Abstract

A tunable, coherence-free, high-resolution microwave photonic bandpass filter, which is compatible to be inserted in a conventional fiber optic link, is presented. It is based on using two cross gain modulation based wavelength converters in a recursive loop. The double cross gain modulation technique solves the semiconductor optical amplifier facet reflection problem in the conventional recursive structure; hence the new microwave photonic signal processor has no coherent interference and no phase-induced intensity noise. It allows arbitrary narrow-linewidth telecommunication-type lasers to be used while enabling stable filter operation to be realized. The filter passband frequency can be tuned by using a wavelength tunable laser and a wavelength dependent time delay component. Experimental results demonstrate robust high-resolution bandpass filter operation with narrow-linewidth sources, no phase-induced intensity noise and a high signal-to-noise ratio performance. Tunable coherence-free operation of the high-resolution bandpass filter is also demonstrated.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech.54(2), 832–846 (2006).
    [CrossRef]
  2. B. Moslehi and J. W. Goodman, “Novel amplified fiber-optic recirculating delay line processor,” J. Lightwave Technol.10(8), 1142–1147 (1992).
    [CrossRef]
  3. D. B. Hunter and R. A. Minasian, “Tunable microwave fiber-optic bandpass filters,” IEEE Photon. Technol. Lett.11(7), 874–876 (1999).
    [CrossRef]
  4. M. Y. Frankel and R. D. Esman, “Fiber-optic tunable microwave transversal filter,” IEEE Photon. Technol. Lett.7(2), 191–193 (1995).
    [CrossRef]
  5. G. Yu, W. Zhang, and J. A. R. Williams, “High-performance microwave transversal filter using fiber Bragg grating arrays,” IEEE Photon. Technol. Lett.12(9), 1183–1185 (2000).
    [CrossRef]
  6. V. Polo, B. Vidal, J. L. Corral, and J. Marti, “Novel tunable photonic microwave filter based on laser arrays and N × N AWG-based delay lines,” IEEE Photon. Technol. Lett.15(4), 584–586 (2003).
    [CrossRef]
  7. D. Pastor, J. Capmany, S. Sales, P. Munoz, and B. Ortega, “Reconfigurable fiber-optic-based RF filters using current injection in multimode lasers,” IEEE Photon. Technol. Lett.13(11), 1224–1226 (2001).
    [CrossRef]
  8. G. D. Kim and S. S. Lee, “Photonic microwave channel selective filter incorporating a thermooptic switch based on tunable ring resonators,” IEEE Photon. Technol. Lett.19(13), 1008–1010 (2007).
    [CrossRef]
  9. Y. M. Chang, H. Chung, and J. H. Lee, “High Q microwave filter using incoherent, continuous-wave supercontinuum and dispersion-profiled fiber,” IEEE Photon. Technol. Lett.19(24), 2042–2044 (2007).
    [CrossRef]
  10. E. H. W. Chan and R. A. Minasian, “Photonic notch filter without optical coherence limitations,” J. Lightwave Technol.22(7), 1811–1817 (2004).
    [CrossRef]
  11. E. H. W. Chan and R. A. Minasian, “Widely tuneable, high-FSR, coherence-free microwave photonic notch filter,” J. Lightwave Technol.26(8), 922–927 (2008).
    [CrossRef]
  12. E. H. W. Chan and R. A. Minasian, “Coherence-free equivalent negative tap microwave photonic notch filter based on delayed self-wavelength conversion,” IEEE Trans. Microw. Theory Tech.58(11), 3199–3205 (2010).
    [CrossRef]
  13. C. Pulikkaseril, E. H. W. Chan, and R. A. Minasian, “Coherence-free microwave photonic bandpass filter using a frequency-shifting recirculating delay line,” J. Lightwave Technol.28(3), 262–269 (2010).
    [CrossRef]
  14. W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett.23(23), 1775–1777 (2011).
    [CrossRef]
  15. N. You and R. A. Minasian, “Novel photonic recursive signal processor with reduced phase-induced intensity noise,” J. Lightwave Technol.24(7), 2558–2563 (2006).
    [CrossRef]
  16. B. Moslehi, “Analysis of optical phase noise in fiber-optic systems employing a laser source with arbitrary coherence time,” J. Lightwave Technol.4(9), 1334–1351 (1986).
    [CrossRef]
  17. N. A. Olsson and J. P. Van Der Ziel, “Characteristics of a semiconductor laser pumped Brillouin amplifier with electronically controlled bandwidth,” J. Lightwave Technol.5(1), 147–153 (1987).
    [CrossRef]
  18. M. Asghari, I. H. White, and R. V. Penty, “Wavelength conversion using semiconductor optical amplifiers,” J. Lightwave Technol.15(7), 1181–1190 (1997).
    [CrossRef]
  19. T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol.14(6), 942–954 (1996).
    [CrossRef]
  20. B. Vidal, V. Polo, J. L. Corral, and J. Marti, “Harmonic suppressed photonic microwave filter,” J. Lightwave Technol.21(12), 3150–3154 (2003).
    [CrossRef]
  21. C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron.3(5), 1168–1180 (1997).
    [CrossRef]
  22. T. Zaman, X. Guo, and R. J. Ram, “Integrated optical circulator in InP,” Conference on Lasers & Electro-Optics (CLEO) 1321–1323 (2005).
  23. M. Vanwolleghem, W. V. Parys, D. V. Thourhout, R. Baets, F. Lelarge, O. G. Lafaye, B. Thedrez, R. W. Speetjens, and J. D. Boeck, “First experimental demonstration of a monolithically integrated InP-based waveguide isolator,” Optical Fiber Communication Conference (OFC) 401–403 (2004).
  24. N. Calabretta, R. Stabile, A. Albores-Mejia, K. A. Williams, and H. J. S. Dorren, “InP monolithically integrated wavelength selector based on periodic optical filter and optical switch chain,” ECOC Technical Digest 1–3 (2011).

