Abstract

We theoretically and experimentally investigated a novel walk-off-compensation method for efficient ultraviolet beam generation. Through theoretical investigation, we described in detail how the power of a generated UV beam can be enhanced by the method; thus, we obtained a brief expression for the output power which has a prediction error of about 30%. In addition, we found that the beam quality can also be enhanced using this method. Through experiments using an alpha barium borate crystal as a walk-off compensator, we found that the power of the generated ultraviolet beam increased 1.9 times.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Yan, Q. Liu, H. Chen, X. Fu, M. Gong, and D. Wang, “35.1 W all-solid-state 355 nm ultraviolet laser,” Laser Phys. Lett. 7(8), 563–568 (2010).
    [CrossRef]
  2. B. Ruffing, A. Nebel, and R. Wallenstein, “High-power picosecond LiB3O5 optical parametric oscillators tunable in the blue spectral range,” Appl. Phys. B 72, 137–149 (2001).
  3. F. Q. Jia, Q. Zheng, Q. H. Xue, Y. K. Bu, and L. S. Qian, “High-power high-repetition-rate UV light at 355 nm generated by a diode-end-pumped passively Q-switched Nd:YAG laser,” Appl. Opt. 46(15), 2975–2979 (2007).
    [CrossRef] [PubMed]
  4. X. Liu, D. Li, P. Shi, C. R. Haas, A. Schell, N. Wu, and K. Du, “Highly efficient third-harmonic generation with electro-optically Q-switched diode-end-pumped Nd:YVO4 slab laser,” Opt. Commun. 272(1), 192–196 (2007).
    [CrossRef]
  5. L. McDonagh, R. Wallenstein, and A. Nebel, “111 W, 110 MHz repetition-rate, passively mode-locked TEM00Nd:YVO4 master oscillator power amplifier pumped at 888 nm,” Opt. Lett. 32(10), 1259–1261 (2007).
    [CrossRef] [PubMed]
  6. X. Ya, Q. Liu, M. Gong, X. Fu, and D. Wang, “High-repetition-rate high-beam-quality 43 W ultraviolet laser with extra-cavity third harmonic generation,” Appl. Phys. B 95(2), 323–328 (2009).
    [CrossRef]
  7. X. P. Yan, Q. Liu, M. Gong, D. S. Wang, and X. Fu, “Over 8 W high peak power UV laser with a high power Q-switched Nd:YVO4 oscillator and the compact extra-cavity sum-frequency mixing,” Laser Phys. Lett. 6(2), 93–97 (2009).
    [CrossRef]
  8. Y. Bai, Y. H. Li, Z. G. Shen, D. F. Song, Z. Y. Ren, and J. T. Bai, “Electro-optical Q-switch low-repetition-rate narrow-pulse-width UV pulse laser at 355 nm generated by pulsed-diode-pumped Nd:YAG,” Laser Phys. Lett. 6(11), 791–795 (2009).
    [CrossRef]
  9. B. Li, J. Yao, X. Ding, Q. Sheng, and P. Wang, “High efficiency generation of 355 nm radiation by extra-cavity frequency conversion,” Opt. Commun. 283(18), 3497–3499 (2010).
    [CrossRef]
  10. J.-W. Pieterse, A. B. Petersen, C. Pohalsky, E. Cheng, R. Lane, and J. W. L. Nighan, “Q-switched laser system providing UV light,” U.S. patent 5,835,513 (10 November, 1998).
  11. J. L. Nightingale, “Poynting vector walk-off compensation in type II phasematching,” U.S. patent 5,136,597 (4 August, 1992).
  12. H. Hoffman, D. Spence, A. B. Petersen, and J. D. Kafka, “Methods and systems to enhance multiple wave mixing process,” U.S. patent application 2006/0250677 (9 November, 2006).
  13. P. Heist, “Device for the frequency conversion of a fundamental laser frequency to other frequencies,” U.S. patent 0,043,452 A1 (6 March 2003).
  14. V. G. Dmitrieve, G. G. Gurzadyan, and D. N. Nikogosyan, “LiB3O5, lithium triborate (LBO),” in Handbook of Nonlinear Optical Crystals (Springer, Berlin, 1999).
  15. CASIX, Inc., http://www.casix.com/product/crystal-products/birefringent-crystals/a-bbo-crystal.shtml .

