Abstract

We demonstrate a marked performance improvement in a 512 QAM transmission by employing frequency-domain equalization (FDE) instead of an FIR filter. FDE enables us to compensate for distortions due to hardware imperfections in the transmitter with higher precision, which successfully reduced the power penalty by 4 dB in a 54 Gbit/s (3 Gsymbol/s)-160 km transmission. FDE also allows the transmission distance to be extended up to 240 km.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Nakazawa, K. Kikuchi, and T. Miyazaki, High Spectral Density Optical Communication Technologies (Springer 2010).
  2. E. Ip and J. M. Kahn, “Digital equalization of chromatic dispersion and polarization mode dispersion,” J. Lightwave Technol.25(8), 2033–2043 (2007).
    [CrossRef]
  3. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express16(2), 804–817 (2008).
    [CrossRef] [PubMed]
  4. M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256-QAM (64 Gb/s) coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,” IEEE Photon. Technol. Lett.22(3), 185–187 (2010).
    [CrossRef]
  5. S. Okamoto, K. Toyoda, T. Omiya, K. Kasai, M. Yoshida, and M. Nakazawa, “512 QAM (54 Gbit/s) coherent optical transmission over 150 km with an optical bandwidth of 4.1 GHz,” ECOC’10, PD2.3.
  6. R. Schmogrow, D. Hillerkuss, S. Wolf, B. Bäuerle, M. Winter, P. Kleinow, B. Nebendahl, T. Dippon, P. C. Schindler, C. Koos, W. Freude, and J. Leuthold, “512QAM Nyquist sinc-pulse transmission at 54 Gbit/s in an optical bandwidth of 3 GHz,” Opt. Express20(6), 6439–6447 (2012).
    [CrossRef] [PubMed]
  7. D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag.40(4), 58–66 (2002).
    [CrossRef]
  8. K. Ishihara, T. Kobayashi, R. Kudo, Y. Takatori, A. Sano, E. Yamada, H. Masuda, and Y. Miyamoto, “Coherent optical transmission with frequency-domain equalization,” ECOC’08, We.2.E.3.
  9. A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1-Tb/s (432 x 171-Gb/s) C- and extended L-Band transmission over 240 Km using PDM-16-QAM modulation and digital coherent detection,” OFC’10, PDPB7.
  10. J. C. Geyer, C. R. S. Fluger, T. Duthel, C. Schulien, and B. Schumauss, “Efficient frequency domain chromatic dispersion compensation in a coherent polmux QPSK-receiver,” OFC’10, OWV5.
  11. C. Paré, A. Villeneuve, P.-A. Bélanger, and N. J. Doran, “Compensating for dispersion and the nonlinear Kerr effect without phase conjugation,” Opt. Lett.21(7), 459–461 (1996).
    [CrossRef] [PubMed]
  12. R. L. Jungerman and C. A. Flory, “Low-frequency acoustic anomalies in lithium niobate Mach-Zehnder interferometers,” Appl. Phys. Lett.53(16), 1477–1479 (1988).
    [CrossRef]

2012

2010

M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256-QAM (64 Gb/s) coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,” IEEE Photon. Technol. Lett.22(3), 185–187 (2010).
[CrossRef]

2008

2007

2002

D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag.40(4), 58–66 (2002).
[CrossRef]

1996

1988

R. L. Jungerman and C. A. Flory, “Low-frequency acoustic anomalies in lithium niobate Mach-Zehnder interferometers,” Appl. Phys. Lett.53(16), 1477–1479 (1988).
[CrossRef]

Ariyavisitakul, S. L.

D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag.40(4), 58–66 (2002).
[CrossRef]

Bäuerle, B.

Bélanger, P.-A.

Benyamin-Seeyar, A.

D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag.40(4), 58–66 (2002).
[CrossRef]

Dippon, T.

Doran, N. J.

Eidson, B.

D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag.40(4), 58–66 (2002).
[CrossRef]

Falconer, D.

D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag.40(4), 58–66 (2002).
[CrossRef]

Flory, C. A.

R. L. Jungerman and C. A. Flory, “Low-frequency acoustic anomalies in lithium niobate Mach-Zehnder interferometers,” Appl. Phys. Lett.53(16), 1477–1479 (1988).
[CrossRef]

Freude, W.

Hillerkuss, D.

Ip, E.