2011

W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett.23(23), 1775–1777 (2011).
[CrossRef]

2010

E. H. W. Chan and R. A. Minasian, “Coherence-free equivalent negative tap microwave photonic notch filter based on delayed self-wavelength conversion,” IEEE Trans. Microw. Theory Tech.58(11), 3199–3205 (2010).
[CrossRef]

C. Pulikkaseril, E. H. W. Chan, and R. A. Minasian, “Coherence-free microwave photonic bandpass filter using a frequency-shifting recirculating delay line,” J. Lightwave Technol.28(3), 262–269 (2010).
[CrossRef]

2008

2007

G. D. Kim and S. S. Lee, “Photonic microwave channel selective filter incorporating a thermooptic switch based on tunable ring resonators,” IEEE Photon. Technol. Lett.19(13), 1008–1010 (2007).
[CrossRef]

Y. M. Chang, H. Chung, and J. H. Lee, “High Q microwave filter using incoherent, continuous-wave supercontinuum and dispersion-profiled fiber,” IEEE Photon. Technol. Lett.19(24), 2042–2044 (2007).
[CrossRef]

2006

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech.54(2), 832–846 (2006).
[CrossRef]

N. You and R. A. Minasian, “Novel photonic recursive signal processor with reduced phase-induced intensity noise,” J. Lightwave Technol.24(7), 2558–2563 (2006).
[CrossRef]

2004

2003

V. Polo, B. Vidal, J. L. Corral, and J. Marti, “Novel tunable photonic microwave filter based on laser arrays and N × N AWG-based delay lines,” IEEE Photon. Technol. Lett.15(4), 584–586 (2003).
[CrossRef]

B. Vidal, V. Polo, J. L. Corral, and J. Marti, “Harmonic suppressed photonic microwave filter,” J. Lightwave Technol.21(12), 3150–3154 (2003).
[CrossRef]

2001

D. Pastor, J. Capmany, S. Sales, P. Munoz, and B. Ortega, “Reconfigurable fiber-optic-based RF filters using current injection in multimode lasers,” IEEE Photon. Technol. Lett.13(11), 1224–1226 (2001).
[CrossRef]

