Abstract

Visual cryptography which consists in sharing a secret message between transparencies has been extended to color prints. In this paper, we propose a new visual cryptography scheme based on color matching. The stacked printed media reveal a uniformly colored message decoded by the human visual system. In contrast with the previous color visual cryptography schemes, the proposed one enables to share images without pixel expansion and to detect a forgery as the color of the message is kept secret. In order to correctly print the colors on the media and to increase the security of the scheme, we use spectral models developed for color reproduction describing printed colors from an optical point of view.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Kafri and E. Keren, “Encryption of pictures and shapes by random grids,” Opt. Lett. 12, 377–379 (1987).
    [CrossRef] [PubMed]
  2. M. Naor and A. Shamir, “Visual cryptography,” Lect. Notes Comput. Sci. 950, 1–12 (1995).
    [CrossRef]
  3. C. Blundo, A. De Santis, and M. Naor, “Visual cryptography for grey level images,” Inf. Process. Lett. 75, 255–259 (2000).
    [CrossRef]
  4. C. Lin and W. Tsai, “Visual cryptography for gray-level images by dithering techniques,” Pattern Recogn. Lett. 24, 349–358 (2003).
    [CrossRef]
  5. R. Lukac and K. Plataniotis, “Bit-level based secret sharing for image encryption,” Pattern Recogn. 38, 767–772 (2005).
    [CrossRef]
  6. Z. Zhou, G. Arce, and G. Di Crescenzo, “Halftone visual cryptography,” IEEE Trans. Image Process. 15, 2441–2453 (2006).
    [CrossRef] [PubMed]
  7. E. Verheul and H. Van Tilborg, “Constructions and properties of k out of n visual secret sharing schemes,” Designs, Codes, Cryptogr. 11, 179–196 (1997).
    [CrossRef]
  8. C.N. Yang and C.S. Laih, “New colored visual secret sharing schemes,” Designs, Codes, Cryptogr. 20, 325–336 (2000).
    [CrossRef]
  9. Y. C. Hou, “Visual cryptography for color images,” Pattern Recogn. 36, 1619–1629 (2003).
    [CrossRef]
  10. S. Shyu, “Efficient visual secret sharing scheme for color images,” Pattern Recogn. 39, 866–880 (2006).
    [CrossRef]
  11. S. Cimato, R. De Prisco, and A. De Santis, “Colored visual cryptography without color darkening,” Theor. Comput. Sci. 374, 261–276 (2007).
    [CrossRef]
  12. C.N. Yang and T.S. Chen, “Colored visual cryptography scheme based on additive color mixing,” Pattern Recogn. 41, 3114–3129 (2008).
    [CrossRef]
  13. H-H. Perkampus, Encyclopedia of Spectroscopy (VCH, 1995).
  14. M. Hébert, R.D. Hersch, and L. Simonot, “Spectral prediction model for piles of nonscattering sheets,” J. Opt. Soc. Am. A 25, 2066–2077 (2008).
    [CrossRef]
  15. J. Machizaud and M. Hébert, “Spectral transmittance model for stacks of transparencies printed with halftone colors,” Proc. SPIE 8292, 829212 (2012).
    [CrossRef]
  16. J. Machizaud and M. Hébert “Spectral reflectance and transmittance prediction model for stacked transparency and paper both printed with halftone colors” J. Opt. Soc. Am. A 29, 1537–1548 (2012).
    [CrossRef]
  17. H. Kipphan, Handbook of Print Media: Technologies and Production Methods (Springer, 2001).
  18. D. Lau and G. Arce, Modern Digital Halftoning (M. Dekker, 2001).
  19. CIE, Colorimetry CIE Technical Report, 3rd ed. (1998).
  20. I. Amidror, The Theory of the Moiré Phenomenon: Periodic Layers, 2nd ed. (Springer, 2009).
    [CrossRef] [PubMed]
  21. V. Ostromoukhov and R.D. Hersch, “Stochastic clustered-dot dithering,” J. Electron. Imaging 8, 439–445 (1999).
    [CrossRef]
  22. M. Born, E. Wolf, and A. Bhatia, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).
    [PubMed]
  23. J.A.S Viggiano, “Modeling the Color of Multi-Colored Halftones,” Proc. TAGA, 44–62 (1990).
  24. R.D. Hersch and F. Crété, “Improving the Yule-Nielsen modified spectral Neugebauer model by dot surface coverages depending on the ink superposition conditions,” Proc. SPIE 5667, 434–445 (2005).
    [CrossRef]
  25. F. Clapper and J. Yule, “The effect of multiple internal reflections on the densities of halftones prints on paper,” J. Opt. Soc. Am. 43, 600–603 (1953).
    [CrossRef]
  26. F.C. Williams and F.R. Clapper, “Multiple internal reflections in photographic color prints,” J. Opt. Soc. Am. 43, 595–597 (1953).
    [CrossRef] [PubMed]
  27. M. Hébert and R. D. Hersch, “Yule-Nielsen based recto-verso color halftone transmittance prediction model” Appl. Opt. 50, 519–525 (2011).
    [CrossRef] [PubMed]
  28. C.N. Yang, A.G. Peng, and T.S. Chen, “MTVSS: (M)isalignment (T)olerant (V)isual (S)ecret (S)haring on resolving alignment difficulty,” Signal Process. 89(8), 1602–1624 (2009).
    [CrossRef]
  29. F. Liu, C. Wu, and X. Lin, “The alignment problem of visual cryptography schemes,” Designs, Codes, Cryptogr. 50(2), 215–227 (2009).
    [CrossRef]
  30. D. Wang, L. Dong, and X. Li, “Towards Shift Tolerant Visual Secret Sharing Schemes,” IEEE Trans. Inform. Forensic Secur. 6, 323–337 (2011).
    [CrossRef]
  31. W. Yan, D. Jin, and M. Kankanhalli, “Visual cryptography for print and scan applications,” in Proceedings of International Symposium on Circuits and Systems (IEEE, 2004) pp. 572–575.
  32. J. Machizaud, P. Chavel, and T. Fournel, “Fourier-based automatic alignment for improved visual cryptography schemes,” Opt. Express 19, 22709–22722 (2011).
    [CrossRef] [PubMed]
  33. J.A.C. Yule and W.J. Nielsen, “The penetration of light into paper and its effect on halftone reproduction,” Proc. TAGA 3, 65–76 (1951).
  34. C. Koopipat, N. Tsumura, Y. Miyake, and M. Fujino, “Effect of ink spread and optical dot gain on the MTF of ink jet image,” J. Imaging Sci. Technol. 46, 321–325 (2002).

