Abstract

We present an ultra-widely tunable non-collinear optical parametric oscillator with an average output power of more than 3 W and a repetition frequency of 34 MHz. The system is pumped by the second harmonic of a femtosecond Yb:KLu(WO4)2 thin-disk laser oscillator. The wavelength of the signal pulse can be rapidly tuned over a wide range from the visible to the NIR just by scanning the resonator length.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. T. Reid, G. T. Kennedy, A. Miller, W. Sibbett, and M. Ebrahimzadeh, “Widely tunable, near- to mid-infrared femtosecond and picosecond optical parametric oscillators using periodically poled LiNbO3 and RbTiOAsO4,” IEEE J. Sel. Top. Quantum Electron. 4(2), 238–248 (1998).
    [CrossRef]
  2. K. V. Bhupathiraju, A. D. Seymour, and F. Ganikhanov, “Femtosecond optical parametric oscillator based on periodically poled stoichiometric LiTaO3 crystal,” Opt. Lett. 34(14), 2093–2095 (2009).
    [CrossRef] [PubMed]
  3. J. D. Rowley, S. Yang, and F. Ganikhanov, “Power and tuning characteristics of a broadly tunable femtosecond optical parametric oscillator based on periodically poled stoichiometric lithium tantalate,” J. Opt. Soc. Am. B 28(5), 1026–1036 (2011).
    [CrossRef]
  4. M. Ghotbi, A. Esteban-Martin, and M. Ebrahim-Zadeh, “Tunable, high-repetition-rate, femtosecond pulse generation in the ultraviolet,” Opt. Lett. 33(4), 345–347 (2008).
    [CrossRef] [PubMed]
  5. G. M. Gale, M. Cavallari, and F. Hache, “Femtosecond visible optical parametric oscillator,” J. Opt. Soc. Am. B 15(2), 702–714 (1998).
    [CrossRef]
  6. F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8-4.8 microm,” Opt. Lett. 34(9), 1330–1332 (2009).
    [CrossRef] [PubMed]
  7. T. P. Lamour, L. Kornaszewski, J. H. Sun, and D. T. Reid, “Yb:fiber-laser-pumped high-energy picosecond optical parametric oscillator,” Opt. Express 17(16), 14229–14234 (2009).
    [CrossRef] [PubMed]
  8. R. Hegenbarth, A. Steinmann, G. Tóth, J. Hebling, and H. Giessen, “Two-color femtosecond optical parametric oscillator with 1.7 W output pumped by a 7.4 W Yb:KGW laser,” J. Opt. Soc. Am. B 28(5), 1344–1352 (2011).
    [CrossRef]
  9. S. Rausch, T. Binhammer, A. Harth, J. Kim, R. Ell, F. X. Kärtner, and U. Morgner, “Controlled waveforms on the single-cycle scale from a femtosecond oscillator,” Opt. Express 16(13), 9739–9745 (2008).
    [CrossRef] [PubMed]
  10. T. Binhammer, S. Rausch, M. Jackstadt, G. Palmer, and U. Morgner, “Phase-stable Ti:sapphire oscillator quasi-synchronously pumped by a thin-disk laser,” Appl. Phys. B 100(1), 219–223 (2010).
    [CrossRef]
  11. F. X. Kärtner, U. Morgner, R. Ell, T. Schibli, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Ultrabroadband double-chirped mirror pairs for generation of octave spectra,” J. Opt. Soc. Am. B 18(6), 882–885 (2001).
    [CrossRef]
  12. G. Palmer, M. Schultze, M. Siegel, M. Emons, U. Bünting, and U. Morgner, “Passively mode-locked Yb:KLu(WO4)2 thin-disk oscillator operated in the positive and negative dispersion regime,” Opt. Lett. 33(14), 1608–1610 (2008).
    [CrossRef] [PubMed]
  13. J. Bromage, J. Rothhardt, S. Hädrich, C. Dorrer, C. Jocher, S. Demmler, J. Limpert, A. Tünnermann, and J. D. Zuegel, “Analysis and suppression of parasitic processes in noncollinear optical parametric amplifiers,” Opt. Express 19(18), 16797–16808 (2011).
    [CrossRef] [PubMed]
  14. A. L. Oien, I. T. McKinnie, P. Jain, N. A. Russell, D. M. Warrington, and L. A. W. Gloster, “Efficient, low-threshold collinear and noncollinear β-barium borate optical parametric oscillators,” Opt. Lett. 22(12), 859–861 (1997).
    [CrossRef] [PubMed]
  15. U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,” Opt. Lett. 24(6), 411–413 (1999).
    [CrossRef] [PubMed]

2011 (3)