2000

G. Yu, W. Zhang, and J. A. R. Williams, “High-performance microwave transversal filter using fiber Bragg grating arrays,” IEEE Photon. Technol. Lett.12(9), 1183–1185 (2000).
[CrossRef]

1999

D. B. Hunter and R. A. Minasian, “Tunable microwave fiber-optic bandpass filters,” IEEE Photon. Technol. Lett.11(7), 874–876 (1999).
[CrossRef]

1997

M. Asghari, I. H. White, and R. V. Penty, “Wavelength conversion using semiconductor optical amplifiers,” J. Lightwave Technol.15(7), 1181–1190 (1997).
[CrossRef]

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron.3(5), 1168–1180 (1997).
[CrossRef]

1996

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol.14(6), 942–954 (1996).
[CrossRef]

1995

M. Y. Frankel and R. D. Esman, “Fiber-optic tunable microwave transversal filter,” IEEE Photon. Technol. Lett.7(2), 191–193 (1995).
[CrossRef]

1992

B. Moslehi and J. W. Goodman, “Novel amplified fiber-optic recirculating delay line processor,” J. Lightwave Technol.10(8), 1142–1147 (1992).
[CrossRef]

1987

N. A. Olsson and J. P. Van Der Ziel, “Characteristics of a semiconductor laser pumped Brillouin amplifier with electronically controlled bandwidth,” J. Lightwave Technol.5(1), 147–153 (1987).
[CrossRef]

1986

B. Moslehi, “Analysis of optical phase noise in fiber-optic systems employing a laser source with arbitrary coherence time,” J. Lightwave Technol.4(9), 1334–1351 (1986).
[CrossRef]

Asghari, M.

M. Asghari, I. H. White, and R. V. Penty, “Wavelength conversion using semiconductor optical amplifiers,” J. Lightwave Technol.15(7), 1181–1190 (1997).
[CrossRef]

Capmany, J.

D. Pastor, J. Capmany, S. Sales, P. Munoz, and B. Ortega, “Reconfigurable fiber-optic-based RF filters using current injection in multimode lasers,” IEEE Photon. Technol. Lett.13(11), 1224–1226 (2001).
[CrossRef]

Chan, E. H. W.

Chang, Y. M.

Y. M. Chang, H. Chung, and J. H. Lee, “High Q microwave filter using incoherent, continuous-wave supercontinuum and dispersion-profiled fiber,” IEEE Photon. Technol. Lett.19(24), 2042–2044 (2007).
[CrossRef]

Chung, H.

Y. M. Chang, H. Chung, and J. H. Lee, “High Q microwave filter using incoherent, continuous-wave supercontinuum and dispersion-profiled fiber,” IEEE Photon. Technol. Lett.19(24), 2042–2044 (2007).
[CrossRef]

Corral, J. L.

V. Polo, B. Vidal, J. L. Corral, and J. Marti, “Novel tunable photonic microwave filter based on laser arrays and N × N AWG-based delay lines,” IEEE Photon. Technol. Lett.15(4), 584–586 (2003).
[CrossRef]

B. Vidal, V. Polo, J. L. Corral, and J. Marti, “Harmonic suppressed photonic microwave filter,” J. Lightwave Technol.21(12), 3150–3154 (2003).
[CrossRef]

Danielsen, S. L.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron.3(5), 1168–1180 (1997).
[CrossRef]

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol.14(6), 942–954 (1996).
[CrossRef]

Daub, K.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron.3(5), 1168–1180 (1997).
[CrossRef]

Doussiere, P.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron.3(5), 1168–1180 (1997).
[CrossRef]

Durhuus, T.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol.14(6), 942–954 (1996).
[CrossRef]

Esman, R. D.

M. Y. Frankel and R. D. Esman, “Fiber-optic tunable microwave transversal filter,” IEEE Photon. Technol. Lett.7(2), 191–193 (1995).
[CrossRef]

Frankel, M. Y.

M. Y. Frankel and R. D. Esman, “Fiber-optic tunable microwave transversal filter,” IEEE Photon. Technol. Lett.7(2), 191–193 (1995).
[CrossRef]

Goodman, J. W.

