Abstract

Spectral focusing using broadband femtosecond pulses to achieve highly selective measurements has been employed for numerous applications in spectroscopy and microspectroscopy. In this work we highlight the use of spectral focusing for selective excitation and detection of gas-phase species. Furthermore, we demonstrate that spectral focusing, coupled with time-resolved measurements based upon probe delay, allows the observation of interference-free coherence dynamics of multiple molecules and gas-phase temperature making this technique ideal for gas-phase measurements of reacting flows and combustion processes.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Lang, K.-L. Kompa, and M. Motzkus, “Femtosecond CARS on H2,” Chem. Phys. Lett.310(1-2), 65–72 (1999).
    [CrossRef]
  2. P. Beaud, H.-M. Frey, T. Lang, and M. Motzkus, “Flame thermometry by femtosecond CARS,” Chem. Phys. Lett.344(3-4), 407–412 (2001).
    [CrossRef]
  3. T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, “High resolution femtosecond coherent anti-Stokes Raman scattering: determination of rotational constants, molecular anharmonicity, collisional line shifts, and temperature,” J. Chem. Phys.115(12), 5418–5426 (2001).
    [CrossRef]
  4. R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett.89(25), 251112 (2006).
    [CrossRef]
  5. S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun.281(2), 319–325 (2008).
    [CrossRef]
  6. S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Effects of N2–CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy of N2,” Appl. Phys. Lett.94(14), 144101 (2009).
    [CrossRef]
  7. W. D. Kulatilaka, J. R. Gord, and S. Roy, “Effects of O2–CO2 polarization beating on femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy of O2,” Appl. Phys. B102(1), 141–147 (2011).
    [CrossRef]
  8. M. T. Bremer, P. J. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett.99(10), 101109 (2011).
    [CrossRef]
  9. J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett.35(14), 2430–2432 (2010).
    [CrossRef] [PubMed]
  10. S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett.34(24), 3857–3859 (2009).
    [CrossRef] [PubMed]
  11. E. T. J. Nibbering, D. A. Wiersma, and K. Duppen, “Ultrafast nonlinear spectroscopy with chirped optical pulses,” Phys. Rev. Lett.68(4), 514–517 (1992).
    [CrossRef] [PubMed]
  12. E. Gershgoren, R. A. Bartels, J. T. Fourkas, R. Tobey, M. M. Murnane, and H. C. Kapteyn, “Simplified setup for high-resolution spectroscopy that uses ultrashort pulses,” Opt. Lett.28(5), 361–363 (2003).
    [CrossRef] [PubMed]
  13. D. Pestov, X. Wang, R. K. Murawski, G. O. Ariunbold, V. A. Sautenkov, and A. V. Sokolov, “Pulse shaping for mode-selective ultrafast coherent Raman spectroscopy of highly scattering solids,” J. Opt. Soc. Am. B25(5), 768–772 (2008).
    [CrossRef]
  14. T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett.85(1), 25–27 (2004).
    [CrossRef]
  15. I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett.93(20), 201103 (2008).
    [CrossRef]
  16. B.-C. Chen, J. Sung, and S.-H. Lim, “Chemical imaging with frequency modulation coherent anti-Stokes Raman scattering microscopy at the vibrational fingerprint region,” J. Phys. Chem. B114(50), 16871–16880 (2010).
    [CrossRef] [PubMed]
  17. A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, J. P. Pezacki, and A. Stolow, “Single laser source for multimodal coherent anti-Stokes Raman scattering microscopy,” Appl. Opt.49(25), F10–F17 (2010).
    [CrossRef] [PubMed]
  18. P. Adany, D. C. Arnett, C. K. Johnson, and R. Hui, “Tunable excitation source for coherent Raman spectroscopy based on a single fiber laser,” Appl. Phys. Lett.99(18), 181112 (2011).
    [CrossRef] [PubMed]
  19. K. P. Knutsen, B. M. Messer, R. M. Onorato, and R. J. Saykally, “Chirped coherent anti-Stokes Raman scattering for high spectral resolution spectroscopy and chemically selective imaging,” J. Phys. Chem. B110(12), 5854–5864 (2006).
    [CrossRef] [PubMed]

2011 (3)

W. D. Kulatilaka, J. R. Gord, and S. Roy, “Effects of O2–CO2 polarization beating on femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy of O2,” Appl. Phys. B102(1), 141–147 (2011).
[CrossRef]

