Abstract

We develop a versatile, self-referenced composite Fabry-Pérot (FP) sensor and the corresponding detection scheme for rapid and precise measurement of vapors. The composite FP vapor sensor is formed by etching two juxtaposed micron-deep wells, with a precisely controlled offset in depth, on a silicon wafer. The wells are then coated with a vapor sensitive polymer and the reflected light from each well is detected by a CMOS imager. Due to its self-referenced nature, the composite FP sensor is able to extract the change in thickness and refractive index of the polymer layer upon exposure to analyte vapors, thus allowing for accurate vapor quantitation regardless of the polymer thickness, refractive index, and light incident angle and wavelength. Theoretical analysis is first performed to elucidate the underlying detection principle, followed by experimental demonstration at two different incident angles showing rapid and consistent measurement of the polymer changes when the polymer is exposed to three different analytes at various concentrations. The vapor detection limit is found to be on the order of a few pico-grams (~100 ppb)

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Gauglitz, A. Brecht, G. Kraus, and W. Mahm, “Chemical and biochemical sensors based on interferometry at thin (multi-) layers,” Sens. Actuators B Chem. 11(1-3), 21–27 (1993).
    [CrossRef]
  2. D. Reichl, R. Krage, C. Krumme, and G. Gauglitz, “Sensing of volatile organic compounds using a simplified reflectometric interference spectroscopy setup,” Appl. Spectrosc. 54(4), 583–586 (2000).
    [CrossRef]
  3. J. Liu, Y. Sun, and X. Fan, “Highly versatile fiber-based optical Fabry-Pérot gas sensor,” Opt. Express 17(4), 2731–2738 (2009).
    [CrossRef] [PubMed]
  4. J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S.-J. Ja, S.-K. Wang, M. Bai, H. Taub, M. Almasri, and X. Fan, “Fabry-Pérot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
    [CrossRef] [PubMed]
  5. C. Martínez-Hipatl, S. Muñoz-Aguirre, G. Beltrán-Pérez, J. Castillo-Mixcóatl, and J. Rivera-De la Rosa, “Detection of volatile organic compounds by an interferometric sensor,” Sens. Actuators B Chem. 147(1), 37–42 (2010).
    [CrossRef]
  6. K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. Khaing Oo, and X. Fan, “On-chip Fabry-Pérot interferometric sensors for micro-gas chromatography detection,” Sens. Actuators B Chem. 159(1), 60–65 (2011).
    [CrossRef]
  7. K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. Khaing Oo, and X. Fan, “Rapid, sensitive, and multiplexed on-chip optical sensors for micro-gas chromatography,” Lab Chip (2011), doi:.
    [CrossRef]
  8. H.- Noh, P. J. Hesketh, and G. C. Frye-Mason, “Parylene gas chromatographic column for rapid thermal cycling,” J. Microelectromech. Syst. 11(6), 718–725 (2002).
    [CrossRef]
  9. M. Agah, J. A. Potkay, G. Lambertus, R. Sacks, and K. D. Wise, “High-performance temperature-programmed microfabricated gas chromatography columns,” J. Microelectromech. Syst. 14(5), 1039–1050 (2005).
    [CrossRef]
  10. S. C. Terry, J. H. Jerman, and J. B. Angell, “A gas chromatographic air analyzer fabricated on a silicon wafer,” IEEE Trans. Electron. Dev. 26(12), 1880–1886 (1979).
    [CrossRef]
  11. G. R. Lambertus, C. S. Fix, S. M. Reidy, R. A. Miller, D. Wheeler, E. Nazarov, and R. Sacks, “Silicon microfabricated column with microfabricated differential mobility spectrometer for GC analysis of volatile organic compounds,” Anal. Chem. 77(23), 7563–7571 (2005).
    [CrossRef] [PubMed]
  12. S. Reidy, D. George, M. Agah, and R. Sacks, “Temperature-programmed GC using silicon microfabricated columns with integrated heaters and temperature sensors,” Anal. Chem. 79(7), 2911–2917 (2007).
    [CrossRef] [PubMed]
  13. E. T. Zellers, S. A. Batterman, M. Han, and S. J. Patrash, “Optimal coating selection for the analysis of organic vapor mixtures with polymer-coated surface acoustic wave sensor arrays,” Anal. Chem. 67(6), 1092–1106 (1995).
    [CrossRef] [PubMed]
  14. E. Özkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 (2008).
    [CrossRef] [PubMed]
  15. P. C. Beard, “Interrogation of free-space Fabry–Perot sensing interferometers by angle tuning,” Meas. Sci. Technol. 14(11), 1998–2005 (2003).
    [CrossRef]
  16. Y. Hou, S.-W. Huang, S. Ashkenazi, R. Witte, and M. O’Donnell, “Thin polymer etalon arrays for high-resolution photoacoustic imaging,” J. Biomed. Opt. 13(6), 064033 (2008).
    [CrossRef] [PubMed]