B. Moslehi and J. W. Goodman, “Novel amplified fiber-optic recirculating delay line processor,” J. Lightwave Technol.10(8), 1142–1147 (1992).
[CrossRef]

Hansen, P. B.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron.3(5), 1168–1180 (1997).
[CrossRef]

Hunter, D. B.

D. B. Hunter and R. A. Minasian, “Tunable microwave fiber-optic bandpass filters,” IEEE Photon. Technol. Lett.11(7), 874–876 (1999).
[CrossRef]

Idler, W.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron.3(5), 1168–1180 (1997).
[CrossRef]

Joergensen, C.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron.3(5), 1168–1180 (1997).
[CrossRef]

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol.14(6), 942–954 (1996).
[CrossRef]

Kim, G. D.

G. D. Kim and S. S. Lee, “Photonic microwave channel selective filter incorporating a thermooptic switch based on tunable ring resonators,” IEEE Photon. Technol. Lett.19(13), 1008–1010 (2007).
[CrossRef]

Kloch, A.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron.3(5), 1168–1180 (1997).
[CrossRef]

Lach, E.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron.3(5), 1168–1180 (1997).
[CrossRef]

Laube, G.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron.3(5), 1168–1180 (1997).
[CrossRef]

Lee, J. H.

Y. M. Chang, H. Chung, and J. H. Lee, “High Q microwave filter using incoherent, continuous-wave supercontinuum and dispersion-profiled fiber,” IEEE Photon. Technol. Lett.19(24), 2042–2044 (2007).
[CrossRef]

Lee, S. S.

G. D. Kim and S. S. Lee, “Photonic microwave channel selective filter incorporating a thermooptic switch based on tunable ring resonators,” IEEE Photon. Technol. Lett.19(13), 1008–1010 (2007).
[CrossRef]

Marti, J.

V. Polo, B. Vidal, J. L. Corral, and J. Marti, “Novel tunable photonic microwave filter based on laser arrays and N × N AWG-based delay lines,” IEEE Photon. Technol. Lett.15(4), 584–586 (2003).
[CrossRef]

B. Vidal, V. Polo, J. L. Corral, and J. Marti, “Harmonic suppressed photonic microwave filter,” J. Lightwave Technol.21(12), 3150–3154 (2003).
[CrossRef]

Mikkelsen, B.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron.3(5), 1168–1180 (1997).
[CrossRef]

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol.14(6), 942–954 (1996).
[CrossRef]

Minasian, R. A.

W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett.23(23), 1775–1777 (2011).
[CrossRef]

C. Pulikkaseril, E. H. W. Chan, and R. A. Minasian, “Coherence-free microwave photonic bandpass filter using a frequency-shifting recirculating delay line,” J. Lightwave Technol.28(3), 262–269 (2010).
[CrossRef]

E. H. W. Chan and R. A. Minasian, “Coherence-free equivalent negative tap microwave photonic notch filter based on delayed self-wavelength conversion,” IEEE Trans. Microw. Theory Tech.58(11), 3199–3205 (2010).
[CrossRef]

E. H. W. Chan and R. A. Minasian, “Widely tuneable, high-FSR, coherence-free microwave photonic notch filter,” J. Lightwave Technol.26(8), 922–927 (2008).
[CrossRef]

N. You and R. A. Minasian, “Novel photonic recursive signal processor with reduced phase-induced intensity noise,” J. Lightwave Technol.24(7), 2558–2563 (2006).
[CrossRef]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech.54(2), 832–846 (2006).
[CrossRef]

E. H. W. Chan and R. A. Minasian, “Photonic notch filter without optical coherence limitations,” J. Lightwave Technol.22(7), 1811–1817 (2004).
[CrossRef]

D. B. Hunter and R. A. Minasian, “Tunable microwave fiber-optic bandpass filters,” IEEE Photon. Technol. Lett.11(7), 874–876 (1999).
[CrossRef]

Moslehi, B.