M. T. Bremer, P. J. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett.99(10), 101109 (2011).
[CrossRef]

P. Adany, D. C. Arnett, C. K. Johnson, and R. Hui, “Tunable excitation source for coherent Raman spectroscopy based on a single fiber laser,” Appl. Phys. Lett.99(18), 181112 (2011).
[CrossRef] [PubMed]

2010 (3)

2009 (2)

S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Effects of N2–CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy of N2,” Appl. Phys. Lett.94(14), 144101 (2009).
[CrossRef]

S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett.34(24), 3857–3859 (2009).
[CrossRef] [PubMed]

2008 (3)

S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun.281(2), 319–325 (2008).
[CrossRef]

I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett.93(20), 201103 (2008).
[CrossRef]

D. Pestov, X. Wang, R. K. Murawski, G. O. Ariunbold, V. A. Sautenkov, and A. V. Sokolov, “Pulse shaping for mode-selective ultrafast coherent Raman spectroscopy of highly scattering solids,” J. Opt. Soc. Am. B25(5), 768–772 (2008).
[CrossRef]

2006 (2)

K. P. Knutsen, B. M. Messer, R. M. Onorato, and R. J. Saykally, “Chirped coherent anti-Stokes Raman scattering for high spectral resolution spectroscopy and chemically selective imaging,” J. Phys. Chem. B110(12), 5854–5864 (2006).
[CrossRef] [PubMed]

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett.89(25), 251112 (2006).
[CrossRef]

2004 (1)

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett.85(1), 25–27 (2004).
[CrossRef]

2003 (1)

2001 (2)

P. Beaud, H.-M. Frey, T. Lang, and M. Motzkus, “Flame thermometry by femtosecond CARS,” Chem. Phys. Lett.344(3-4), 407–412 (2001).
[CrossRef]

T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, “High resolution femtosecond coherent anti-Stokes Raman scattering: determination of rotational constants, molecular anharmonicity, collisional line shifts, and temperature,” J. Chem. Phys.115(12), 5418–5426 (2001).
[CrossRef]

1999 (1)

T. Lang, K.-L. Kompa, and M. Motzkus, “Femtosecond CARS on H2,” Chem. Phys. Lett.310(1-2), 65–72 (1999).
[CrossRef]

1992 (1)

E. T. J. Nibbering, D. A. Wiersma, and K. Duppen, “Ultrafast nonlinear spectroscopy with chirped optical pulses,” Phys. Rev. Lett.68(4), 514–517 (1992).
[CrossRef] [PubMed]

Adany, P.

P. Adany, D. C. Arnett, C. K. Johnson, and R. Hui, “Tunable excitation source for coherent Raman spectroscopy based on a single fiber laser,” Appl. Phys. Lett.99(18), 181112 (2011).
[CrossRef] [PubMed]

Ariunbold, G. O.

Arnett, D. C.

P. Adany, D. C. Arnett, C. K. Johnson, and R. Hui, “Tunable excitation source for coherent Raman spectroscopy based on a single fiber laser,” Appl. Phys. Lett.99(18), 181112 (2011).
[CrossRef] [PubMed]

Bartels, R. A.

Beaud, P.

T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, “High resolution femtosecond coherent anti-Stokes Raman scattering: determination of rotational constants, molecular anharmonicity, collisional line shifts, and temperature,” J. Chem. Phys.115(12), 5418–5426 (2001).
[CrossRef]

P. Beaud, H.-M. Frey, T. Lang, and M. Motzkus, “Flame thermometry by femtosecond CARS,” Chem. Phys. Lett.344(3-4), 407–412 (2001).
[CrossRef]

Borri, P.

I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett.93(20), 201103 (2008).
[CrossRef]

Bremer, M. T.

M. T. Bremer, P. J. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett.99(10), 101109 (2011).
[CrossRef]

Butcher, N.

M. T. Bremer, P. J. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett.99(10), 101109 (2011).
[CrossRef]

Chen, B.-C.

B.-C. Chen, J. Sung, and S.-H. Lim, “Chemical imaging with frequency modulation coherent anti-Stokes Raman scattering microscopy at the vibrational fingerprint region,” J. Phys. Chem. B114(50), 16871–16880 (2010).
[CrossRef] [PubMed]

Dantus, M.

M. T. Bremer, P. J. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett.99(10), 101109 (2011).
[CrossRef]

Duppen, K.