2011 (2)

K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. Khaing Oo, and X. Fan, “On-chip Fabry-Pérot interferometric sensors for micro-gas chromatography detection,” Sens. Actuators B Chem. 159(1), 60–65 (2011).
[CrossRef]

K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. Khaing Oo, and X. Fan, “Rapid, sensitive, and multiplexed on-chip optical sensors for micro-gas chromatography,” Lab Chip (2011), doi:.
[CrossRef]

2010 (2)

J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S.-J. Ja, S.-K. Wang, M. Bai, H. Taub, M. Almasri, and X. Fan, “Fabry-Pérot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
[CrossRef] [PubMed]

C. Martínez-Hipatl, S. Muñoz-Aguirre, G. Beltrán-Pérez, J. Castillo-Mixcóatl, and J. Rivera-De la Rosa, “Detection of volatile organic compounds by an interferometric sensor,” Sens. Actuators B Chem. 147(1), 37–42 (2010).
[CrossRef]

2009 (1)

2008 (2)

E. Özkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 (2008).
[CrossRef] [PubMed]

Y. Hou, S.-W. Huang, S. Ashkenazi, R. Witte, and M. O’Donnell, “Thin polymer etalon arrays for high-resolution photoacoustic imaging,” J. Biomed. Opt. 13(6), 064033 (2008).
[CrossRef] [PubMed]

2007 (1)

S. Reidy, D. George, M. Agah, and R. Sacks, “Temperature-programmed GC using silicon microfabricated columns with integrated heaters and temperature sensors,” Anal. Chem. 79(7), 2911–2917 (2007).
[CrossRef] [PubMed]

2005 (2)

M. Agah, J. A. Potkay, G. Lambertus, R. Sacks, and K. D. Wise, “High-performance temperature-programmed microfabricated gas chromatography columns,” J. Microelectromech. Syst. 14(5), 1039–1050 (2005).
[CrossRef]

G. R. Lambertus, C. S. Fix, S. M. Reidy, R. A. Miller, D. Wheeler, E. Nazarov, and R. Sacks, “Silicon microfabricated column with microfabricated differential mobility spectrometer for GC analysis of volatile organic compounds,” Anal. Chem. 77(23), 7563–7571 (2005).
[CrossRef] [PubMed]

2003 (1)

P. C. Beard, “Interrogation of free-space Fabry–Perot sensing interferometers by angle tuning,” Meas. Sci. Technol. 14(11), 1998–2005 (2003).
[CrossRef]

2002 (1)

H.- Noh, P. J. Hesketh, and G. C. Frye-Mason, “Parylene gas chromatographic column for rapid thermal cycling,” J. Microelectromech. Syst. 11(6), 718–725 (2002).
[CrossRef]

2000 (1)

1995 (1)

E. T. Zellers, S. A. Batterman, M. Han, and S. J. Patrash, “Optimal coating selection for the analysis of organic vapor mixtures with polymer-coated surface acoustic wave sensor arrays,” Anal. Chem. 67(6), 1092–1106 (1995).
[CrossRef] [PubMed]

1993 (1)

G. Gauglitz, A. Brecht, G. Kraus, and W. Mahm, “Chemical and biochemical sensors based on interferometry at thin (multi-) layers,” Sens. Actuators B Chem. 11(1-3), 21–27 (1993).
[CrossRef]

1979 (1)

S. C. Terry, J. H. Jerman, and J. B. Angell, “A gas chromatographic air analyzer fabricated on a silicon wafer,” IEEE Trans. Electron. Dev. 26(12), 1880–1886 (1979).
[CrossRef]

Agah, M.