2010

X. Yan, Q. Liu, H. Chen, X. Fu, M. Gong, and D. Wang, “35.1 W all-solid-state 355 nm ultraviolet laser,” Laser Phys. Lett. 7(8), 563–568 (2010).
[CrossRef]

B. Li, J. Yao, X. Ding, Q. Sheng, and P. Wang, “High efficiency generation of 355 nm radiation by extra-cavity frequency conversion,” Opt. Commun. 283(18), 3497–3499 (2010).
[CrossRef]

2009

X. Ya, Q. Liu, M. Gong, X. Fu, and D. Wang, “High-repetition-rate high-beam-quality 43 W ultraviolet laser with extra-cavity third harmonic generation,” Appl. Phys. B 95(2), 323–328 (2009).
[CrossRef]

X. P. Yan, Q. Liu, M. Gong, D. S. Wang, and X. Fu, “Over 8 W high peak power UV laser with a high power Q-switched Nd:YVO4 oscillator and the compact extra-cavity sum-frequency mixing,” Laser Phys. Lett. 6(2), 93–97 (2009).
[CrossRef]

Y. Bai, Y. H. Li, Z. G. Shen, D. F. Song, Z. Y. Ren, and J. T. Bai, “Electro-optical Q-switch low-repetition-rate narrow-pulse-width UV pulse laser at 355 nm generated by pulsed-diode-pumped Nd:YAG,” Laser Phys. Lett. 6(11), 791–795 (2009).
[CrossRef]

2007

2001

B. Ruffing, A. Nebel, and R. Wallenstein, “High-power picosecond LiB3O5 optical parametric oscillators tunable in the blue spectral range,” Appl. Phys. B 72, 137–149 (2001).

Bai, J. T.

Y. Bai, Y. H. Li, Z. G. Shen, D. F. Song, Z. Y. Ren, and J. T. Bai, “Electro-optical Q-switch low-repetition-rate narrow-pulse-width UV pulse laser at 355 nm generated by pulsed-diode-pumped Nd:YAG,” Laser Phys. Lett. 6(11), 791–795 (2009).
[CrossRef]

Bai, Y.

Y. Bai, Y. H. Li, Z. G. Shen, D. F. Song, Z. Y. Ren, and J. T. Bai, “Electro-optical Q-switch low-repetition-rate narrow-pulse-width UV pulse laser at 355 nm generated by pulsed-diode-pumped Nd:YAG,” Laser Phys. Lett. 6(11), 791–795 (2009).
[CrossRef]

Bu, Y. K.

Chen, H.

X. Yan, Q. Liu, H. Chen, X. Fu, M. Gong, and D. Wang, “35.1 W all-solid-state 355 nm ultraviolet laser,” Laser Phys. Lett. 7(8), 563–568 (2010).
[CrossRef]

Ding, X.

B. Li, J. Yao, X. Ding, Q. Sheng, and P. Wang, “High efficiency generation of 355 nm radiation by extra-cavity frequency conversion,” Opt. Commun. 283(18), 3497–3499 (2010).
[CrossRef]

Du, K.

X. Liu, D. Li, P. Shi, C. R. Haas, A. Schell, N. Wu, and K. Du, “Highly efficient third-harmonic generation with electro-optically Q-switched diode-end-pumped Nd:YVO4 slab laser,” Opt. Commun. 272(1), 192–196 (2007).
[CrossRef]

Fu, X.

