Abstract

Random perturbations play an important role in the crosstalk of multicore fibers, and can be captured by statistical coupled-mode calculations. In this approach, phase matching contributes a multiplicative factor to the average crosstalk, depending on the perturbation statistics and any intentional heterogeneity of neighboring cores. The impact of perturbations is shown to be qualitatively different depending on whether they are gradually varying, or have short-length (centimeter-scale) variations. This insight implies a novel crosstalk suppression strategy: fast modulation of a bend perturbation by spinning the fiber can disrupt the bend-induced phase matching.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Iano, T. Sato, S. Sentsui, T. Kuroha, and Y. Nishimura, “Multicore optical fiber,” in Optical Fiber Communication, 1979 OSA Technical Digest Series (Optical Society of America, 1979), paper WB1.
  2. B. Rosinski, J. W. D. Chi, P. Grosso, and J. Le Bihan, “Multichannel transmission of a multicore fiber coupled with vertical-cavity surface-emitting lasers,” J. Lightwave Technol. 17(5), 807–810 (1999).
    [CrossRef]
  3. R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
    [CrossRef]
  4. G. Le Noane, P. Grosso, and I. Hardy, “Small, high precision, multicore optical guides and process for the production of said guides,” US Patent 5519801 (1996).
  5. J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7x97x172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multi-core fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB6.
  6. B. Zhu, T. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. Yan, J. Fini, E. Monberg, and F. Dimarcello, “Space-, Wavelength-, Polarization-Division Multiplexed Transmission of 56-Tb/s over a 76.8-km Seven-Core Fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB7.
  7. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber,” Opt. Express 19(17), 16576–16592 (2011).
    [CrossRef] [PubMed]
  8. B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “112-Tb/s space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber,” Opt. Express 19(17), 16665–16671 (2011).
    [CrossRef] [PubMed]
  9. J. M. Fini, B. Zhu, T. F. Taunay, and M. F. Yan, “Low cross-talk design of multi-core fibers,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuAA3.
  10. K. S. Abedin, T. F. Taunay, M. Fishteyn, M. F. Yan, B. Zhu, J. M. Fini, E. M. Monberg, F. V. Dimarcello, and P. W. Wisk, “Amplification and noise properties of an erbium-doped multicore fiber amplifier,” Opt. Express 19(17), 16715–16721 (2011).
    [CrossRef] [PubMed]
  11. K. Imamura, K. Mukasa, and T. Yagi, “Investigation on Multi-Core Fibers with Large Aeff and Low Micro Bending Loss,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OWK6.
  12. J. M. Fini, B. Zhu, T. F. Taunay, and M. F. Yan, “Statistics of crosstalk in bent multicore fibers,” Opt. Express 18(14), 15122–15129 (2010).
    [CrossRef] [PubMed]
  13. H. Haus, W. Huang, S. Kawakami, and N. Whitaker, “Coupled-mode theory of optical waveguides,” J. Lightwave Technol. 5(1), 16–23 (1987).
    [CrossRef]
  14. M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, “Multi-core fiber design and analysis: coupled-mode theory and coupled-power theory,” Opt. Express 19(26), B102–B111 (2011).
    [PubMed]
  15. J. M. Fini, “Crosstalk in multi-core optical fibres,” in Proceedings of ECOC, paper Mo.1.LeCervin.4 (2011).
  16. D. Payne, A. Barlow, and J. Hansen, “Development of low-and high-birefringence optical fibers,” IEEE J. Quantum Electron. 18(4), 477–488 (1982).
    [CrossRef]

2011 (4)

2010 (2)

1999 (1)

1987 (1)

H. Haus, W. Huang, S. Kawakami, and N. Whitaker, “Coupled-mode theory of optical waveguides,” J. Lightwave Technol. 5(1), 16–23 (1987).
[CrossRef]

1982 (1)

D. Payne, A. Barlow, and J. Hansen, “Development of low-and high-birefringence optical fibers,” IEEE J. Quantum Electron. 18(4), 477–488 (1982).
[CrossRef]

Abedin, K. S.

Barlow, A.

D. Payne, A. Barlow, and J. Hansen, “Development of low-and high-birefringence optical fibers,” IEEE J. Quantum Electron. 18(4), 477–488 (1982).
[CrossRef]

Chandrasekhar, S.

Chi, J. W. D.

Dimarcello, F. V.

Essiambre, R. J.

Fini, J. M.

Fishteyn, M.

Foschini, G. J.

Goebel, B.

Grosso, P.

Hansen, J.

D. Payne, A. Barlow, and J. Hansen, “Development of low-and high-birefringence optical fibers,” IEEE J. Quantum Electron. 18(4), 477–488 (1982).
[CrossRef]

Haus, H.

H. Haus, W. Huang, S. Kawakami, and N. Whitaker, “Coupled-mode theory of optical waveguides,” J. Lightwave Technol. 5(1), 16–23 (1987).
[CrossRef]

Hayashi, T.

Huang, W.

H. Haus, W. Huang, S. Kawakami, and N. Whitaker, “Coupled-mode theory of optical waveguides,” J. Lightwave Technol. 5(1), 16–23 (1987).
[CrossRef]

Kawakami, S.

H. Haus, W. Huang, S. Kawakami, and N. Whitaker, “Coupled-mode theory of optical waveguides,” J. Lightwave Technol. 5(1), 16–23 (1987).
[CrossRef]

Koshiba, M.

Kramer, G.

Le Bihan, J.

Liu, X.

Matsuo, S.

Monberg, E. M.

Payne, D.