E. T. J. Nibbering, D. A. Wiersma, and K. Duppen, “Ultrafast nonlinear spectroscopy with chirped optical pulses,” Phys. Rev. Lett.68(4), 514–517 (1992).
[CrossRef] [PubMed]

Enejder, A. M. K.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett.85(1), 25–27 (2004).
[CrossRef]

Fourkas, J. T.

Frey, H. M.

T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, “High resolution femtosecond coherent anti-Stokes Raman scattering: determination of rotational constants, molecular anharmonicity, collisional line shifts, and temperature,” J. Chem. Phys.115(12), 5418–5426 (2001).
[CrossRef]

Frey, H.-M.

P. Beaud, H.-M. Frey, T. Lang, and M. Motzkus, “Flame thermometry by femtosecond CARS,” Chem. Phys. Lett.344(3-4), 407–412 (2001).
[CrossRef]

Gershgoren, E.

Gord, J. R.

W. D. Kulatilaka, J. R. Gord, and S. Roy, “Effects of O2–CO2 polarization beating on femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy of O2,” Appl. Phys. B102(1), 141–147 (2011).
[CrossRef]

J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett.35(14), 2430–2432 (2010).
[CrossRef] [PubMed]

S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Effects of N2–CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy of N2,” Appl. Phys. Lett.94(14), 144101 (2009).
[CrossRef]

S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett.34(24), 3857–3859 (2009).
[CrossRef] [PubMed]

S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun.281(2), 319–325 (2008).
[CrossRef]

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett.89(25), 251112 (2006).
[CrossRef]

Hellerer, T.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett.85(1), 25–27 (2004).
[CrossRef]

Hui, R.

P. Adany, D. C. Arnett, C. K. Johnson, and R. Hui, “Tunable excitation source for coherent Raman spectroscopy based on a single fiber laser,” Appl. Phys. Lett.99(18), 181112 (2011).
[CrossRef] [PubMed]

Johnson, C. K.

P. Adany, D. C. Arnett, C. K. Johnson, and R. Hui, “Tunable excitation source for coherent Raman spectroscopy based on a single fiber laser,” Appl. Phys. Lett.99(18), 181112 (2011).
[CrossRef] [PubMed]

Kapteyn, H. C.

Kinnius, P. J.

S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Effects of N2–CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy of N2,” Appl. Phys. Lett.94(14), 144101 (2009).
[CrossRef]

S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun.281(2), 319–325 (2008).
[CrossRef]

Knutsen, K. P.

K. P. Knutsen, B. M. Messer, R. M. Onorato, and R. J. Saykally, “Chirped coherent anti-Stokes Raman scattering for high spectral resolution spectroscopy and chemically selective imaging,” J. Phys. Chem. B110(12), 5854–5864 (2006).
[CrossRef] [PubMed]

Kompa, K.-L.

T. Lang, K.-L. Kompa, and M. Motzkus, “Femtosecond CARS on H2,” Chem. Phys. Lett.310(1-2), 65–72 (1999).
[CrossRef]

Kulatilaka, W. D.

W. D. Kulatilaka, J. R. Gord, and S. Roy, “Effects of O2–CO2 polarization beating on femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy of O2,” Appl. Phys. B102(1), 141–147 (2011).
[CrossRef]

S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett.34(24), 3857–3859 (2009).
[CrossRef] [PubMed]

Lang, T.

T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, “High resolution femtosecond coherent anti-Stokes Raman scattering: determination of rotational constants, molecular anharmonicity, collisional line shifts, and temperature,” J. Chem. Phys.115(12), 5418–5426 (2001).
[CrossRef]

P. Beaud, H.-M. Frey, T. Lang, and M. Motzkus, “Flame thermometry by femtosecond CARS,” Chem. Phys. Lett.344(3-4), 407–412 (2001).
[CrossRef]

T. Lang, K.-L. Kompa, and M. Motzkus, “Femtosecond CARS on H2,” Chem. Phys. Lett.310(1-2), 65–72 (1999).
[CrossRef]

Langbein, W.

I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett.93(20), 201103 (2008).
[CrossRef]

Lim, S.-H.

B.-C. Chen, J. Sung, and S.-H. Lim, “Chemical imaging with frequency modulation coherent anti-Stokes Raman scattering microscopy at the vibrational fingerprint region,” J. Phys. Chem. B114(50), 16871–16880 (2010).
[CrossRef] [PubMed]

Lozovoy, V. V.