X. Yan, Q. Liu, H. Chen, X. Fu, M. Gong, and D. Wang, “35.1 W all-solid-state 355 nm ultraviolet laser,” Laser Phys. Lett. 7(8), 563–568 (2010).
[CrossRef]

X. P. Yan, Q. Liu, M. Gong, D. S. Wang, and X. Fu, “Over 8 W high peak power UV laser with a high power Q-switched Nd:YVO4 oscillator and the compact extra-cavity sum-frequency mixing,” Laser Phys. Lett. 6(2), 93–97 (2009).
[CrossRef]

X. Ya, Q. Liu, M. Gong, X. Fu, and D. Wang, “High-repetition-rate high-beam-quality 43 W ultraviolet laser with extra-cavity third harmonic generation,” Appl. Phys. B 95(2), 323–328 (2009).
[CrossRef]

Gong, M.

X. Yan, Q. Liu, H. Chen, X. Fu, M. Gong, and D. Wang, “35.1 W all-solid-state 355 nm ultraviolet laser,” Laser Phys. Lett. 7(8), 563–568 (2010).
[CrossRef]

X. P. Yan, Q. Liu, M. Gong, D. S. Wang, and X. Fu, “Over 8 W high peak power UV laser with a high power Q-switched Nd:YVO4 oscillator and the compact extra-cavity sum-frequency mixing,” Laser Phys. Lett. 6(2), 93–97 (2009).
[CrossRef]

X. Ya, Q. Liu, M. Gong, X. Fu, and D. Wang, “High-repetition-rate high-beam-quality 43 W ultraviolet laser with extra-cavity third harmonic generation,” Appl. Phys. B 95(2), 323–328 (2009).
[CrossRef]

Haas, C. R.

X. Liu, D. Li, P. Shi, C. R. Haas, A. Schell, N. Wu, and K. Du, “Highly efficient third-harmonic generation with electro-optically Q-switched diode-end-pumped Nd:YVO4 slab laser,” Opt. Commun. 272(1), 192–196 (2007).
[CrossRef]

Jia, F. Q.

Li, B.

B. Li, J. Yao, X. Ding, Q. Sheng, and P. Wang, “High efficiency generation of 355 nm radiation by extra-cavity frequency conversion,” Opt. Commun. 283(18), 3497–3499 (2010).
[CrossRef]

Li, D.

X. Liu, D. Li, P. Shi, C. R. Haas, A. Schell, N. Wu, and K. Du, “Highly efficient third-harmonic generation with electro-optically Q-switched diode-end-pumped Nd:YVO4 slab laser,” Opt. Commun. 272(1), 192–196 (2007).
[CrossRef]

Li, Y. H.

Y. Bai, Y. H. Li, Z. G. Shen, D. F. Song, Z. Y. Ren, and J. T. Bai, “Electro-optical Q-switch low-repetition-rate narrow-pulse-width UV pulse laser at 355 nm generated by pulsed-diode-pumped Nd:YAG,” Laser Phys. Lett. 6(11), 791–795 (2009).
[CrossRef]

Liu, Q.

X. Yan, Q. Liu, H. Chen, X. Fu, M. Gong, and D. Wang, “35.1 W all-solid-state 355 nm ultraviolet laser,” Laser Phys. Lett. 7(8), 563–568 (2010).
[CrossRef]

X. P. Yan, Q. Liu, M. Gong, D. S. Wang, and X. Fu, “Over 8 W high peak power UV laser with a high power Q-switched Nd:YVO4 oscillator and the compact extra-cavity sum-frequency mixing,” Laser Phys. Lett. 6(2), 93–97 (2009).
[CrossRef]

X. Ya, Q. Liu, M. Gong, X. Fu, and D. Wang, “High-repetition-rate high-beam-quality 43 W ultraviolet laser with extra-cavity third harmonic generation,” Appl. Phys. B 95(2), 323–328 (2009).
[CrossRef]

Liu, X.

X. Liu, D. Li, P. Shi, C. R. Haas, A. Schell, N. Wu, and K. Du, “Highly efficient third-harmonic generation with electro-optically Q-switched diode-end-pumped Nd:YVO4 slab laser,” Opt. Commun. 272(1), 192–196 (2007).
[CrossRef]

McDonagh, L.