S. Reidy, D. George, M. Agah, and R. Sacks, “Temperature-programmed GC using silicon microfabricated columns with integrated heaters and temperature sensors,” Anal. Chem. 79(7), 2911–2917 (2007).
[CrossRef] [PubMed]

M. Agah, J. A. Potkay, G. Lambertus, R. Sacks, and K. D. Wise, “High-performance temperature-programmed microfabricated gas chromatography columns,” J. Microelectromech. Syst. 14(5), 1039–1050 (2005).
[CrossRef]

Almasri, M.

J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S.-J. Ja, S.-K. Wang, M. Bai, H. Taub, M. Almasri, and X. Fan, “Fabry-Pérot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
[CrossRef] [PubMed]

Angell, J. B.

S. C. Terry, J. H. Jerman, and J. B. Angell, “A gas chromatographic air analyzer fabricated on a silicon wafer,” IEEE Trans. Electron. Dev. 26(12), 1880–1886 (1979).
[CrossRef]

Ashkenazi, S.

Y. Hou, S.-W. Huang, S. Ashkenazi, R. Witte, and M. O’Donnell, “Thin polymer etalon arrays for high-resolution photoacoustic imaging,” J. Biomed. Opt. 13(6), 064033 (2008).
[CrossRef] [PubMed]

Bai, M.

J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S.-J. Ja, S.-K. Wang, M. Bai, H. Taub, M. Almasri, and X. Fan, “Fabry-Pérot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
[CrossRef] [PubMed]

Batterman, S. A.

E. T. Zellers, S. A. Batterman, M. Han, and S. J. Patrash, “Optimal coating selection for the analysis of organic vapor mixtures with polymer-coated surface acoustic wave sensor arrays,” Anal. Chem. 67(6), 1092–1106 (1995).
[CrossRef] [PubMed]

Beard, P. C.

P. C. Beard, “Interrogation of free-space Fabry–Perot sensing interferometers by angle tuning,” Meas. Sci. Technol. 14(11), 1998–2005 (2003).
[CrossRef]

Beltrán-Pérez, G.

C. Martínez-Hipatl, S. Muñoz-Aguirre, G. Beltrán-Pérez, J. Castillo-Mixcóatl, and J. Rivera-De la Rosa, “Detection of volatile organic compounds by an interferometric sensor,” Sens. Actuators B Chem. 147(1), 37–42 (2010).
[CrossRef]

Bergstein, D. A.

E. Özkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 (2008).
[CrossRef] [PubMed]

Brecht, A.

G. Gauglitz, A. Brecht, G. Kraus, and W. Mahm, “Chemical and biochemical sensors based on interferometry at thin (multi-) layers,” Sens. Actuators B Chem. 11(1-3), 21–27 (1993).
[CrossRef]

Cabodi, M.

E. Özkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 (2008).
[CrossRef] [PubMed]

Castillo-Mixcóatl, J.

C. Martínez-Hipatl, S. Muñoz-Aguirre, G. Beltrán-Pérez, J. Castillo-Mixcóatl, and J. Rivera-De la Rosa, “Detection of volatile organic compounds by an interferometric sensor,” Sens. Actuators B Chem. 147(1), 37–42 (2010).
[CrossRef]

Fan, X.

K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. Khaing Oo, and X. Fan, “On-chip Fabry-Pérot interferometric sensors for micro-gas chromatography detection,” Sens. Actuators B Chem. 159(1), 60–65 (2011).
[CrossRef]

K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. Khaing Oo, and X. Fan, “Rapid, sensitive, and multiplexed on-chip optical sensors for micro-gas chromatography,” Lab Chip (2011), doi:.
[CrossRef]

J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S.-J. Ja, S.-K. Wang, M. Bai, H. Taub, M. Almasri, and X. Fan, “Fabry-Pérot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
[CrossRef] [PubMed]

J. Liu, Y. Sun, and X. Fan, “Highly versatile fiber-based optical Fabry-Pérot gas sensor,” Opt. Express 17(4), 2731–2738 (2009).
[CrossRef] [PubMed]

Fix, C. S.