2012

J. Machizaud and M. Hébert, “Spectral transmittance model for stacks of transparencies printed with halftone colors,” Proc. SPIE 8292, 829212 (2012).
[CrossRef]

J. Machizaud and M. Hébert “Spectral reflectance and transmittance prediction model for stacked transparency and paper both printed with halftone colors” J. Opt. Soc. Am. A 29, 1537–1548 (2012).
[CrossRef]

2011

2009

C.N. Yang, A.G. Peng, and T.S. Chen, “MTVSS: (M)isalignment (T)olerant (V)isual (S)ecret (S)haring on resolving alignment difficulty,” Signal Process. 89(8), 1602–1624 (2009).
[CrossRef]

F. Liu, C. Wu, and X. Lin, “The alignment problem of visual cryptography schemes,” Designs, Codes, Cryptogr. 50(2), 215–227 (2009).
[CrossRef]

2008

C.N. Yang and T.S. Chen, “Colored visual cryptography scheme based on additive color mixing,” Pattern Recogn. 41, 3114–3129 (2008).
[CrossRef]

M. Hébert, R.D. Hersch, and L. Simonot, “Spectral prediction model for piles of nonscattering sheets,” J. Opt. Soc. Am. A 25, 2066–2077 (2008).
[CrossRef]

2007

S. Cimato, R. De Prisco, and A. De Santis, “Colored visual cryptography without color darkening,” Theor. Comput. Sci. 374, 261–276 (2007).
[CrossRef]

2006

S. Shyu, “Efficient visual secret sharing scheme for color images,” Pattern Recogn. 39, 866–880 (2006).
[CrossRef]

Z. Zhou, G. Arce, and G. Di Crescenzo, “Halftone visual cryptography,” IEEE Trans. Image Process. 15, 2441–2453 (2006).
[CrossRef] [PubMed]

2005

R. Lukac and K. Plataniotis, “Bit-level based secret sharing for image encryption,” Pattern Recogn. 38, 767–772 (2005).
[CrossRef]