M. T. Bremer, P. J. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett.99(10), 101109 (2011).
[CrossRef]

Lucht, R. P.

S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett.34(24), 3857–3859 (2009).
[CrossRef] [PubMed]

S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Effects of N2–CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy of N2,” Appl. Phys. Lett.94(14), 144101 (2009).
[CrossRef]

S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun.281(2), 319–325 (2008).
[CrossRef]

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett.89(25), 251112 (2006).
[CrossRef]

Messer, B. M.

K. P. Knutsen, B. M. Messer, R. M. Onorato, and R. J. Saykally, “Chirped coherent anti-Stokes Raman scattering for high spectral resolution spectroscopy and chemically selective imaging,” J. Phys. Chem. B110(12), 5854–5864 (2006).
[CrossRef] [PubMed]

Meyer, T. R.

J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett.35(14), 2430–2432 (2010).
[CrossRef] [PubMed]

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett.89(25), 251112 (2006).
[CrossRef]

Miller, J. D.

Motzkus, M.

P. Beaud, H.-M. Frey, T. Lang, and M. Motzkus, “Flame thermometry by femtosecond CARS,” Chem. Phys. Lett.344(3-4), 407–412 (2001).
[CrossRef]

T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, “High resolution femtosecond coherent anti-Stokes Raman scattering: determination of rotational constants, molecular anharmonicity, collisional line shifts, and temperature,” J. Chem. Phys.115(12), 5418–5426 (2001).
[CrossRef]

T. Lang, K.-L. Kompa, and M. Motzkus, “Femtosecond CARS on H2,” Chem. Phys. Lett.310(1-2), 65–72 (1999).
[CrossRef]

Murawski, R. K.

Murnane, M. M.

Nibbering, E. T. J.

E. T. J. Nibbering, D. A. Wiersma, and K. Duppen, “Ultrafast nonlinear spectroscopy with chirped optical pulses,” Phys. Rev. Lett.68(4), 514–517 (1992).
[CrossRef] [PubMed]

Onorato, R. M.

K. P. Knutsen, B. M. Messer, R. M. Onorato, and R. J. Saykally, “Chirped coherent anti-Stokes Raman scattering for high spectral resolution spectroscopy and chemically selective imaging,” J. Phys. Chem. B110(12), 5854–5864 (2006).
[CrossRef] [PubMed]

Pegoraro, A. F.

Pestov, D.

Pezacki, J. P.

Richardson, D.

S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Effects of N2–CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy of N2,” Appl. Phys. Lett.94(14), 144101 (2009).
[CrossRef]

Richardson, D. R.

Ridsdale, A.

Rocha-Mendoza, I.

I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett.93(20), 201103 (2008).
[CrossRef]

Roy, S.

W. D. Kulatilaka, J. R. Gord, and S. Roy, “Effects of O2–CO2 polarization beating on femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy of O2,” Appl. Phys. B102(1), 141–147 (2011).
[CrossRef]

S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy,” Opt. Lett.34(24), 3857–3859 (2009).
[CrossRef] [PubMed]

S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Effects of N2–CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy of N2,” Appl. Phys. Lett.94(14), 144101 (2009).
[CrossRef]

S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun.281(2), 319–325 (2008).
[CrossRef]

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett.89(25), 251112 (2006).
[CrossRef]

Sautenkov, V. A.

Saykally, R. J.

K. P. Knutsen, B. M. Messer, R. M. Onorato, and R. J. Saykally, “Chirped coherent anti-Stokes Raman scattering for high spectral resolution spectroscopy and chemically selective imaging,” J. Phys. Chem. B110(12), 5854–5864 (2006).
[CrossRef] [PubMed]

Slepkov, A. D.

Slipchenko, M. N.

Sokolov, A. V.

Stauffer, H. U.

Stolow, A.

Sung, J.

B.-C. Chen, J. Sung, and S.-H. Lim, “Chemical imaging with frequency modulation coherent anti-Stokes Raman scattering microscopy at the vibrational fingerprint region,” J. Phys. Chem. B114(50), 16871–16880 (2010).
[CrossRef] [PubMed]

Tobey, R.

Wang, X.

Wiersma, D. A.

E. T. J. Nibbering, D. A. Wiersma, and K. Duppen, “Ultrafast nonlinear spectroscopy with chirped optical pulses,” Phys. Rev. Lett.68(4), 514–517 (1992).
[CrossRef] [PubMed]

Wrzesinski, P. J.