G. R. Lambertus, C. S. Fix, S. M. Reidy, R. A. Miller, D. Wheeler, E. Nazarov, and R. Sacks, “Silicon microfabricated column with microfabricated differential mobility spectrometer for GC analysis of volatile organic compounds,” Anal. Chem. 77(23), 7563–7571 (2005).
[CrossRef] [PubMed]

Frye-Mason, G.

J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S.-J. Ja, S.-K. Wang, M. Bai, H. Taub, M. Almasri, and X. Fan, “Fabry-Pérot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
[CrossRef] [PubMed]

Frye-Mason, G. C.

H.- Noh, P. J. Hesketh, and G. C. Frye-Mason, “Parylene gas chromatographic column for rapid thermal cycling,” J. Microelectromech. Syst. 11(6), 718–725 (2002).
[CrossRef]

Gauglitz, G.

D. Reichl, R. Krage, C. Krumme, and G. Gauglitz, “Sensing of volatile organic compounds using a simplified reflectometric interference spectroscopy setup,” Appl. Spectrosc. 54(4), 583–586 (2000).
[CrossRef]

G. Gauglitz, A. Brecht, G. Kraus, and W. Mahm, “Chemical and biochemical sensors based on interferometry at thin (multi-) layers,” Sens. Actuators B Chem. 11(1-3), 21–27 (1993).
[CrossRef]

George, D.

S. Reidy, D. George, M. Agah, and R. Sacks, “Temperature-programmed GC using silicon microfabricated columns with integrated heaters and temperature sensors,” Anal. Chem. 79(7), 2911–2917 (2007).
[CrossRef] [PubMed]

Gershoni, J. M.

E. Özkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 (2008).
[CrossRef] [PubMed]

Goldberg, B. B.

E. Özkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 (2008).
[CrossRef] [PubMed]

Gonzalez, R.

E. Özkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 (2008).
[CrossRef] [PubMed]

Guo, Y.

K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. Khaing Oo, and X. Fan, “On-chip Fabry-Pérot interferometric sensors for micro-gas chromatography detection,” Sens. Actuators B Chem. 159(1), 60–65 (2011).
[CrossRef]

K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. Khaing Oo, and X. Fan, “Rapid, sensitive, and multiplexed on-chip optical sensors for micro-gas chromatography,” Lab Chip (2011), doi:.
[CrossRef]

Han, M.

E. T. Zellers, S. A. Batterman, M. Han, and S. J. Patrash, “Optimal coating selection for the analysis of organic vapor mixtures with polymer-coated surface acoustic wave sensor arrays,” Anal. Chem. 67(6), 1092–1106 (1995).
[CrossRef] [PubMed]

Hesketh, P. J.

H.- Noh, P. J. Hesketh, and G. C. Frye-Mason, “Parylene gas chromatographic column for rapid thermal cycling,” J. Microelectromech. Syst. 11(6), 718–725 (2002).
[CrossRef]

Hou, Y.

Y. Hou, S.-W. Huang, S. Ashkenazi, R. Witte, and M. O’Donnell, “Thin polymer etalon arrays for high-resolution photoacoustic imaging,” J. Biomed. Opt. 13(6), 064033 (2008).
[CrossRef] [PubMed]

Howard, D. J.

J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S.-J. Ja, S.-K. Wang, M. Bai, H. Taub, M. Almasri, and X. Fan, “Fabry-Pérot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
[CrossRef] [PubMed]

Huang, S.-W.

Y. Hou, S.-W. Huang, S. Ashkenazi, R. Witte, and M. O’Donnell, “Thin polymer etalon arrays for high-resolution photoacoustic imaging,” J. Biomed. Opt. 13(6), 064033 (2008).
[CrossRef] [PubMed]

Ja, S.-J.

J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S.-J. Ja, S.-K. Wang, M. Bai, H. Taub, M. Almasri, and X. Fan, “Fabry-Pérot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
[CrossRef] [PubMed]

Jerman, J. H.

S. C. Terry, J. H. Jerman, and J. B. Angell, “A gas chromatographic air analyzer fabricated on a silicon wafer,” IEEE Trans. Electron. Dev. 26(12), 1880–1886 (1979).
[CrossRef]

Khaing Oo, M. K.