Nebel, A.

L. McDonagh, R. Wallenstein, and A. Nebel, “111 W, 110 MHz repetition-rate, passively mode-locked TEM00Nd:YVO4 master oscillator power amplifier pumped at 888 nm,” Opt. Lett. 32(10), 1259–1261 (2007).
[CrossRef] [PubMed]

B. Ruffing, A. Nebel, and R. Wallenstein, “High-power picosecond LiB3O5 optical parametric oscillators tunable in the blue spectral range,” Appl. Phys. B 72, 137–149 (2001).

Qian, L. S.

Ren, Z. Y.

Y. Bai, Y. H. Li, Z. G. Shen, D. F. Song, Z. Y. Ren, and J. T. Bai, “Electro-optical Q-switch low-repetition-rate narrow-pulse-width UV pulse laser at 355 nm generated by pulsed-diode-pumped Nd:YAG,” Laser Phys. Lett. 6(11), 791–795 (2009).
[CrossRef]

Ruffing, B.

B. Ruffing, A. Nebel, and R. Wallenstein, “High-power picosecond LiB3O5 optical parametric oscillators tunable in the blue spectral range,” Appl. Phys. B 72, 137–149 (2001).

Schell, A.

X. Liu, D. Li, P. Shi, C. R. Haas, A. Schell, N. Wu, and K. Du, “Highly efficient third-harmonic generation with electro-optically Q-switched diode-end-pumped Nd:YVO4 slab laser,” Opt. Commun. 272(1), 192–196 (2007).
[CrossRef]

Shen, Z. G.

Y. Bai, Y. H. Li, Z. G. Shen, D. F. Song, Z. Y. Ren, and J. T. Bai, “Electro-optical Q-switch low-repetition-rate narrow-pulse-width UV pulse laser at 355 nm generated by pulsed-diode-pumped Nd:YAG,” Laser Phys. Lett. 6(11), 791–795 (2009).
[CrossRef]

Sheng, Q.

B. Li, J. Yao, X. Ding, Q. Sheng, and P. Wang, “High efficiency generation of 355 nm radiation by extra-cavity frequency conversion,” Opt. Commun. 283(18), 3497–3499 (2010).
[CrossRef]

Shi, P.

X. Liu, D. Li, P. Shi, C. R. Haas, A. Schell, N. Wu, and K. Du, “Highly efficient third-harmonic generation with electro-optically Q-switched diode-end-pumped Nd:YVO4 slab laser,” Opt. Commun. 272(1), 192–196 (2007).
[CrossRef]

Song, D. F.

Y. Bai, Y. H. Li, Z. G. Shen, D. F. Song, Z. Y. Ren, and J. T. Bai, “Electro-optical Q-switch low-repetition-rate narrow-pulse-width UV pulse laser at 355 nm generated by pulsed-diode-pumped Nd:YAG,” Laser Phys. Lett. 6(11), 791–795 (2009).
[CrossRef]

Wallenstein, R.

L. McDonagh, R. Wallenstein, and A. Nebel, “111 W, 110 MHz repetition-rate, passively mode-locked TEM00Nd:YVO4 master oscillator power amplifier pumped at 888 nm,” Opt. Lett. 32(10), 1259–1261 (2007).
[CrossRef] [PubMed]

B. Ruffing, A. Nebel, and R. Wallenstein, “High-power picosecond LiB3O5 optical parametric oscillators tunable in the blue spectral range,” Appl. Phys. B 72, 137–149 (2001).

Wang, D.

X. Yan, Q. Liu, H. Chen, X. Fu, M. Gong, and D. Wang, “35.1 W all-solid-state 355 nm ultraviolet laser,” Laser Phys. Lett. 7(8), 563–568 (2010).
[CrossRef]

X. Ya, Q. Liu, M. Gong, X. Fu, and D. Wang, “High-repetition-rate high-beam-quality 43 W ultraviolet laser with extra-cavity third harmonic generation,” Appl. Phys. B 95(2), 323–328 (2009).
[CrossRef]

Wang, D. S.