R.D. Hersch and F. Crété, “Improving the Yule-Nielsen modified spectral Neugebauer model by dot surface coverages depending on the ink superposition conditions,” Proc. SPIE 5667, 434–445 (2005).
[CrossRef]

2003

C. Lin and W. Tsai, “Visual cryptography for gray-level images by dithering techniques,” Pattern Recogn. Lett. 24, 349–358 (2003).
[CrossRef]

Y. C. Hou, “Visual cryptography for color images,” Pattern Recogn. 36, 1619–1629 (2003).
[CrossRef]

2002

C. Koopipat, N. Tsumura, Y. Miyake, and M. Fujino, “Effect of ink spread and optical dot gain on the MTF of ink jet image,” J. Imaging Sci. Technol. 46, 321–325 (2002).

2000

C.N. Yang and C.S. Laih, “New colored visual secret sharing schemes,” Designs, Codes, Cryptogr. 20, 325–336 (2000).
[CrossRef]

C. Blundo, A. De Santis, and M. Naor, “Visual cryptography for grey level images,” Inf. Process. Lett. 75, 255–259 (2000).
[CrossRef]

1999

V. Ostromoukhov and R.D. Hersch, “Stochastic clustered-dot dithering,” J. Electron. Imaging 8, 439–445 (1999).
[CrossRef]

1997

E. Verheul and H. Van Tilborg, “Constructions and properties of k out of n visual secret sharing schemes,” Designs, Codes, Cryptogr. 11, 179–196 (1997).
[CrossRef]

1995

M. Naor and A. Shamir, “Visual cryptography,” Lect. Notes Comput. Sci. 950, 1–12 (1995).
[CrossRef]

1990

J.A.S Viggiano, “Modeling the Color of Multi-Colored Halftones,” Proc. TAGA, 44–62 (1990).

1987

1953

1951

J.A.C. Yule and W.J. Nielsen, “The penetration of light into paper and its effect on halftone reproduction,” Proc. TAGA 3, 65–76 (1951).

Amidror, I.

I. Amidror, The Theory of the Moiré Phenomenon: Periodic Layers, 2nd ed. (Springer, 2009).
[CrossRef] [PubMed]

Arce, G.

Z. Zhou, G. Arce, and G. Di Crescenzo, “Halftone visual cryptography,” IEEE Trans. Image Process. 15, 2441–2453 (2006).
[CrossRef] [PubMed]

D. Lau and G. Arce, Modern Digital Halftoning (M. Dekker, 2001).

Bhatia, A.

M. Born, E. Wolf, and A. Bhatia, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).
[PubMed]

Blundo, C.

C. Blundo, A. De Santis, and M. Naor, “Visual cryptography for grey level images,” Inf. Process. Lett. 75, 255–259 (2000).
[CrossRef]

Born, M.

M. Born, E. Wolf, and A. Bhatia, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).
[PubMed]

Chavel, P.

Chen, T.S.

C.N. Yang, A.G. Peng, and T.S. Chen, “MTVSS: (M)isalignment (T)olerant (V)isual (S)ecret (S)haring on resolving alignment difficulty,” Signal Process. 89(8), 1602–1624 (2009).
[CrossRef]

C.N. Yang and T.S. Chen, “Colored visual cryptography scheme based on additive color mixing,” Pattern Recogn. 41, 3114–3129 (2008).
[CrossRef]

Cimato, S.

S. Cimato, R. De Prisco, and A. De Santis, “Colored visual cryptography without color darkening,” Theor. Comput. Sci. 374, 261–276 (2007).
[CrossRef]

Clapper, F.

Clapper, F.R.

Crété, F.

R.D. Hersch and F. Crété, “Improving the Yule-Nielsen modified spectral Neugebauer model by dot surface coverages depending on the ink superposition conditions,” Proc. SPIE 5667, 434–445 (2005).
[CrossRef]

De Prisco, R.

S. Cimato, R. De Prisco, and A. De Santis, “Colored visual cryptography without color darkening,” Theor. Comput. Sci. 374, 261–276 (2007).
[CrossRef]

De Santis, A.

S. Cimato, R. De Prisco, and A. De Santis, “Colored visual cryptography without color darkening,” Theor. Comput. Sci. 374, 261–276 (2007).
[CrossRef]

C. Blundo, A. De Santis, and M. Naor, “Visual cryptography for grey level images,” Inf. Process. Lett. 75, 255–259 (2000).
[CrossRef]

Di Crescenzo, G.