K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. Khaing Oo, and X. Fan, “On-chip Fabry-Pérot interferometric sensors for micro-gas chromatography detection,” Sens. Actuators B Chem. 159(1), 60–65 (2011).
[CrossRef]

K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. Khaing Oo, and X. Fan, “Rapid, sensitive, and multiplexed on-chip optical sensors for micro-gas chromatography,” Lab Chip (2011), doi:.
[CrossRef]

Krage, R.

Kraus, G.

G. Gauglitz, A. Brecht, G. Kraus, and W. Mahm, “Chemical and biochemical sensors based on interferometry at thin (multi-) layers,” Sens. Actuators B Chem. 11(1-3), 21–27 (1993).
[CrossRef]

Krumme, C.

Lambertus, G.

M. Agah, J. A. Potkay, G. Lambertus, R. Sacks, and K. D. Wise, “High-performance temperature-programmed microfabricated gas chromatography columns,” J. Microelectromech. Syst. 14(5), 1039–1050 (2005).
[CrossRef]

Lambertus, G. R.

G. R. Lambertus, C. S. Fix, S. M. Reidy, R. A. Miller, D. Wheeler, E. Nazarov, and R. Sacks, “Silicon microfabricated column with microfabricated differential mobility spectrometer for GC analysis of volatile organic compounds,” Anal. Chem. 77(23), 7563–7571 (2005).
[CrossRef] [PubMed]

Lee, W.

K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. Khaing Oo, and X. Fan, “Rapid, sensitive, and multiplexed on-chip optical sensors for micro-gas chromatography,” Lab Chip (2011), doi:.
[CrossRef]

K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. Khaing Oo, and X. Fan, “On-chip Fabry-Pérot interferometric sensors for micro-gas chromatography detection,” Sens. Actuators B Chem. 159(1), 60–65 (2011).
[CrossRef]

Liu, J.

K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. Khaing Oo, and X. Fan, “On-chip Fabry-Pérot interferometric sensors for micro-gas chromatography detection,” Sens. Actuators B Chem. 159(1), 60–65 (2011).
[CrossRef]

K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. Khaing Oo, and X. Fan, “Rapid, sensitive, and multiplexed on-chip optical sensors for micro-gas chromatography,” Lab Chip (2011), doi:.
[CrossRef]

J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S.-J. Ja, S.-K. Wang, M. Bai, H. Taub, M. Almasri, and X. Fan, “Fabry-Pérot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
[CrossRef] [PubMed]

J. Liu, Y. Sun, and X. Fan, “Highly versatile fiber-based optical Fabry-Pérot gas sensor,” Opt. Express 17(4), 2731–2738 (2009).
[CrossRef] [PubMed]

Mahm, W.

G. Gauglitz, A. Brecht, G. Kraus, and W. Mahm, “Chemical and biochemical sensors based on interferometry at thin (multi-) layers,” Sens. Actuators B Chem. 11(1-3), 21–27 (1993).
[CrossRef]

Martínez-Hipatl, C.

C. Martínez-Hipatl, S. Muñoz-Aguirre, G. Beltrán-Pérez, J. Castillo-Mixcóatl, and J. Rivera-De la Rosa, “Detection of volatile organic compounds by an interferometric sensor,” Sens. Actuators B Chem. 147(1), 37–42 (2010).
[CrossRef]

Miller, R. A.

G. R. Lambertus, C. S. Fix, S. M. Reidy, R. A. Miller, D. Wheeler, E. Nazarov, and R. Sacks, “Silicon microfabricated column with microfabricated differential mobility spectrometer for GC analysis of volatile organic compounds,” Anal. Chem. 77(23), 7563–7571 (2005).
[CrossRef] [PubMed]

Muñoz-Aguirre, S.

C. Martínez-Hipatl, S. Muñoz-Aguirre, G. Beltrán-Pérez, J. Castillo-Mixcóatl, and J. Rivera-De la Rosa, “Detection of volatile organic compounds by an interferometric sensor,” Sens. Actuators B Chem. 147(1), 37–42 (2010).
[CrossRef]

Nazarov, E.