X. P. Yan, Q. Liu, M. Gong, D. S. Wang, and X. Fu, “Over 8 W high peak power UV laser with a high power Q-switched Nd:YVO4 oscillator and the compact extra-cavity sum-frequency mixing,” Laser Phys. Lett. 6(2), 93–97 (2009).
[CrossRef]

Wang, P.

B. Li, J. Yao, X. Ding, Q. Sheng, and P. Wang, “High efficiency generation of 355 nm radiation by extra-cavity frequency conversion,” Opt. Commun. 283(18), 3497–3499 (2010).
[CrossRef]

Wu, N.

X. Liu, D. Li, P. Shi, C. R. Haas, A. Schell, N. Wu, and K. Du, “Highly efficient third-harmonic generation with electro-optically Q-switched diode-end-pumped Nd:YVO4 slab laser,” Opt. Commun. 272(1), 192–196 (2007).
[CrossRef]

Xue, Q. H.

Ya, X.

X. Ya, Q. Liu, M. Gong, X. Fu, and D. Wang, “High-repetition-rate high-beam-quality 43 W ultraviolet laser with extra-cavity third harmonic generation,” Appl. Phys. B 95(2), 323–328 (2009).
[CrossRef]

Yan, X.

X. Yan, Q. Liu, H. Chen, X. Fu, M. Gong, and D. Wang, “35.1 W all-solid-state 355 nm ultraviolet laser,” Laser Phys. Lett. 7(8), 563–568 (2010).
[CrossRef]

Yan, X. P.

X. P. Yan, Q. Liu, M. Gong, D. S. Wang, and X. Fu, “Over 8 W high peak power UV laser with a high power Q-switched Nd:YVO4 oscillator and the compact extra-cavity sum-frequency mixing,” Laser Phys. Lett. 6(2), 93–97 (2009).
[CrossRef]

Yao, J.

B. Li, J. Yao, X. Ding, Q. Sheng, and P. Wang, “High efficiency generation of 355 nm radiation by extra-cavity frequency conversion,” Opt. Commun. 283(18), 3497–3499 (2010).
[CrossRef]

Zheng, Q.

Appl. Opt.

Appl. Phys. B

B. Ruffing, A. Nebel, and R. Wallenstein, “High-power picosecond LiB3O5 optical parametric oscillators tunable in the blue spectral range,” Appl. Phys. B 72, 137–149 (2001).

X. Ya, Q. Liu, M. Gong, X. Fu, and D. Wang, “High-repetition-rate high-beam-quality 43 W ultraviolet laser with extra-cavity third harmonic generation,” Appl. Phys. B 95(2), 323–328 (2009).
[CrossRef]

Laser Phys. Lett.

X. P. Yan, Q. Liu, M. Gong, D. S. Wang, and X. Fu, “Over 8 W high peak power UV laser with a high power Q-switched Nd:YVO4 oscillator and the compact extra-cavity sum-frequency mixing,” Laser Phys. Lett. 6(2), 93–97 (2009).
[CrossRef]

Y. Bai, Y. H. Li, Z. G. Shen, D. F. Song, Z. Y. Ren, and J. T. Bai, “Electro-optical Q-switch low-repetition-rate narrow-pulse-width UV pulse laser at 355 nm generated by pulsed-diode-pumped Nd:YAG,” Laser Phys. Lett. 6(11), 791–795 (2009).
[CrossRef]

X. Yan, Q. Liu, H. Chen, X. Fu, M. Gong, and D. Wang, “35.1 W all-solid-state 355 nm ultraviolet laser,” Laser Phys. Lett. 7(8), 563–568 (2010).
[CrossRef]

Opt. Commun.