Z. Zhou, G. Arce, and G. Di Crescenzo, “Halftone visual cryptography,” IEEE Trans. Image Process. 15, 2441–2453 (2006).
[CrossRef] [PubMed]

Dong, L.

D. Wang, L. Dong, and X. Li, “Towards Shift Tolerant Visual Secret Sharing Schemes,” IEEE Trans. Inform. Forensic Secur. 6, 323–337 (2011).
[CrossRef]

Fournel, T.

Fujino, M.

C. Koopipat, N. Tsumura, Y. Miyake, and M. Fujino, “Effect of ink spread and optical dot gain on the MTF of ink jet image,” J. Imaging Sci. Technol. 46, 321–325 (2002).

Hébert, M.

Hersch, R. D.

Hersch, R.D.

M. Hébert, R.D. Hersch, and L. Simonot, “Spectral prediction model for piles of nonscattering sheets,” J. Opt. Soc. Am. A 25, 2066–2077 (2008).
[CrossRef]

R.D. Hersch and F. Crété, “Improving the Yule-Nielsen modified spectral Neugebauer model by dot surface coverages depending on the ink superposition conditions,” Proc. SPIE 5667, 434–445 (2005).
[CrossRef]

V. Ostromoukhov and R.D. Hersch, “Stochastic clustered-dot dithering,” J. Electron. Imaging 8, 439–445 (1999).
[CrossRef]

Hou, Y. C.

Y. C. Hou, “Visual cryptography for color images,” Pattern Recogn. 36, 1619–1629 (2003).
[CrossRef]

Jin, D.

W. Yan, D. Jin, and M. Kankanhalli, “Visual cryptography for print and scan applications,” in Proceedings of International Symposium on Circuits and Systems (IEEE, 2004) pp. 572–575.

Kafri, O.

Kankanhalli, M.

W. Yan, D. Jin, and M. Kankanhalli, “Visual cryptography for print and scan applications,” in Proceedings of International Symposium on Circuits and Systems (IEEE, 2004) pp. 572–575.

Keren, E.

Kipphan, H.

H. Kipphan, Handbook of Print Media: Technologies and Production Methods (Springer, 2001).

Koopipat, C.

C. Koopipat, N. Tsumura, Y. Miyake, and M. Fujino, “Effect of ink spread and optical dot gain on the MTF of ink jet image,” J. Imaging Sci. Technol. 46, 321–325 (2002).

Laih, C.S.

C.N. Yang and C.S. Laih, “New colored visual secret sharing schemes,” Designs, Codes, Cryptogr. 20, 325–336 (2000).
[CrossRef]

Lau, D.

D. Lau and G. Arce, Modern Digital Halftoning (M. Dekker, 2001).

Li, X.

D. Wang, L. Dong, and X. Li, “Towards Shift Tolerant Visual Secret Sharing Schemes,” IEEE Trans. Inform. Forensic Secur. 6, 323–337 (2011).
[CrossRef]

Lin, C.

C. Lin and W. Tsai, “Visual cryptography for gray-level images by dithering techniques,” Pattern Recogn. Lett. 24, 349–358 (2003).
[CrossRef]

Lin, X.

F. Liu, C. Wu, and X. Lin, “The alignment problem of visual cryptography schemes,” Designs, Codes, Cryptogr. 50(2), 215–227 (2009).
[CrossRef]

Liu, F.

F. Liu, C. Wu, and X. Lin, “The alignment problem of visual cryptography schemes,” Designs, Codes, Cryptogr. 50(2), 215–227 (2009).
[CrossRef]

Lukac, R.

R. Lukac and K. Plataniotis, “Bit-level based secret sharing for image encryption,” Pattern Recogn. 38, 767–772 (2005).
[CrossRef]

Machizaud, J.

Miyake, Y.

C. Koopipat, N. Tsumura, Y. Miyake, and M. Fujino, “Effect of ink spread and optical dot gain on the MTF of ink jet image,” J. Imaging Sci. Technol. 46, 321–325 (2002).

Naor, M.