G. R. Lambertus, C. S. Fix, S. M. Reidy, R. A. Miller, D. Wheeler, E. Nazarov, and R. Sacks, “Silicon microfabricated column with microfabricated differential mobility spectrometer for GC analysis of volatile organic compounds,” Anal. Chem. 77(23), 7563–7571 (2005).
[CrossRef] [PubMed]

Needham, J. W.

E. Özkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 (2008).
[CrossRef] [PubMed]

Noh, H.-

H.- Noh, P. J. Hesketh, and G. C. Frye-Mason, “Parylene gas chromatographic column for rapid thermal cycling,” J. Microelectromech. Syst. 11(6), 718–725 (2002).
[CrossRef]

O’Donnell, M.

Y. Hou, S.-W. Huang, S. Ashkenazi, R. Witte, and M. O’Donnell, “Thin polymer etalon arrays for high-resolution photoacoustic imaging,” J. Biomed. Opt. 13(6), 064033 (2008).
[CrossRef] [PubMed]

Özkumur, E.

E. Özkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 (2008).
[CrossRef] [PubMed]

Patrash, S. J.

E. T. Zellers, S. A. Batterman, M. Han, and S. J. Patrash, “Optimal coating selection for the analysis of organic vapor mixtures with polymer-coated surface acoustic wave sensor arrays,” Anal. Chem. 67(6), 1092–1106 (1995).
[CrossRef] [PubMed]

Potkay, J. A.

M. Agah, J. A. Potkay, G. Lambertus, R. Sacks, and K. D. Wise, “High-performance temperature-programmed microfabricated gas chromatography columns,” J. Microelectromech. Syst. 14(5), 1039–1050 (2005).
[CrossRef]

Reddy, K.

K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. Khaing Oo, and X. Fan, “On-chip Fabry-Pérot interferometric sensors for micro-gas chromatography detection,” Sens. Actuators B Chem. 159(1), 60–65 (2011).
[CrossRef]

K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. Khaing Oo, and X. Fan, “Rapid, sensitive, and multiplexed on-chip optical sensors for micro-gas chromatography,” Lab Chip (2011), doi:.
[CrossRef]

Reichl, D.

Reidy, S.

S. Reidy, D. George, M. Agah, and R. Sacks, “Temperature-programmed GC using silicon microfabricated columns with integrated heaters and temperature sensors,” Anal. Chem. 79(7), 2911–2917 (2007).
[CrossRef] [PubMed]

Reidy, S. M.

G. R. Lambertus, C. S. Fix, S. M. Reidy, R. A. Miller, D. Wheeler, E. Nazarov, and R. Sacks, “Silicon microfabricated column with microfabricated differential mobility spectrometer for GC analysis of volatile organic compounds,” Anal. Chem. 77(23), 7563–7571 (2005).
[CrossRef] [PubMed]

Rivera-De la Rosa, J.

C. Martínez-Hipatl, S. Muñoz-Aguirre, G. Beltrán-Pérez, J. Castillo-Mixcóatl, and J. Rivera-De la Rosa, “Detection of volatile organic compounds by an interferometric sensor,” Sens. Actuators B Chem. 147(1), 37–42 (2010).
[CrossRef]

Sacks, R.

S. Reidy, D. George, M. Agah, and R. Sacks, “Temperature-programmed GC using silicon microfabricated columns with integrated heaters and temperature sensors,” Anal. Chem. 79(7), 2911–2917 (2007).
[CrossRef] [PubMed]

M. Agah, J. A. Potkay, G. Lambertus, R. Sacks, and K. D. Wise, “High-performance temperature-programmed microfabricated gas chromatography columns,” J. Microelectromech. Syst. 14(5), 1039–1050 (2005).
[CrossRef]

G. R. Lambertus, C. S. Fix, S. M. Reidy, R. A. Miller, D. Wheeler, E. Nazarov, and R. Sacks, “Silicon microfabricated column with microfabricated differential mobility spectrometer for GC analysis of volatile organic compounds,” Anal. Chem. 77(23), 7563–7571 (2005).
[CrossRef] [PubMed]

Sun, Y.