2010 (1)

T. Binhammer, S. Rausch, M. Jackstadt, G. Palmer, and U. Morgner, “Phase-stable Ti:sapphire oscillator quasi-synchronously pumped by a thin-disk laser,” Appl. Phys. B 100(1), 219–223 (2010).
[CrossRef]

2009 (3)

2008 (3)

2001 (1)

1999 (1)

1998 (2)

D. T. Reid, G. T. Kennedy, A. Miller, W. Sibbett, and M. Ebrahimzadeh, “Widely tunable, near- to mid-infrared femtosecond and picosecond optical parametric oscillators using periodically poled LiNbO3 and RbTiOAsO4,” IEEE J. Sel. Top. Quantum Electron. 4(2), 238–248 (1998).
[CrossRef]

G. M. Gale, M. Cavallari, and F. Hache, “Femtosecond visible optical parametric oscillator,” J. Opt. Soc. Am. B 15(2), 702–714 (1998).
[CrossRef]

1997 (1)

Adler, F.

Angelow, G.

Bhupathiraju, K. V.

Binhammer, T.

T. Binhammer, S. Rausch, M. Jackstadt, G. Palmer, and U. Morgner, “Phase-stable Ti:sapphire oscillator quasi-synchronously pumped by a thin-disk laser,” Appl. Phys. B 100(1), 219–223 (2010).
[CrossRef]

S. Rausch, T. Binhammer, A. Harth, J. Kim, R. Ell, F. X. Kärtner, and U. Morgner, “Controlled waveforms on the single-cycle scale from a femtosecond oscillator,” Opt. Express 16(13), 9739–9745 (2008).
[CrossRef] [PubMed]

Bromage, J.

Bünting, U.

Cavallari, M.

Chen, Y.

Cho, S. H.

Cossel, K. C.

Demmler, S.

Dorrer, C.

Ebrahimzadeh, M.

D. T. Reid, G. T. Kennedy, A. Miller, W. Sibbett, and M. Ebrahimzadeh, “Widely tunable, near- to mid-infrared femtosecond and picosecond optical parametric oscillators using periodically poled LiNbO3 and RbTiOAsO4,” IEEE J. Sel. Top. Quantum Electron. 4(2), 238–248 (1998).
[CrossRef]

Ebrahim-Zadeh, M.

Ell, R.

Emons, M.

Esteban-Martin, A.

Fermann, M. E.

Fujimoto, J. G.

Gale, G. M.

Ganikhanov, F.

Ghotbi, M.

Giessen, H.

Gloster, L. A. W.

Hache, F.

Hädrich, S.

Harth, A.

Hartl, I.

Haus, H. A.

Hebling, J.

Hegenbarth, R.

Ippen, E. P.

Jackstadt, M.

T. Binhammer, S. Rausch, M. Jackstadt, G. Palmer, and U. Morgner, “Phase-stable Ti:sapphire oscillator quasi-synchronously pumped by a thin-disk laser,” Appl. Phys. B 100(1), 219–223 (2010).
[CrossRef]

Jain, P.

Jocher, C.

Kärtner, F. X.

Kennedy, G. T.

D. T. Reid, G. T. Kennedy, A. Miller, W. Sibbett, and M. Ebrahimzadeh, “Widely tunable, near- to mid-infrared femtosecond and picosecond optical parametric oscillators using periodically poled LiNbO3 and RbTiOAsO4,” IEEE J. Sel. Top. Quantum Electron. 4(2), 238–248 (1998).
[CrossRef]

Kim, J.

Kornaszewski, L.

Lamour, T. P.

Limpert, J.

McKinnie, I. T.

Miller, A.

D. T. Reid, G. T. Kennedy, A. Miller, W. Sibbett, and M. Ebrahimzadeh, “Widely tunable, near- to mid-infrared femtosecond and picosecond optical parametric oscillators using periodically poled LiNbO3 and RbTiOAsO4,” IEEE J. Sel. Top. Quantum Electron. 4(2), 238–248 (1998).
[CrossRef]

Morgner, U.

Oien, A. L.

Palmer, G.

T. Binhammer, S. Rausch, M. Jackstadt, G. Palmer, and U. Morgner, “Phase-stable Ti:sapphire oscillator quasi-synchronously pumped by a thin-disk laser,” Appl. Phys. B 100(1), 219–223 (2010).
[CrossRef]

G. Palmer, M. Schultze, M. Siegel, M. Emons, U. Bünting, and U. Morgner, “Passively mode-locked Yb:KLu(WO4)2 thin-disk oscillator operated in the positive and negative dispersion regime,” Opt. Lett. 33(14), 1608–1610 (2008).
[CrossRef] [PubMed]

Rausch, S.

