Abstract

Conventional monolithically integrated 90° downconverter suffers from hardware-induced non-linear constellation distortion, which gets worse far away from the central wavelength or when fabrication errors are taken into account. To overcome these problems, a 120° monolithically integrated downconverter with full compensation of hardware non-idealities has been proposed. It is numerically demonstrated that, in a realistic scenario exposed to the combined effects of fabrication tolerances and limited ADC resolution, this approach exhibits a significantly better signal dynamic range and a remarkable improvement of fabrication yield.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Optical Internetworking Forum (OIF), “100G ultra long haul DWDM framework document,” document OIF-FD-100G-DWDM-01.0 (June 2009), http://www.oiforum.com/public/impagreements.html .
  2. M. Nakazawa, “Ultrafast and high-spectral-density optical communications systems,” in Conference on Lasers and Electro-Optics (CLEO) (2011), OSA Technical Digest (CD), paper CThGG3.
  3. Mirthe Project, “Monolithic InP-based dual polarization QPSK integrated receiver and transmitter for coherent 100–400Gb Ethernet,” http://www.ist-mirthe.eu/ .
  4. R. Kunkel, H. G. Bach, D. Hoffmann, C. Weinert, I. Molina-Fernández, and R. Halir, “First monolithic InP-based 90 degrees-hybrid OEIC comprising balanced detectors for 100GE coherent frontends,” in International Conference on Indium Phosphide & Related Materials (IPRM) (2009), paper TuB2.2, pp. 167–170.
  5. A. Moscoso-Mártir, I. Molina-Fernández, and A. Ortega-Monux, “Signal constellation distortion and BER degradation due to hardware impairments in six-port receivers with analog I/Q generation,” Prog. Electromagn. Res.121, 225–247 (2011).
    [CrossRef]
  6. I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett.20(20), 1733–1735 (2008).
    [CrossRef]
  7. P. Pérez-Lara, I. Molina-Fernández, J. G. Wanguemert-Pérez, and A. Rueda-Pérez, “Broadband five-port direct receiver based on low-pass and high-pass phase shifters,” IEEE Trans. Microw. Theory Tech.58(4), 849–853 (2010).
    [CrossRef]
  8. T. Pfau, S. Hoffmann, O. Adamczyk, R. Peveling, V. Herath, M. Porrmann, and R. Noé, “Coherent optical communication: towards realtime systems at 40 Gbit/s and beyond,” Opt. Express16(2), 866–872 (2008).
    [CrossRef] [PubMed]
  9. C. Xie, P. J. Winzer, G. Raybon, A. H. Gnauck, B. Zhu, T. Geisler, and B. Edvold, “Colorless coherent receiver using 3x3 coupler hybrids and single-ended detection,” Opt. Express20(2), 1164–1171 (2012).
    [CrossRef] [PubMed]
  10. P. J. Reyes-Iglesias, I. Molina-Fernández, A. Moscoso-Mártir, and A. Ortega-Moñux, “High-performance monolithically integrated 120° downconverter with relaxed hardware constraints,” Opt. Express20(5), 5725–5741 (2012).
    [CrossRef] [PubMed]
  11. V.E. Houtsma, N. G. Weimann, T. Hu, R. Kopf, A. Tate, J. Frackoviak, R. Reyes, Y. K. Chen, L. Zhang, C. R. Doerr, and D. T. Neilson, “Manufacturable monolithically integrated InP dual-port coherent receiver for 100G PDM-QPSK applications,” Tech. Digest Optical Fiber Comm. (OFC) (2011), paper OML2.
  12. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol.12(6), 1004–1009 (1994).
    [CrossRef]
  13. F. M. Ghannouchi and R. G. Bosisio, “An alternative explicit six-port matrix calibration formalism using five standards,” IEEE Trans. Microw. Theory Tech.36(3), 494–498 (1988).
    [CrossRef]
  14. T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol.27(8), 989–999 (2009).
    [CrossRef]

2012

2011

A. Moscoso-Mártir, I. Molina-Fernández, and A. Ortega-Monux, “Signal constellation distortion and BER degradation due to hardware impairments in six-port receivers with analog I/Q generation,” Prog. Electromagn. Res.121, 225–247 (2011).
[CrossRef]

2010

P. Pérez-Lara, I. Molina-Fernández, J. G. Wanguemert-Pérez, and A. Rueda-Pérez, “Broadband five-port direct receiver based on low-pass and high-pass phase shifters,” IEEE Trans. Microw. Theory Tech.58(4), 849–853 (2010).
[CrossRef]