J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S.-J. Ja, S.-K. Wang, M. Bai, H. Taub, M. Almasri, and X. Fan, “Fabry-Pérot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
[CrossRef] [PubMed]

J. Liu, Y. Sun, and X. Fan, “Highly versatile fiber-based optical Fabry-Pérot gas sensor,” Opt. Express 17(4), 2731–2738 (2009).
[CrossRef] [PubMed]

Taub, H.

J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S.-J. Ja, S.-K. Wang, M. Bai, H. Taub, M. Almasri, and X. Fan, “Fabry-Pérot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
[CrossRef] [PubMed]

Terry, S. C.

S. C. Terry, J. H. Jerman, and J. B. Angell, “A gas chromatographic air analyzer fabricated on a silicon wafer,” IEEE Trans. Electron. Dev. 26(12), 1880–1886 (1979).
[CrossRef]

Thompson, A. K.

J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S.-J. Ja, S.-K. Wang, M. Bai, H. Taub, M. Almasri, and X. Fan, “Fabry-Pérot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
[CrossRef] [PubMed]

Unlü, M. S.

E. Özkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 (2008).
[CrossRef] [PubMed]

Wang, S.-K.

J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S.-J. Ja, S.-K. Wang, M. Bai, H. Taub, M. Almasri, and X. Fan, “Fabry-Pérot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
[CrossRef] [PubMed]

Wheeler, D.

G. R. Lambertus, C. S. Fix, S. M. Reidy, R. A. Miller, D. Wheeler, E. Nazarov, and R. Sacks, “Silicon microfabricated column with microfabricated differential mobility spectrometer for GC analysis of volatile organic compounds,” Anal. Chem. 77(23), 7563–7571 (2005).
[CrossRef] [PubMed]

Wise, K. D.

M. Agah, J. A. Potkay, G. Lambertus, R. Sacks, and K. D. Wise, “High-performance temperature-programmed microfabricated gas chromatography columns,” J. Microelectromech. Syst. 14(5), 1039–1050 (2005).
[CrossRef]

Witte, R.

Y. Hou, S.-W. Huang, S. Ashkenazi, R. Witte, and M. O’Donnell, “Thin polymer etalon arrays for high-resolution photoacoustic imaging,” J. Biomed. Opt. 13(6), 064033 (2008).
[CrossRef] [PubMed]

Zellers, E. T.

E. T. Zellers, S. A. Batterman, M. Han, and S. J. Patrash, “Optimal coating selection for the analysis of organic vapor mixtures with polymer-coated surface acoustic wave sensor arrays,” Anal. Chem. 67(6), 1092–1106 (1995).
[CrossRef] [PubMed]

Anal. Chem. (4)

J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S.-J. Ja, S.-K. Wang, M. Bai, H. Taub, M. Almasri, and X. Fan, “Fabry-Pérot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010).
[CrossRef] [PubMed]

G. R. Lambertus, C. S. Fix, S. M. Reidy, R. A. Miller, D. Wheeler, E. Nazarov, and R. Sacks, “Silicon microfabricated column with microfabricated differential mobility spectrometer for GC analysis of volatile organic compounds,” Anal. Chem. 77(23), 7563–7571 (2005).
[CrossRef] [PubMed]

S. Reidy, D. George, M. Agah, and R. Sacks, “Temperature-programmed GC using silicon microfabricated columns with integrated heaters and temperature sensors,” Anal. Chem. 79(7), 2911–2917 (2007).
[CrossRef] [PubMed]

E. T. Zellers, S. A. Batterman, M. Han, and S. J. Patrash, “Optimal coating selection for the analysis of organic vapor mixtures with polymer-coated surface acoustic wave sensor arrays,” Anal. Chem. 67(6), 1092–1106 (1995).
[CrossRef] [PubMed]

Appl. Spectrosc. (1)

IEEE Trans. Electron. Dev. (1)

S. C. Terry, J. H. Jerman, and J. B. Angell, “A gas chromatographic air analyzer fabricated on a silicon wafer,” IEEE Trans. Electron. Dev. 26(12), 1880–1886 (1979).
[CrossRef]

