Z. Lu, “Nanoplasmonic optical switch based on Ga-Si3N4-Ga waveguide,” Opt. Eng. 50, 074002 (2011).
[Crossref]

Zhao, Y.

Zheludev, N. I.

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photonics Rev. 4, 562–567 (2010).
[Crossref]

Zhu, S.

Appl. Phys. Lett. (1)

H.-S. Chu, E.-P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett. 96, 221103 (2010).
[Crossref]

IEEE Photonics J. (1)

M. Komatsu, K. Saitoh, and M. Koshiba, “Compact polarization rotator based on surface plasmon polariton with low insertion loss,” IEEE Photonics J. 4, 707–714 (2012).
[Crossref]

J. Appl. Phys. (1)

S. Lysenko, A. Rua, F. Fernandez, and H. Liu, “Optical nonlinearity and structural dynamics of VO2 films,” J. Appl. Phys. 105, 043502 (2009).
[Crossref]

J. Lightwave Technol. (1)

S.- L. Chuang, “A coupled mode formulation by reciprocity and a variational principle,” J. Lightwave Technol. 5, 5–15 (1987).
[Crossref]

J. Phys. Condens. Matter (1)

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transitions in VO2,” J. Phys. Condens. Matter 12, 8837–8845 (2000).
[Crossref]

Laser Photonics Rev. (1)

K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photonics Rev. 4, 562–567 (2010).
[Crossref]

Nano Lett. (3)

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[Crossref] [PubMed]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9, 4403–4411 (2009).
[Crossref] [PubMed]

M. J. Dicken, L. A. Sweatlock, D. Pacifici, H. J. Lezec, K. Bhattacharya, and H. A. Atwater, “Electrooptic modulation in thin film barium titanate plasmonic interferometers,” Nano Lett. 8, 4048–4052 (2008).
[Crossref] [PubMed]

Nat. Commun. (1)

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun. 2, 331 (2011).
[Crossref]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Nature (3)

M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternback, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, “Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial,” Nature 487, 345–348 (2012).
[PubMed]

M. Nakano, K. Shibuya, D. Okuyama, T. Hatano, S. Ono, M. Kawasaki, Y. Iwasa, and Y. Tokura, “Collective bulk carrier delocalization driven by electrostatic surface charge accumulation,” Nature 487, 459–462 (2012).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009).
[Crossref] [PubMed]

Opt. Eng. (1)

W. Zhao and Z. Lu, “Nanoplasmonic optical switch based on Ga-Si3N4-Ga waveguide,” Opt. Eng. 50, 074002 (2011).
[Crossref]

Opt. Express (7)

Phys. Rev. (2)

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172, 788–798 (1968).
[Crossref]

C. N. Berglund and H. J. Guggenheim, “Electronic properties of VO2 near the semiconductor-metal transition,” Phys. Rev. 185, 1022–1033 (1969).
[Crossref]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (1)

A. Cavalleri, Cs. Tóth, C. W. Siders, and J. A. Squier, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401 (2001).
[Crossref] [PubMed]

Proc. SPIE (1)

J. Nag, J. D. Ryckman, M. T. Hertkorn, B. K. Choi, R. F. Haglund, and S. M. Weiss, “Ultrafast compact silicon-based ring resonator modulators using metal-insulator switching of vanadium dioxide,” Proc. SPIE 7597, 759710 (2010).
[Crossref]

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref] [PubMed]

Other (2)

A. Crunteanu, J. Givernaud, P. Blondy, J.-C. Orlianges, C. Champeaux, and A. Catherinot, “Exploiting the semiconductor-metal phase transition of VO2 materials: a novel direction towards tuneable devices and systems for RF-microwave applications,” in Advanced Microwave and Millimeter Wave Technologies Semiconductor Devices Circuits and Systems, M. Mukherjee, ed. (Intech, 2010), pp. 35–66.

A. Agrawal, C. Susut, G. Stafford, B. McMorran, H. Lezec, and A. A. Talin, “Integrated electrochromic nanoplasmonic optical switch,” in Conference on Lasers and Electro-Optics, p. QTuE5 (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Perspective of the integrated device including gratings for coupling light in and out. (b) Cross-section of the plasmonic waveguide.

Fig. 2
Fig. 2

Real (top, neff) and imaginary (bottom, keff) parts of the effective index for (a) tVO2 = 120 nm and (b) tVO2 = 260 nm as a function of tSiO2 at λ = 1.55 μm. The shaded areas in (a) and (b) are studied in more detail in Section 3.2, which focuses on the strongly-hybridized design, and Section 3.3, which focuses on the weakly-hybridized design, respectively. (c) Individual modes which make up the hybrid modes of the VO2 modulator. As tSiO2 → ∞, D1 and M1 reduce to the Ag SPP mode, D2 reduces to the VO2 dielectric mode, and M2 reduces to the VO2 LRSPP mode.

Fig. 3
Fig. 3

(a) Electric and (b) magnetic field intensity for the optimized strongly-hybridized device (tVO2 = 120 nm and tSiO2 = 160 nm). (c) neff and (d) keff for a range of tSiO2 for the strongly-hybridized device with tVO2 = 120 nm. Spectral dependence of (e) neff and (f) keff for the optimized device.

Fig. 4
Fig. 4

(a) Electric and (b) magnetic field intensity for the optimized weakly-hybridized device (tVO2 = 260 nm and tSiO2 = 780 nm). (c) neff and (d) keff for a range of tSiO2 for the weakly-hybridized device. Spectral dependence of (e) neff and (f) keff for the optimized device.

Fig. 5
Fig. 5

(a) Simulation space for the thermal calculations. (b) Powers and voltages required to switch the device from its dielectric to its metallic state (top), and the corresponding ER/IL ratio (bottom). (c) Perspective and (d) cross-section of the temperature distribution required for TVO2,avg = 355 K for the device with tVO2 = 260 nm, and tSiO2 = 780 nm. The temperature profiles for tVO2 = 120 nm and tSiO2 = 160 nm are similar.

Tables (1)

Tables Icon

Table 1 Comparison of devices presented in this work with recent SPP switches and modulators. Where the numbers are absent, data is not available.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

FOM = ER prop IL prop ,

Metrics