2009

2008

T. Pfau, S. Hoffmann, O. Adamczyk, R. Peveling, V. Herath, M. Porrmann, and R. Noé, “Coherent optical communication: towards realtime systems at 40 Gbit/s and beyond,” Opt. Express16(2), 866–872 (2008).
[CrossRef] [PubMed]

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett.20(20), 1733–1735 (2008).
[CrossRef]

1994

A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol.12(6), 1004–1009 (1994).
[CrossRef]

1988

F. M. Ghannouchi and R. G. Bosisio, “An alternative explicit six-port matrix calibration formalism using five standards,” IEEE Trans. Microw. Theory Tech.36(3), 494–498 (1988).
[CrossRef]

Adamczyk, O.

Bachmann, M.

A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol.12(6), 1004–1009 (1994).
[CrossRef]

Besse, A.

A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol.12(6), 1004–1009 (1994).
[CrossRef]

Bosisio, R. G.

F. M. Ghannouchi and R. G. Bosisio, “An alternative explicit six-port matrix calibration formalism using five standards,” IEEE Trans. Microw. Theory Tech.36(3), 494–498 (1988).
[CrossRef]

Edvold, B.

Fatadin, I.

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett.20(20), 1733–1735 (2008).
[CrossRef]

Geisler, T.

Ghannouchi, F. M.

F. M. Ghannouchi and R. G. Bosisio, “An alternative explicit six-port matrix calibration formalism using five standards,” IEEE Trans. Microw. Theory Tech.36(3), 494–498 (1988).
[CrossRef]

Gnauck, A. H.

Herath, V.

Hoffmann, S.

Ives, D.

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett.20(20), 1733–1735 (2008).
[CrossRef]

Melchior, H.

A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol.12(6), 1004–1009 (1994).
[CrossRef]

Molina-Fernández, I.

P. J. Reyes-Iglesias, I. Molina-Fernández, A. Moscoso-Mártir, and A. Ortega-Moñux, “High-performance monolithically integrated 120° downconverter with relaxed hardware constraints,” Opt. Express20(5), 5725–5741 (2012).
[CrossRef] [PubMed]

A. Moscoso-Mártir, I. Molina-Fernández, and A. Ortega-Monux, “Signal constellation distortion and BER degradation due to hardware impairments in six-port receivers with analog I/Q generation,” Prog. Electromagn. Res.121, 225–247 (2011).
[CrossRef]

P. Pérez-Lara, I. Molina-Fernández, J. G. Wanguemert-Pérez, and A. Rueda-Pérez, “Broadband five-port direct receiver based on low-pass and high-pass phase shifters,” IEEE Trans. Microw. Theory Tech.58(4), 849–853 (2010).
[CrossRef]

Moscoso-Mártir, A.

P. J. Reyes-Iglesias, I. Molina-Fernández, A. Moscoso-Mártir, and A. Ortega-Moñux, “High-performance monolithically integrated 120° downconverter with relaxed hardware constraints,” Opt. Express20(5), 5725–5741 (2012).
[CrossRef] [PubMed]

A. Moscoso-Mártir, I. Molina-Fernández, and A. Ortega-Monux, “Signal constellation distortion and BER degradation due to hardware impairments in six-port receivers with analog I/Q generation,” Prog. Electromagn. Res.121, 225–247 (2011).
[CrossRef]

Noé, R.

Ortega-Monux, A.

A. Moscoso-Mártir, I. Molina-Fernández, and A. Ortega-Monux, “Signal constellation distortion and BER degradation due to hardware impairments in six-port receivers with analog I/Q generation,” Prog. Electromagn. Res.121, 225–247 (2011).
[CrossRef]

Ortega-Moñux, A.

Pérez-Lara, P.

P. Pérez-Lara, I. Molina-Fernández, J. G. Wanguemert-Pérez, and A. Rueda-Pérez, “Broadband five-port direct receiver based on low-pass and high-pass phase shifters,” IEEE Trans. Microw. Theory Tech.58(4), 849–853 (2010).
[CrossRef]

Peveling, R.

Pfau, T.

Porrmann, M.

Raybon, G.

Reyes-Iglesias, P. J.

Rueda-Pérez, A.