J. Biomed. Opt. (1)

Y. Hou, S.-W. Huang, S. Ashkenazi, R. Witte, and M. O’Donnell, “Thin polymer etalon arrays for high-resolution photoacoustic imaging,” J. Biomed. Opt. 13(6), 064033 (2008).
[CrossRef] [PubMed]

J. Microelectromech. Syst. (2)

H.- Noh, P. J. Hesketh, and G. C. Frye-Mason, “Parylene gas chromatographic column for rapid thermal cycling,” J. Microelectromech. Syst. 11(6), 718–725 (2002).
[CrossRef]

M. Agah, J. A. Potkay, G. Lambertus, R. Sacks, and K. D. Wise, “High-performance temperature-programmed microfabricated gas chromatography columns,” J. Microelectromech. Syst. 14(5), 1039–1050 (2005).
[CrossRef]

Lab Chip (1)

K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. Khaing Oo, and X. Fan, “Rapid, sensitive, and multiplexed on-chip optical sensors for micro-gas chromatography,” Lab Chip (2011), doi:.
[CrossRef]

Meas. Sci. Technol. (1)

P. C. Beard, “Interrogation of free-space Fabry–Perot sensing interferometers by angle tuning,” Meas. Sci. Technol. 14(11), 1998–2005 (2003).
[CrossRef]

Opt. Express (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

E. Özkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 (2008).
[CrossRef] [PubMed]

Sens. Actuators B Chem. (3)

C. Martínez-Hipatl, S. Muñoz-Aguirre, G. Beltrán-Pérez, J. Castillo-Mixcóatl, and J. Rivera-De la Rosa, “Detection of volatile organic compounds by an interferometric sensor,” Sens. Actuators B Chem. 147(1), 37–42 (2010).
[CrossRef]

K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. Khaing Oo, and X. Fan, “On-chip Fabry-Pérot interferometric sensors for micro-gas chromatography detection,” Sens. Actuators B Chem. 159(1), 60–65 (2011).
[CrossRef]

G. Gauglitz, A. Brecht, G. Kraus, and W. Mahm, “Chemical and biochemical sensors based on interferometry at thin (multi-) layers,” Sens. Actuators B Chem. 11(1-3), 21–27 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(A) Side view of an on-chip Fabry-Pérot (FP) sensor. Absorption of analytes by polymer results in a change in thickness and/or refractive index of the polymer, which in turn leads to a change in the characteristic FP spectrum as shown in (B). The shift in the spectrum can be measured as a change in reflected intensity at a fixed wavelength.

Fig. 2
Fig. 2

Schematic of the self-referenced composite FP sensor.

Fig. 3
Fig. 3

(A) Fabrication of a composite FP sensor. The sensors are fabricated using a two-step lithography and deep reactive etching process. Polymers are spin-coated or drop-coated on the wafer. (B) Image of the composite FP sensor acquired using a CMOS imager. Each well is 400 μm long and 200 μm wide. The depth offset (i.e., d in Fig. 2) is 1.3 μm. (C) Cross-sectional view of the composite FP sensor on a silicon substrate enclosed by an open-bottom glass microfluidic channel (1 mm deep and 600 μm wide). (D) Schematic of the experimental setup.

Fig. 4
Fig. 4

Response of individual FP sensing elements in the composite FP sensor to 5 ng of acetone at the incident angle of 21° and 26°. In all cases the sensors demonstrate a rapid response time in the sub-second range. Δ(nt) at 21° is 12.51 and Δ(nt) at 26° is 12.48, based on Eq. (4) (assuming that A = 1 in Eq. (4)).

Fig. 5
Fig. 5

Response of sensors at 21° (squares) and 26° (triangles) to various injected masses of (A) acetone, (B) heptane, (C) toluene. (D) Log-log plot corresponding to (C). Error bars are obtained from 5 tests.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I 1 (λ)= R ap + R ps +2× R ap R ps cosϕ,
Δ I 1 =8πcosδ/λ× R ap R ps sin(ϕ)Δ(nt),
Δ I 2 =8πcosδ/λ× R ap R ps sin(φ+θ)Δ(nt),
Δ(nt)=A (Δ I 1 ) 2 + (Δ I 2 ) 2 2cosθΔ I 1 Δ I 2 sinθ ,

Metrics