X. Liu, D. Li, P. Shi, C. R. Haas, A. Schell, N. Wu, and K. Du, “Highly efficient third-harmonic generation with electro-optically Q-switched diode-end-pumped Nd:YVO4 slab laser,” Opt. Commun. 272(1), 192–196 (2007).
[CrossRef]

B. Li, J. Yao, X. Ding, Q. Sheng, and P. Wang, “High efficiency generation of 355 nm radiation by extra-cavity frequency conversion,” Opt. Commun. 283(18), 3497–3499 (2010).
[CrossRef]

Opt. Lett.

Other

J.-W. Pieterse, A. B. Petersen, C. Pohalsky, E. Cheng, R. Lane, and J. W. L. Nighan, “Q-switched laser system providing UV light,” U.S. patent 5,835,513 (10 November, 1998).

J. L. Nightingale, “Poynting vector walk-off compensation in type II phasematching,” U.S. patent 5,136,597 (4 August, 1992).

H. Hoffman, D. Spence, A. B. Petersen, and J. D. Kafka, “Methods and systems to enhance multiple wave mixing process,” U.S. patent application 2006/0250677 (9 November, 2006).

P. Heist, “Device for the frequency conversion of a fundamental laser frequency to other frequencies,” U.S. patent 0,043,452 A1 (6 March 2003).

V. G. Dmitrieve, G. G. Gurzadyan, and D. N. Nikogosyan, “LiB3O5, lithium triborate (LBO),” in Handbook of Nonlinear Optical Crystals (Springer, Berlin, 1999).

CASIX, Inc., http://www.casix.com/product/crystal-products/birefringent-crystals/a-bbo-crystal.shtml .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Scheme of walk-off compensation: (a) uncompensation case, (b) compensation case.

Fig. 2
Fig. 2

Output-power ratio as function of walk-off compensation amount.

Fig. 3
Fig. 3

Spatial beam profiles of output beam in uncompensated and compensated case.

Fig. 4
Fig. 4

Setup for green and UV generation.

Fig. 5
Fig. 5

Power of 532-nm beam versus temperature of 532-nm-generation crystal.

Fig. 6
Fig. 6

Power of 355-nm beam versus temperature of 532-nm-generation crystal.

Fig. 7
Fig. 7

Power of 355-nm beam versus temperature of 355-nm-generation crystal.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

γ 2,com l com = γ 2,SFG ( l SFG /2),
E i E i (x,y) E i,0 before e x 2 + y 2 w i 2 ,
E 1 = E 1 (x,y)= E 1,0 e x 2 + y 2 w 1 2
E 2 = E 2 (x,y,z)= E 2,0 e 2 (x+ γ 2,SFG z x 0 ) 2 + y 2 w 1 2 ,
E 3,out = E 3,out (x,y) =const d eff 0 l SFG E 1 (x,y) E 2 (x,y,z)dz =const d eff E 1,0 E 2,0 e ( x 2 w 1 2 +3 y 2 w 1 2 ) 0 l SFG e 2 (x+ γ 2,SFG z x 0 ) 2 w 1 2 dz
I 3,out = I 3,out (x,y) =const d eff 2 I 1,0 I 2,0 e 2( x 2 w 1 2 +3 y 2 w 1 2 ) ( 0 l SFG e 2 (x+ γ 2,SFG z x 0 ) 2 w 1 2 dz ) 2
P 3,out = + + I 3,out (x,y)dxdy =const d eff 2 I 1,0 I 2,0 π 6 w 1 + e 2 x 2 w 1 2 ( 0 l SFG e 2 (x+ γ 2,SFG z x 0 ) 2 w 1 2 dz ) 2 dx
P 3,out P 3,out un = + e 2 x 2 w 1 2 ( 0 l SFG e 2 (x+ γ 2,SFG z x 0 ) 2 w 1 2 dz ) 2 dx + e 2 x 2 w 1 2 ( 0 l SFG e 2 (x+ γ 2,SFG z) 2 w 1 2 dz ) 2 dx

Metrics