P. Pérez-Lara, I. Molina-Fernández, J. G. Wanguemert-Pérez, and A. Rueda-Pérez, “Broadband five-port direct receiver based on low-pass and high-pass phase shifters,” IEEE Trans. Microw. Theory Tech.58(4), 849–853 (2010).
[CrossRef]

Savory, S. J.

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett.20(20), 1733–1735 (2008).
[CrossRef]

Smit, M. K.

A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol.12(6), 1004–1009 (1994).
[CrossRef]

Soldano, L. B.

A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol.12(6), 1004–1009 (1994).
[CrossRef]

Wanguemert-Pérez, J. G.

P. Pérez-Lara, I. Molina-Fernández, J. G. Wanguemert-Pérez, and A. Rueda-Pérez, “Broadband five-port direct receiver based on low-pass and high-pass phase shifters,” IEEE Trans. Microw. Theory Tech.58(4), 849–853 (2010).
[CrossRef]

Winzer, P. J.

Xie, C.

Zhu, B.

IEEE Photon. Technol. Lett.

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett.20(20), 1733–1735 (2008).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

P. Pérez-Lara, I. Molina-Fernández, J. G. Wanguemert-Pérez, and A. Rueda-Pérez, “Broadband five-port direct receiver based on low-pass and high-pass phase shifters,” IEEE Trans. Microw. Theory Tech.58(4), 849–853 (2010).
[CrossRef]

F. M. Ghannouchi and R. G. Bosisio, “An alternative explicit six-port matrix calibration formalism using five standards,” IEEE Trans. Microw. Theory Tech.36(3), 494–498 (1988).
[CrossRef]

J. Lightwave Technol.

T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightwave Technol.27(8), 989–999 (2009).
[CrossRef]

A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, and M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol.12(6), 1004–1009 (1994).
[CrossRef]

Opt. Express

Prog. Electromagn. Res.

A. Moscoso-Mártir, I. Molina-Fernández, and A. Ortega-Monux, “Signal constellation distortion and BER degradation due to hardware impairments in six-port receivers with analog I/Q generation,” Prog. Electromagn. Res.121, 225–247 (2011).
[CrossRef]

Other

V.E. Houtsma, N. G. Weimann, T. Hu, R. Kopf, A. Tate, J. Frackoviak, R. Reyes, Y. K. Chen, L. Zhang, C. R. Doerr, and D. T. Neilson, “Manufacturable monolithically integrated InP dual-port coherent receiver for 100G PDM-QPSK applications,” Tech. Digest Optical Fiber Comm. (OFC) (2011), paper OML2.

Optical Internetworking Forum (OIF), “100G ultra long haul DWDM framework document,” document OIF-FD-100G-DWDM-01.0 (June 2009), http://www.oiforum.com/public/impagreements.html .

M. Nakazawa, “Ultrafast and high-spectral-density optical communications systems,” in Conference on Lasers and Electro-Optics (CLEO) (2011), OSA Technical Digest (CD), paper CThGG3.

Mirthe Project, “Monolithic InP-based dual polarization QPSK integrated receiver and transmitter for coherent 100–400Gb Ethernet,” http://www.ist-mirthe.eu/ .

R. Kunkel, H. G. Bach, D. Hoffmann, C. Weinert, I. Molina-Fernández, and R. Halir, “First monolithic InP-based 90 degrees-hybrid OEIC comprising balanced detectors for 100GE coherent frontends,” in International Conference on Indium Phosphide & Related Materials (IPRM) (2009), paper TuB2.2, pp. 167–170.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) 90° hybrid and (b) 120° downconverters

Fig. 2
Fig. 2

OSNR penalty (for a BER = 10−4) in the C-band versus signal power in a 90° hybrid (red dashed line) and 120° coupler (black solid line) downconverters as a function of the considered case of fabrication tolerance (Case I/II/III): (a) 64-QAM (b) 256-QAM.

Fig. 3
Fig. 3

OSNR penalty (for a BER = 10−4) in the C-band versus signal power in a 90° hybrid (red dashed line) and 120° coupler (black solid line) downconverters as a function of the ADC resolution: (a) Case III under 64-QAM and (b) Case II under 256-QAM.

Fig. 4
Fig. 4

OSNR penalty (for a BER = 10−4) in C-band versus signal power in a 120° downconverter as a function of ADC resolution under 256-QAM in a high fabrication error scenario (Case III).

Tables (1)

Tables Icon

Table 1 Maximum amplitude and phase imbalance in the C-band for 90° hybrid and 120° coupler receiver

Metrics