Jungerman, R. L.

R. L. Jungerman and C. A. Flory, “Low-frequency acoustic anomalies in lithium niobate Mach-Zehnder interferometers,” Appl. Phys. Lett.53(16), 1477–1479 (1988).
[CrossRef]

Kahn, J. M.

Kasai, K.

M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256-QAM (64 Gb/s) coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,” IEEE Photon. Technol. Lett.22(3), 185–187 (2010).
[CrossRef]

Kleinow, P.

Koos, C.

Leuthold, J.

Nakazawa, M.

M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256-QAM (64 Gb/s) coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,” IEEE Photon. Technol. Lett.22(3), 185–187 (2010).
[CrossRef]

Nebendahl, B.

Okamoto, S.

M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256-QAM (64 Gb/s) coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,” IEEE Photon. Technol. Lett.22(3), 185–187 (2010).
[CrossRef]

Omiya, T.

M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256-QAM (64 Gb/s) coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,” IEEE Photon. Technol. Lett.22(3), 185–187 (2010).
[CrossRef]

Paré, C.

Savory, S. J.

Schindler, P. C.

Schmogrow, R.

Villeneuve, A.

Winter, M.

Wolf, S.

Yoshida, M.

M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256-QAM (64 Gb/s) coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,” IEEE Photon. Technol. Lett.22(3), 185–187 (2010).
[CrossRef]

Appl. Phys. Lett.

R. L. Jungerman and C. A. Flory, “Low-frequency acoustic anomalies in lithium niobate Mach-Zehnder interferometers,” Appl. Phys. Lett.53(16), 1477–1479 (1988).
[CrossRef]

IEEE Commun. Mag.

D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag.40(4), 58–66 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256-QAM (64 Gb/s) coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,” IEEE Photon. Technol. Lett.22(3), 185–187 (2010).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Other

M. Nakazawa, K. Kikuchi, and T. Miyazaki, High Spectral Density Optical Communication Technologies (Springer 2010).

S. Okamoto, K. Toyoda, T. Omiya, K. Kasai, M. Yoshida, and M. Nakazawa, “512 QAM (54 Gbit/s) coherent optical transmission over 150 km with an optical bandwidth of 4.1 GHz,” ECOC’10, PD2.3.

K. Ishihara, T. Kobayashi, R. Kudo, Y. Takatori, A. Sano, E. Yamada, H. Masuda, and Y. Miyamoto, “Coherent optical transmission with frequency-domain equalization,” ECOC’08, We.2.E.3.

A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, and H. Ishii, “69.1-Tb/s (432 x 171-Gb/s) C- and extended L-Band transmission over 240 Km using PDM-16-QAM modulation and digital coherent detection,” OFC’10, PDPB7.

J. C. Geyer, C. R. S. Fluger, T. Duthel, C. Schulien, and B. Schumauss, “Efficient frequency domain chromatic dispersion compensation in a coherent polmux QPSK-receiver,” OFC’10, OWV5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Dependence of the EVM of a 4 Gsymbol/s, 256 QAM signal on the number of FIR taps (a) and the FFT size (b) in an equalizer with a digital FIR filter and FDE, respectively, and the dependence on the frequency resolution of each equalizer (c).

Fig. 2
Fig. 2

Comparison of the computation complexity of time-domain equalization with an FIR filter and FDE. The number of real-valued multiplications per symbol is plotted as a function of the number of FIR taps (a), FFT size in FDE (b), and the frequency solution of each equalizer (c).

Fig. 3
Fig. 3

Experimental setup for polarization-multiplexed 512 QAM, 54 Gbit/s (3 Gsymbol/s) transmission.

Fig. 4
Fig. 4

Optimization of launched power in a polarization-multiplexed 512 QAM, 54 Gbit/s-160 km transmission. Squares and diamonds correspond to X and Y polarizations.

Fig. 5
Fig. 5

Constellation diagrams of 512 QAM signal (a) before and (b) after transmission. Left and right figures correspond to equalized QAM data with FIR and FDE, respectively.

Fig. 6
Fig. 6

BER characteristics for polarization-multiplexed 3 Gsymbol/s, 512 QAM (54 Gbit/s) transmission over 160 km.

Fig. 7
Fig. 7

Relationship between transmission distance and BER in 54 Gbit/s, 512 QAM transmission with FDE and FIR.

Metrics