D. Payne, A. Barlow, and J. Hansen, “Development of low-and high-birefringence optical fibers,” IEEE J. Quantum Electron. 18(4), 477–488 (1982).
[CrossRef]

Rosinski, B.

Saitoh, K.

Sasaki, T.

Sasaoka, E.

Shimakawa, O.

Takenaga, K.

Taru, T.

Taunay, T. F.

Whitaker, N.

H. Haus, W. Huang, S. Kawakami, and N. Whitaker, “Coupled-mode theory of optical waveguides,” J. Lightwave Technol. 5(1), 16–23 (1987).
[CrossRef]

Winzer, P. J.

Wisk, P. W.

Yan, M. F.

Zhu, B.

IEEE J. Quantum Electron. (1)

D. Payne, A. Barlow, and J. Hansen, “Development of low-and high-birefringence optical fibers,” IEEE J. Quantum Electron. 18(4), 477–488 (1982).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Express (5)

Other (7)

S. Iano, T. Sato, S. Sentsui, T. Kuroha, and Y. Nishimura, “Multicore optical fiber,” in Optical Fiber Communication, 1979 OSA Technical Digest Series (Optical Society of America, 1979), paper WB1.

J. M. Fini, “Crosstalk in multi-core optical fibres,” in Proceedings of ECOC, paper Mo.1.LeCervin.4 (2011).

K. Imamura, K. Mukasa, and T. Yagi, “Investigation on Multi-Core Fibers with Large Aeff and Low Micro Bending Loss,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OWK6.

J. M. Fini, B. Zhu, T. F. Taunay, and M. F. Yan, “Low cross-talk design of multi-core fibers,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuAA3.

G. Le Noane, P. Grosso, and I. Hardy, “Small, high precision, multicore optical guides and process for the production of said guides,” US Patent 5519801 (1996).

J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7x97x172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multi-core fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB6.

B. Zhu, T. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. Yan, J. Fini, E. Monberg, and F. Dimarcello, “Space-, Wavelength-, Polarization-Division Multiplexed Transmission of 56-Tb/s over a 76.8-km Seven-Core Fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Coupled-mode model.

Fig. 2
Fig. 2

The standard bend model includes a bend-induced index tilt proportional to the curvature. Bends and other length-varying perturbations shift the index mismatch between cores, and lead to intermittent resonant coupling.

Fig. 3
Fig. 3

The phase-matching factor of crosstalk is calculated as a power spectral density (solid) and compared to the quasi-static approximation (dashed black) for the simple case where the index perturbation is due to constant bend radius and gradual orientation drift.

Fig. 4
Fig. 4

Fast spin of 10turns/meter modulates the bend perturbation, so that it is no longer gradually varying. The power spectral density then has structure imposed by the periodicity of the spin.

Fig. 5
Fig. 5

Power spectral density is calculated for the same parameters as Fig. 4, but with much larger variance in the bend radius. Structure imposed by the spin periodicity is still clearly visible.

Fig. 6
Fig. 6

For a very fast, well-controlled spin (1turn/cm) spin periodicity leaves large gaps in the power spectral density: Crosstalk in this calculation is dramatically reduced for cores with index mismatch in between 0 and 1.55 × 10−4 .

Fig. 7
Fig. 7

While fast spin can disrupt bend-mediated phase matching between cores, other perturbations may not share the spin periodicity. Low-crosstalk regimes remain as long as non-bend perturbations are not too large.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

d dz a=i(D+K)a
a=Pu
d dz P=iDP.
d dz u=i P 1 KPu
d U m,n =i 0 L dz [ P 1 KP ] m,n .
d U m,n =i 0 L dz κ m,n exp[ i 0 z dζδ β n,m (ζ) ]
M m,n = | d U m,n | 2
| d U m,n | 2 = 0 L dz' 0 L dz κ m,n * (z') κ m,n (z)exp[ i z' z dζδ β n,m (ζ) ]
| d U m,n | 2 = | κ m,n | 2 0 L dz' 0 L dz exp[ i z' z dζδ β n,m (ζ) ]
| d U m,n | 2 L | κ m,n | 2 dz exp[ i z' z dζδ β n,m (ζ) ]
| d U m,n (ω) | 2 = | κ m,n | 2 L S ff (δ β n,m 0 )
f(z)=exp[ i 0 z dζδ β n,m var (ζ,ω) ].
| d U m,n | 2 L | κ m,n | 2 dz db p δβ (b) e ib(zz')
| d U m,n | 2 2πL | κ m,n | 2 p δβ (0)
| d U m,n | 2 ~2πL | κ m,n | 2 /Δβ~L | κ m,n | 2 λ/Δ n eff
b 0 =2πγ n core a/ R bend .
p δβ (b)= p θ (θ) | db/dθ | + p θ (θ) | db/dθ | =2 1/(2π) | b 0 sin(θ) |
p δβ (b)= 1 b 0 π 1 ( b/ b 0 ) 2
f(z)exp( iaγ n core Λspin λ R bend sin(2πz/Λspin) )
z' z dζ δ β n,m (ζ)=b(zz')+b' (zz') 2 /2
| d U m,n | 2 L | κ m,n | 2 db p δβ (b) dz e ib(zz') e ib' (zz') 2 /2
| d U m,n | 2 L | κ m,n | 2 db p δβ (b) 2π ib' e i b 2 /(2b')
| d U m,n | 2 2πL | κ m,n | 2 db p δβ (b) i 2b'π e i b 2 /(2b')
i 2b'π e i b 2 /(2b') δ(b)
| d U m,n | 2 2πL | κ m,n | 2 p δβ (0)

Metrics