C. Blundo, A. De Santis, and M. Naor, “Visual cryptography for grey level images,” Inf. Process. Lett. 75, 255–259 (2000).
[CrossRef]

M. Naor and A. Shamir, “Visual cryptography,” Lect. Notes Comput. Sci. 950, 1–12 (1995).
[CrossRef]

Nielsen, W.J.

J.A.C. Yule and W.J. Nielsen, “The penetration of light into paper and its effect on halftone reproduction,” Proc. TAGA 3, 65–76 (1951).

Ostromoukhov, V.

V. Ostromoukhov and R.D. Hersch, “Stochastic clustered-dot dithering,” J. Electron. Imaging 8, 439–445 (1999).
[CrossRef]

Peng, A.G.

C.N. Yang, A.G. Peng, and T.S. Chen, “MTVSS: (M)isalignment (T)olerant (V)isual (S)ecret (S)haring on resolving alignment difficulty,” Signal Process. 89(8), 1602–1624 (2009).
[CrossRef]

Perkampus, H-H.

H-H. Perkampus, Encyclopedia of Spectroscopy (VCH, 1995).

Plataniotis, K.

R. Lukac and K. Plataniotis, “Bit-level based secret sharing for image encryption,” Pattern Recogn. 38, 767–772 (2005).
[CrossRef]

Shamir, A.

M. Naor and A. Shamir, “Visual cryptography,” Lect. Notes Comput. Sci. 950, 1–12 (1995).
[CrossRef]

Shyu, S.

S. Shyu, “Efficient visual secret sharing scheme for color images,” Pattern Recogn. 39, 866–880 (2006).
[CrossRef]

Simonot, L.

Tsai, W.

C. Lin and W. Tsai, “Visual cryptography for gray-level images by dithering techniques,” Pattern Recogn. Lett. 24, 349–358 (2003).
[CrossRef]

Tsumura, N.

C. Koopipat, N. Tsumura, Y. Miyake, and M. Fujino, “Effect of ink spread and optical dot gain on the MTF of ink jet image,” J. Imaging Sci. Technol. 46, 321–325 (2002).

Van Tilborg, H.

E. Verheul and H. Van Tilborg, “Constructions and properties of k out of n visual secret sharing schemes,” Designs, Codes, Cryptogr. 11, 179–196 (1997).
[CrossRef]

Verheul, E.

E. Verheul and H. Van Tilborg, “Constructions and properties of k out of n visual secret sharing schemes,” Designs, Codes, Cryptogr. 11, 179–196 (1997).
[CrossRef]

Viggiano, J.A.S

J.A.S Viggiano, “Modeling the Color of Multi-Colored Halftones,” Proc. TAGA, 44–62 (1990).

Wang, D.

D. Wang, L. Dong, and X. Li, “Towards Shift Tolerant Visual Secret Sharing Schemes,” IEEE Trans. Inform. Forensic Secur. 6, 323–337 (2011).
[CrossRef]

Williams, F.C.

Wolf, E.

M. Born, E. Wolf, and A. Bhatia, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).
[PubMed]

Wu, C.

F. Liu, C. Wu, and X. Lin, “The alignment problem of visual cryptography schemes,” Designs, Codes, Cryptogr. 50(2), 215–227 (2009).
[CrossRef]

Yan, W.

W. Yan, D. Jin, and M. Kankanhalli, “Visual cryptography for print and scan applications,” in Proceedings of International Symposium on Circuits and Systems (IEEE, 2004) pp. 572–575.

Yang, C.N.

C.N. Yang, A.G. Peng, and T.S. Chen, “MTVSS: (M)isalignment (T)olerant (V)isual (S)ecret (S)haring on resolving alignment difficulty,” Signal Process. 89(8), 1602–1624 (2009).
[CrossRef]

C.N. Yang and T.S. Chen, “Colored visual cryptography scheme based on additive color mixing,” Pattern Recogn. 41, 3114–3129 (2008).
[CrossRef]

C.N. Yang and C.S. Laih, “New colored visual secret sharing schemes,” Designs, Codes, Cryptogr. 20, 325–336 (2000).
[CrossRef]

Yule, J.

Yule, J.A.C.

J.A.C. Yule and W.J. Nielsen, “The penetration of light into paper and its effect on halftone reproduction,” Proc. TAGA 3, 65–76 (1951).

Zhou, Z.