T. Binhammer, S. Rausch, M. Jackstadt, G. Palmer, and U. Morgner, “Phase-stable Ti:sapphire oscillator quasi-synchronously pumped by a thin-disk laser,” Appl. Phys. B 100(1), 219–223 (2010).
[CrossRef]

S. Rausch, T. Binhammer, A. Harth, J. Kim, R. Ell, F. X. Kärtner, and U. Morgner, “Controlled waveforms on the single-cycle scale from a femtosecond oscillator,” Opt. Express 16(13), 9739–9745 (2008).
[CrossRef] [PubMed]

Reid, D. T.

T. P. Lamour, L. Kornaszewski, J. H. Sun, and D. T. Reid, “Yb:fiber-laser-pumped high-energy picosecond optical parametric oscillator,” Opt. Express 17(16), 14229–14234 (2009).
[CrossRef] [PubMed]

D. T. Reid, G. T. Kennedy, A. Miller, W. Sibbett, and M. Ebrahimzadeh, “Widely tunable, near- to mid-infrared femtosecond and picosecond optical parametric oscillators using periodically poled LiNbO3 and RbTiOAsO4,” IEEE J. Sel. Top. Quantum Electron. 4(2), 238–248 (1998).
[CrossRef]

Rothhardt, J.

Rowley, J. D.

Russell, N. A.

Scheuer, V.

Schibli, T.

Schultze, M.

Seymour, A. D.

Sibbett, W.

D. T. Reid, G. T. Kennedy, A. Miller, W. Sibbett, and M. Ebrahimzadeh, “Widely tunable, near- to mid-infrared femtosecond and picosecond optical parametric oscillators using periodically poled LiNbO3 and RbTiOAsO4,” IEEE J. Sel. Top. Quantum Electron. 4(2), 238–248 (1998).
[CrossRef]

Siegel, M.

Steinmann, A.

Sun, J. H.

Thorpe, M. J.

Tóth, G.

Tschudi, T.

Tünnermann, A.

Warrington, D. M.

Yang, S.

Ye, J.

Zuegel, J. D.

Appl. Phys. B (1)

T. Binhammer, S. Rausch, M. Jackstadt, G. Palmer, and U. Morgner, “Phase-stable Ti:sapphire oscillator quasi-synchronously pumped by a thin-disk laser,” Appl. Phys. B 100(1), 219–223 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. T. Reid, G. T. Kennedy, A. Miller, W. Sibbett, and M. Ebrahimzadeh, “Widely tunable, near- to mid-infrared femtosecond and picosecond optical parametric oscillators using periodically poled LiNbO3 and RbTiOAsO4,” IEEE J. Sel. Top. Quantum Electron. 4(2), 238–248 (1998).
[CrossRef]

J. Opt. Soc. Am. B (4)

Opt. Express (3)

Opt. Lett. (6)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of NOPO-setup. LBO: SHG crystal (1.6 mm), DM: dichroic mirror (HR 1030, AR 515 nm), BD: beam dump, PM: pump mirror, L: lens (f = 60 mm), BBO: nonlinear crystal (2 mm), DCM: double-chirped mirror pairs, FS: AR-coated Fused Silica (10 mm / 16 mm / 29 mm opt. length), W1/W2: wedge pair (BaF2) or prism pair (LaK8), OC: output coupler (T = 15%)

Fig. 2
Fig. 2

(a) OPO signal output power vs. pump power (corrected for the 21.6% reflection losses) for two different signal wavelengths. (b) Picked continuously tunable signal spectra by varying the resonator length. The inset shows the calculated Fourier limit and optimized average output power, respectively.

Fig. 4
Fig. 4

Tunability of the signal wavelength by changing the OPO resonator length without any realignment.(a) Signal spectra for different amounts of internal net dispersion. The black curves reveal the calculated internal group delay (1) −800 fs2 no glass, (2) 800 fs2 FS, (3) 2000 fs2 FS, (4) 2000 fs2 LaK8, (5) 3500 fs2 LaK8, (6) 5000 fs2 LaK8 - approximate values at 800 nm. (b) Signal spectra of curve (4) measured by a CCD based spectrometer (grey) and a scanning spectrometer (green) and the corresponding signal output power (red curve).

Fig. 3
Fig. 3

(a) Radio-frequency analysis of the fundamental repetition frequency for two different signal wavelengths with 10 Hz resolution. The inset shows the zoom for 780 nm with 1 Hz resolution. (b) Signal output power (red). The pump thin disk laser is running with actively controlled repetition frequency. The drop in the signal output power is related to the pump power.

Metrics