B. Moslehi and J. W. Goodman, “Novel amplified fiber-optic recirculating delay line processor,” J. Lightwave Technol.10(8), 1142–1147 (1992).
[CrossRef]

B. Moslehi, “Analysis of optical phase noise in fiber-optic systems employing a laser source with arbitrary coherence time,” J. Lightwave Technol.4(9), 1334–1351 (1986).
[CrossRef]

Munoz, P.

D. Pastor, J. Capmany, S. Sales, P. Munoz, and B. Ortega, “Reconfigurable fiber-optic-based RF filters using current injection in multimode lasers,” IEEE Photon. Technol. Lett.13(11), 1224–1226 (2001).
[CrossRef]

Olsson, N. A.

N. A. Olsson and J. P. Van Der Ziel, “Characteristics of a semiconductor laser pumped Brillouin amplifier with electronically controlled bandwidth,” J. Lightwave Technol.5(1), 147–153 (1987).
[CrossRef]

Ortega, B.

D. Pastor, J. Capmany, S. Sales, P. Munoz, and B. Ortega, “Reconfigurable fiber-optic-based RF filters using current injection in multimode lasers,” IEEE Photon. Technol. Lett.13(11), 1224–1226 (2001).
[CrossRef]

Pastor, D.

D. Pastor, J. Capmany, S. Sales, P. Munoz, and B. Ortega, “Reconfigurable fiber-optic-based RF filters using current injection in multimode lasers,” IEEE Photon. Technol. Lett.13(11), 1224–1226 (2001).
[CrossRef]

Penty, R. V.

M. Asghari, I. H. White, and R. V. Penty, “Wavelength conversion using semiconductor optical amplifiers,” J. Lightwave Technol.15(7), 1181–1190 (1997).
[CrossRef]

Polo, V.

B. Vidal, V. Polo, J. L. Corral, and J. Marti, “Harmonic suppressed photonic microwave filter,” J. Lightwave Technol.21(12), 3150–3154 (2003).
[CrossRef]

V. Polo, B. Vidal, J. L. Corral, and J. Marti, “Novel tunable photonic microwave filter based on laser arrays and N × N AWG-based delay lines,” IEEE Photon. Technol. Lett.15(4), 584–586 (2003).
[CrossRef]

Pommerau, F.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron.3(5), 1168–1180 (1997).
[CrossRef]

Poulsen, H. N.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron.3(5), 1168–1180 (1997).
[CrossRef]

Pulikkaseril, C.

Sales, S.

D. Pastor, J. Capmany, S. Sales, P. Munoz, and B. Ortega, “Reconfigurable fiber-optic-based RF filters using current injection in multimode lasers,” IEEE Photon. Technol. Lett.13(11), 1224–1226 (2001).
[CrossRef]

Schilling, M.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron.3(5), 1168–1180 (1997).
[CrossRef]

Stubkjaer, K. E.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron.3(5), 1168–1180 (1997).
[CrossRef]

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol.14(6), 942–954 (1996).
[CrossRef]

Vaa, M.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron.3(5), 1168–1180 (1997).
[CrossRef]

Van Der Ziel, J. P.

N. A. Olsson and J. P. Van Der Ziel, “Characteristics of a semiconductor laser pumped Brillouin amplifier with electronically controlled bandwidth,” J. Lightwave Technol.5(1), 147–153 (1987).
[CrossRef]

Vidal, B.

V. Polo, B. Vidal, J. L. Corral, and J. Marti, “Novel tunable photonic microwave filter based on laser arrays and N × N AWG-based delay lines,” IEEE Photon. Technol. Lett.15(4), 584–586 (2003).
[CrossRef]

B. Vidal, V. Polo, J. L. Corral, and J. Marti, “Harmonic suppressed photonic microwave filter,” J. Lightwave Technol.21(12), 3150–3154 (2003).
[CrossRef]

White, I. H.

M. Asghari, I. H. White, and R. V. Penty, “Wavelength conversion using semiconductor optical amplifiers,” J. Lightwave Technol.15(7), 1181–1190 (1997).
[CrossRef]

Williams, J. A. R.