M. T. Bremer, P. J. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett.99(10), 101109 (2011).
[CrossRef]

Zumbusch, A.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett.85(1), 25–27 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

W. D. Kulatilaka, J. R. Gord, and S. Roy, “Effects of O2–CO2 polarization beating on femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy of O2,” Appl. Phys. B102(1), 141–147 (2011).
[CrossRef]

Appl. Phys. Lett. (6)

M. T. Bremer, P. J. Wrzesinski, N. Butcher, V. V. Lozovoy, and M. Dantus, “Highly selective standoff detection and imaging of trace chemicals in a complex background using single-beam coherent anti-Stokes Raman scattering,” Appl. Phys. Lett.99(10), 101109 (2011).
[CrossRef]

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett.85(1), 25–27 (2004).
[CrossRef]

I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett.93(20), 201103 (2008).
[CrossRef]

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett.89(25), 251112 (2006).
[CrossRef]

S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Effects of N2–CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy of N2,” Appl. Phys. Lett.94(14), 144101 (2009).
[CrossRef]

P. Adany, D. C. Arnett, C. K. Johnson, and R. Hui, “Tunable excitation source for coherent Raman spectroscopy based on a single fiber laser,” Appl. Phys. Lett.99(18), 181112 (2011).
[CrossRef] [PubMed]

Chem. Phys. Lett. (2)

T. Lang, K.-L. Kompa, and M. Motzkus, “Femtosecond CARS on H2,” Chem. Phys. Lett.310(1-2), 65–72 (1999).
[CrossRef]

P. Beaud, H.-M. Frey, T. Lang, and M. Motzkus, “Flame thermometry by femtosecond CARS,” Chem. Phys. Lett.344(3-4), 407–412 (2001).
[CrossRef]

J. Chem. Phys. (1)

T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, “High resolution femtosecond coherent anti-Stokes Raman scattering: determination of rotational constants, molecular anharmonicity, collisional line shifts, and temperature,” J. Chem. Phys.115(12), 5418–5426 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (2)

K. P. Knutsen, B. M. Messer, R. M. Onorato, and R. J. Saykally, “Chirped coherent anti-Stokes Raman scattering for high spectral resolution spectroscopy and chemically selective imaging,” J. Phys. Chem. B110(12), 5854–5864 (2006).
[CrossRef] [PubMed]

B.-C. Chen, J. Sung, and S.-H. Lim, “Chemical imaging with frequency modulation coherent anti-Stokes Raman scattering microscopy at the vibrational fingerprint region,” J. Phys. Chem. B114(50), 16871–16880 (2010).
[CrossRef] [PubMed]

Opt. Commun. (1)

S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun.281(2), 319–325 (2008).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. Lett. (1)

E. T. J. Nibbering, D. A. Wiersma, and K. Duppen, “Ultrafast nonlinear spectroscopy with chirped optical pulses,” Phys. Rev. Lett.68(4), 514–517 (1992).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic layout of the experimental setup. (b) Time-vs.-frequency diagram for chirped pump and Stokes pulses. The excited Raman transition (ΩR) is dependent on the relative delay (τ12) between the two pulses. (c) Cross-correlation (black) of the unchirped probe and chirped Stokes, cross-correlation (green) between the chirped pump/Stokes and unchirped probe, and auto-correlation (red) of two unchirped probe pulses.

Fig. 2
Fig. 2

(a) CARS response as a function of pump/Stokes delay for a 1:1 mixture of O2 and CO2 at 10 bar. (b) and (c) Integrated CARS response as a function of probe delay for each species in the mixture (red) and in the pure gas (black).

Fig. 3
Fig. 3

Integrated CARS response as a function of probe delay for a 1-bar, 1:1 mixture of O2 and CO2. (a) Measurements at 300, 500, and 700 K with selective excitation of O2 in the mixture (solid lines) and in the pure gas (filled circles). (b) Measurements in the same temperature regime with selective excitation of CO2.

Fig. 4
Fig. 4

(a) CARS response as a function of pump/Stokes delay for a 2:2:1 mixture of N2, CO, and C2H2 at 10 bar. (b)–(d) Integrated CARS response as a function of probe delay for each species in the mixture (red) and in the pure gas (black). (e) CARS response at position (e) in Fig. 4(a), showing the beating between the ν1 mode of CO and the ν2 mode of C2H2.

Metrics