Z. Zhou, G. Arce, and G. Di Crescenzo, “Halftone visual cryptography,” IEEE Trans. Image Process. 15, 2441–2453 (2006).
[CrossRef] [PubMed]

Appl. Opt.

Designs, Codes, Cryptogr.

F. Liu, C. Wu, and X. Lin, “The alignment problem of visual cryptography schemes,” Designs, Codes, Cryptogr. 50(2), 215–227 (2009).
[CrossRef]

E. Verheul and H. Van Tilborg, “Constructions and properties of k out of n visual secret sharing schemes,” Designs, Codes, Cryptogr. 11, 179–196 (1997).
[CrossRef]

C.N. Yang and C.S. Laih, “New colored visual secret sharing schemes,” Designs, Codes, Cryptogr. 20, 325–336 (2000).
[CrossRef]

IEEE Trans. Image Process.

Z. Zhou, G. Arce, and G. Di Crescenzo, “Halftone visual cryptography,” IEEE Trans. Image Process. 15, 2441–2453 (2006).
[CrossRef] [PubMed]

IEEE Trans. Inform. Forensic Secur.

D. Wang, L. Dong, and X. Li, “Towards Shift Tolerant Visual Secret Sharing Schemes,” IEEE Trans. Inform. Forensic Secur. 6, 323–337 (2011).
[CrossRef]

Inf. Process. Lett.

C. Blundo, A. De Santis, and M. Naor, “Visual cryptography for grey level images,” Inf. Process. Lett. 75, 255–259 (2000).
[CrossRef]

J. Electron. Imaging

V. Ostromoukhov and R.D. Hersch, “Stochastic clustered-dot dithering,” J. Electron. Imaging 8, 439–445 (1999).
[CrossRef]

J. Imaging Sci. Technol.

C. Koopipat, N. Tsumura, Y. Miyake, and M. Fujino, “Effect of ink spread and optical dot gain on the MTF of ink jet image,” J. Imaging Sci. Technol. 46, 321–325 (2002).

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Lect. Notes Comput. Sci.

M. Naor and A. Shamir, “Visual cryptography,” Lect. Notes Comput. Sci. 950, 1–12 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Pattern Recogn.

R. Lukac and K. Plataniotis, “Bit-level based secret sharing for image encryption,” Pattern Recogn. 38, 767–772 (2005).
[CrossRef]

Y. C. Hou, “Visual cryptography for color images,” Pattern Recogn. 36, 1619–1629 (2003).
[CrossRef]

S. Shyu, “Efficient visual secret sharing scheme for color images,” Pattern Recogn. 39, 866–880 (2006).
[CrossRef]

C.N. Yang and T.S. Chen, “Colored visual cryptography scheme based on additive color mixing,” Pattern Recogn. 41, 3114–3129 (2008).
[CrossRef]

Pattern Recogn. Lett.

C. Lin and W. Tsai, “Visual cryptography for gray-level images by dithering techniques,” Pattern Recogn. Lett. 24, 349–358 (2003).
[CrossRef]

Proc. SPIE

R.D. Hersch and F. Crété, “Improving the Yule-Nielsen modified spectral Neugebauer model by dot surface coverages depending on the ink superposition conditions,” Proc. SPIE 5667, 434–445 (2005).
[CrossRef]

J. Machizaud and M. Hébert, “Spectral transmittance model for stacks of transparencies printed with halftone colors,” Proc. SPIE 8292, 829212 (2012).
[CrossRef]

Proc. TAGA

J.A.C. Yule and W.J. Nielsen, “The penetration of light into paper and its effect on halftone reproduction,” Proc. TAGA 3, 65–76 (1951).

J.A.S Viggiano, “Modeling the Color of Multi-Colored Halftones,” Proc. TAGA, 44–62 (1990).

Signal Process.

C.N. Yang, A.G. Peng, and T.S. Chen, “MTVSS: (M)isalignment (T)olerant (V)isual (S)ecret (S)haring on resolving alignment difficulty,” Signal Process. 89(8), 1602–1624 (2009).
[CrossRef]

Theor. Comput. Sci.

S. Cimato, R. De Prisco, and A. De Santis, “Colored visual cryptography without color darkening,” Theor. Comput. Sci. 374, 261–276 (2007).
[CrossRef]

Other

M. Born, E. Wolf, and A. Bhatia, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).
[PubMed]

H-H. Perkampus, Encyclopedia of Spectroscopy (VCH, 1995).