G. Yu, W. Zhang, and J. A. R. Williams, “High-performance microwave transversal filter using fiber Bragg grating arrays,” IEEE Photon. Technol. Lett.12(9), 1183–1185 (2000).
[CrossRef]

Wunstel, K.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron.3(5), 1168–1180 (1997).
[CrossRef]

You, N.

Yu, G.

G. Yu, W. Zhang, and J. A. R. Williams, “High-performance microwave transversal filter using fiber Bragg grating arrays,” IEEE Photon. Technol. Lett.12(9), 1183–1185 (2000).
[CrossRef]

Zhang, W.

W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett.23(23), 1775–1777 (2011).
[CrossRef]

G. Yu, W. Zhang, and J. A. R. Williams, “High-performance microwave transversal filter using fiber Bragg grating arrays,” IEEE Photon. Technol. Lett.12(9), 1183–1185 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Poulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron.3(5), 1168–1180 (1997).
[CrossRef]

IEEE Photon. Technol. Lett.

D. B. Hunter and R. A. Minasian, “Tunable microwave fiber-optic bandpass filters,” IEEE Photon. Technol. Lett.11(7), 874–876 (1999).
[CrossRef]

M. Y. Frankel and R. D. Esman, “Fiber-optic tunable microwave transversal filter,” IEEE Photon. Technol. Lett.7(2), 191–193 (1995).
[CrossRef]

G. Yu, W. Zhang, and J. A. R. Williams, “High-performance microwave transversal filter using fiber Bragg grating arrays,” IEEE Photon. Technol. Lett.12(9), 1183–1185 (2000).
[CrossRef]

V. Polo, B. Vidal, J. L. Corral, and J. Marti, “Novel tunable photonic microwave filter based on laser arrays and N × N AWG-based delay lines,” IEEE Photon. Technol. Lett.15(4), 584–586 (2003).
[CrossRef]

D. Pastor, J. Capmany, S. Sales, P. Munoz, and B. Ortega, “Reconfigurable fiber-optic-based RF filters using current injection in multimode lasers,” IEEE Photon. Technol. Lett.13(11), 1224–1226 (2001).
[CrossRef]

G. D. Kim and S. S. Lee, “Photonic microwave channel selective filter incorporating a thermooptic switch based on tunable ring resonators,” IEEE Photon. Technol. Lett.19(13), 1008–1010 (2007).
[CrossRef]

Y. M. Chang, H. Chung, and J. H. Lee, “High Q microwave filter using incoherent, continuous-wave supercontinuum and dispersion-profiled fiber,” IEEE Photon. Technol. Lett.19(24), 2042–2044 (2007).
[CrossRef]

W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett.23(23), 1775–1777 (2011).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech.54(2), 832–846 (2006).
[CrossRef]

E. H. W. Chan and R. A. Minasian, “Coherence-free equivalent negative tap microwave photonic notch filter based on delayed self-wavelength conversion,” IEEE Trans. Microw. Theory Tech.58(11), 3199–3205 (2010).
[CrossRef]

J. Lightwave Technol.

C. Pulikkaseril, E. H. W. Chan, and R. A. Minasian, “Coherence-free microwave photonic bandpass filter using a frequency-shifting recirculating delay line,” J. Lightwave Technol.28(3), 262–269 (2010).
[CrossRef]

B. Moslehi and J. W. Goodman, “Novel amplified fiber-optic recirculating delay line processor,” J. Lightwave Technol.10(8), 1142–1147 (1992).
[CrossRef]

N. You and R. A. Minasian, “Novel photonic recursive signal processor with reduced phase-induced intensity noise,” J. Lightwave Technol.24(7), 2558–2563 (2006).
[CrossRef]

B. Moslehi, “Analysis of optical phase noise in fiber-optic systems employing a laser source with arbitrary coherence time,” J. Lightwave Technol.4(9), 1334–1351 (1986).
[CrossRef]

N. A. Olsson and J. P. Van Der Ziel, “Characteristics of a semiconductor laser pumped Brillouin amplifier with electronically controlled bandwidth,” J. Lightwave Technol.5(1), 147–153 (1987).
[CrossRef]

M. Asghari, I. H. White, and R. V. Penty, “Wavelength conversion using semiconductor optical amplifiers,” J. Lightwave Technol.15(7), 1181–1190 (1997).
[CrossRef]

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol.14(6), 942–954 (1996).
[CrossRef]

B. Vidal, V. Polo, J. L. Corral, and J. Marti, “Harmonic suppressed photonic microwave filter,” J. Lightwave Technol.21(12), 3150–3154 (2003).
[CrossRef]

E. H. W. Chan and R. A. Minasian, “Photonic notch filter without optical coherence limitations,” J. Lightwave Technol.22(7), 1811–1817 (2004).
[CrossRef]

E. H. W. Chan and R. A. Minasian, “Widely tuneable, high-FSR, coherence-free microwave photonic notch filter,” J. Lightwave Technol.26(8), 922–927 (2008).
[CrossRef]

Other

T. Zaman, X. Guo, and R. J. Ram, “Integrated optical circulator in InP,” Conference on Lasers & Electro-Optics (CLEO) 1321–1323 (2005).

M. Vanwolleghem, W. V. Parys, D. V. Thourhout, R. Baets, F. Lelarge, O. G. Lafaye, B. Thedrez, R. W. Speetjens, and J. D. Boeck, “First experimental demonstration of a monolithically integrated InP-based waveguide isolator,” Optical Fiber Communication Conference (OFC) 401–403 (2004).

N. Calabretta, R. Stabile, A. Albores-Mejia, K. A. Williams, and H. J. S. Dorren, “InP monolithically integrated wavelength selector based on periodic optical filter and optical switch chain,” ECOC Technical Digest 1–3 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Topology of the double cross gain modulation based microwave photonic bandpass filter.

Fig. 2
Fig. 2

Single cross gain modulation based microwave photonic bandpass filter with the unwanted optical signal path indicated by the dotted line.

Fig. 3
Fig. 3

The frequency response of the double cross gain modulation based microwave photonic bandpass filter (κ = 0.5, G = 2.062, l1 = l2 = R1 = R2 = 1 and γ01 = γ12 = γ21 = 0.98).

Fig. 4
Fig. 4

(a) Experimental setup of the double cross gain modulation based microwave photonic bandpass filter. (b) Wavelength dependent time delay component for implementing the tuning operation in the double cross gain modulation based microwave photonic bandpass filter.

Fig. 5
Fig. 5

The superposition of three double cross gain modulation based microwave photonic bandpass filter responses measured at different time instants (solid) and the simulated double cross gain modulation based microwave photonic bandpass filter response (dotted). (a) Wideband response and (b) detailed section of the response around the filter passband frequency.

Fig. 6
Fig. 6

Measured noise spectrum and output RF signal of the double cross gain modulation based microwave photonic bandpass filter.

Fig. 7
Fig. 7

The superposition of three single cross gain modulation based microwave photonic bandpass filter responses measured at different time instants. (a) Wideband response and (b) detailed section of the response around the filter passband frequency.

Fig. 8
Fig. 8

Measured bandpass filter responses of the tunable double cross gain modulation based microwave photonic signal processor for different laser wavelengths of 1548.1 nm (solid), 1549.7 nm (dashed) and 1551.3 nm (dotted).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

y( n )=( 1κ )x'( n )
x'( n )=( 1κ )G l 1 γ 01 R 1 l 2 γ 12 R 2 x( n1 )+κG l 1 γ 21 R 1 l 2 γ 12 R 2 x'( n1 )
y( n )= ( 1κ ) 2 G l 1 γ 01 R 1 l 2 γ 12 R 2 x( n1 )+κG l 1 γ 21 R 1 l 2 γ 12 R 2 y( n1 )
H( f )= ( 1κ ) 2 G l 1 l 2 γ 01 γ 12 R 1 R 2 z 1 1( κG l 1 l 2 γ 21 γ 12 R 1 R 2 ) z 1

Metrics