H. Kipphan, Handbook of Print Media: Technologies and Production Methods (Springer, 2001).

D. Lau and G. Arce, Modern Digital Halftoning (M. Dekker, 2001).

CIE, Colorimetry CIE Technical Report, 3rd ed. (1998).

I. Amidror, The Theory of the Moiré Phenomenon: Periodic Layers, 2nd ed. (Springer, 2009).
[CrossRef] [PubMed]

W. Yan, D. Jin, and M. Kankanhalli, “Visual cryptography for print and scan applications,” in Proceedings of International Symposium on Circuits and Systems (IEEE, 2004) pp. 572–575.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Example of halftone color defined by a percentage of cyan, magenta and yellow inks.

Fig. 2
Fig. 2

(a) a black and white share coding a pixel of the secret message for a black and white VC scheme, (b) a colored share (cyan, yellow, magenta, black or white subpixels) coding a pixel of the secret message for a colored VC scheme and (c) a halftoned share coding a pixel of the secret message in our CM-VC scheme.

Fig. 3
Fig. 3

A (2,2)-CM-VCS: light magenta stacked with brown yields light brown, the target color associated to a 1-bit in the original message (case 1). The same for magenta and yellow (case 2). Inverting colors of the shadow images gives colors associated to a 0-bit, different from the target one (cases 3 and 4). These colors displayed on a calibrated screen match the ones printed on transparencies.

Fig. 4
Fig. 4

(a) Transmittance of a filter. (b) Transmittance through two superposed filters without taking into account the air slice between them. (c) Transmittance of two superposed transparencies separated by a thin air slice.

Fig. 5
Fig. 5

Transmissions and reflections of light by a printed transparency superposed on top of a printed paper.

Fig. 6
Fig. 6

An example of the proposed CM-VCS for which the secret message “CM-VC” is a desatured red. There is no information about the secret message on each transparency (a) and (b). The secret content together with the color are revealed in transmission mode when the two transparencies are superposed (c) by using daylight illumination.

Fig. 7
Fig. 7

An example of the proposed CM-VCS for which the secret message “CM-VC” is a desatured color. There is no information about the secret content and the color on the paper (a) and on the transparency (b). The secret message is revealed when the transparency are superposed on the paper (c) and observed in reflectance mode.

Fig. 8
Fig. 8

Evolution of the color distance ΔE94 for target color E with respect to a transverse shift (given in fraction of the size of a halftoned share) of one of the SIs. The blue curve corresponds to measurements of the spectral transmittance of the stack. The dashed curve corresponds to a mean spectral transmittance of such a superposition computed according to Eq. (8). When the transverse shift distance is zero, the distance ΔE94 is null, and the stack color corresponds to target color E. When the transverse shift distance is 1, the color is completely different from the target color E. Below a shift dx1 < 0.1, the ΔE94 value between target color E and the stack color is less than 1, i.e. the color difference cannot be perceived. Beyond the distance dx3, the ΔE94 value is higher than 3, and a color difference is well perceptible.

Tables (2)

Tables Icon

Table 1 Prediction accuracy for printed transparency and printed paper

Tables Icon

Table 2 Prediction accuracy for stacks of two printed supports

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

2 # Γ 1 # Γ 0 # Γ 1 ( # Γ 1 1 )
α ( k ) = min a Γ 1 ( k ) , b Γ 0 ( k ) [ Δ E 94 ( a , b ) ] max a Γ 1 ( k ) , b Γ 0 ( k ) [ Δ E 94 ( a , b ) ] , k = { 1 , 2 , 3 }
T φ ( A , B ) ( λ ) = T A ( λ ) T B ( λ )
T φ ( A , B ) ( λ ) = T A ( λ ) T B ( λ ) 1 R A ( λ ) R B ( λ )
R φ ( A , B ) ( λ ) = R A ( λ ) + T A ( λ ) T in ( λ ) R B ( λ ) 1 r i ( λ ) R B ( λ )
θ = 0 π / 2 R A ( θ ) sin 2 θ d θ
T φ ( A , B ) ( λ ) = T A ( λ ) T in ( λ ) 1 r i ( λ ) R B ( λ )
T ( A , λ ) = A T E ( λ ) + ( 1 A ) T F ( λ )

Metrics