Abstract

In Sm3+-doped K+–Na+ ion-exchanged aluminum germanate (NMAG) glass channel waveguide, a clear and compact red amplified spontaneous emission (ASE) trace is observed under the excitation of a 488nm Ar+ laser. 78% photons of ASE fluorescence in visible region are demonstrated to be located in 600−730nm wavelength range. High-directivity and high-brightness ASE fluorescence of Sm3+-doped NMAG glass channel waveguide, which matches the excitation band of most photosensitizers (PS) currently used in photodynamic therapy (PDT) or clinical trials, has promising potential application as an excitation light source for PDT treatment.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
    [CrossRef] [PubMed]
  2. S. Brown, “Photodynamic therapy: two photons are better than one,” Nat. Photonics 2(7), 394–395 (2008).
    [CrossRef]
  3. S. B. Brown, E. A. Brown, and I. Walker, “The present and future role of photodynamic therapy in cancer treatment,” Lancet Oncol. 5(8), 497–508 (2004).
    [CrossRef] [PubMed]
  4. K. Uk, D. A. Makarov, L. S. Yup, B. S. Jin, and G. V. Papayan, “Illuminator for photodynamic therapy and fluorescence diagnosis with lightguide output of the radiation,” J. Opt. Technol. 75(12), 772–777 (2008).
    [CrossRef]
  5. L. Brancaleon and H. Moseley, “Laser and non-laser light sources for photodynamic therapy,” Lasers Med. Sci. 17(3), 173–186 (2002).
    [CrossRef] [PubMed]
  6. K. Maheshvaran, K. Linganna, and K. Marimuthu, “Composition dependent structural and optical properties of Sm3+ doped boro-tellurite glasses,” J. Lumin. 131(12), 2746–2753 (2011).
    [CrossRef]
  7. Z. Yang, G. Tang, L. Luo, and W. Chen, “Modified local environment and enhanced near-infrared luminescence of Sm3+ in chalcohalide glasses,” Appl. Phys. Lett. 89(13), 131117 (2006).
    [CrossRef]
  8. T. Hayakawa, H. Ooishi, and M. Nogami, “Optical bistability of stimulated-emission lines in Sm(3+)-doped glass microspheres,” Opt. Lett. 26(2), 84–86 (2001).
    [CrossRef] [PubMed]
  9. G. Lakshminarayana and J. Qiu, “Photoluminescence of Pr3+, Sm3+ and Dy3+-doped SiO2–Al2O3–BaF2–GdF3 glasses,” J. Alloy. Comp. 476(1-2), 470–476 (2009).
    [CrossRef]
  10. K. S. V. Sudhakar, M. S. Reddy, L. S. Rao, and N. Veeraiah, “Influence of modifier oxide on spectroscopic and thermoluminescence characteristics of Sm3+ ion in antimony borate glass system,” J. Lumin. 128(11), 1791–1798 (2008).
    [CrossRef]
  11. Z. Mazurak, S. Bodyl, R. Lisiecki, J. Gabrys-Pisarska, and M. Czaja, “Optical properties of Pr3+, Sm3+ and Er3+ doped P2O5–CaO–SrO–BaO phosphate glass,” Opt. Mater. 32(4), 547–553 (2010).
    [CrossRef]
  12. G. Lakshminarayana, R. Yang, J. R. Qiu, M. G. Brik, G. A. Kumar, and I. V. Kityk, “White light emission from Sm3+/Tb3+ codoped oxyfluoride aluminosilicate glasses under UV light excitation,” J. Phys. D Appl. Phys. 42(1), 015414 (2009).
    [CrossRef]
  13. Y. K. Sharma, S. S. L. Surana, R. P. Dubedi, and V. Joshi, “Spectroscopic and radiative properties of Sm3+ doped zinc fluoride borophosphate glasses,” Mater. Sci. Eng. B 119(2), 131–135 (2005).
    [CrossRef]
  14. B. C. Jamalaiah, J. S. Kumar, A. M. Babu, T. Sunhasini, and L. R. Moorthy, “Photoluminescence properties of Sm3+ in LBTAF glasses,” J. Lumin. 129(4), 363–369 (2009).
    [CrossRef]
  15. G. Kawamura, T. Hayakawa, and M. Nogami, “Effect of counter ions on the reduction process of Sm3+ ions in TiO2–ZrO2–Al2O3–SiO2 glasses,” J. Alloy. Comp. 408–412, 845–847 (2006).
    [CrossRef]
  16. G. Manojkumar, B. Shivakiranbhaktha, and D. Narayanarao, “Self-quenching of spontaneous emission in Sm3+ doped lead-borate glass,” Opt. Mater. 28(11), 1266–1270 (2006).
    [CrossRef]
  17. T. Som and B. Karmakar, “Infrared-to-red upconversion luminescence in samarium-doped antimony glasses,” J. Lumin. 128(12), 1989–1996 (2008).
    [CrossRef]
  18. S. Rada, P. Pascuta, M. Rada, and E. Culea, “Effects of samarium (III) oxide content on structural investigations of the samarium–vanadate–tellurate glasses and glass ceramics,” J. Non-Cryst. Solids 357(19-20), 3405–3409 (2011).
    [CrossRef]
  19. S. Sakirzanovas, A. Katelnikovas, D. Dutczak, A. Kareiva, and T. Justel, “Synthesis and Sm2+/Sm3+ doping effects on photoluminescence properties of Sr4Al14O25,” J. Lumin. 131(11), 2255–2262 (2011).
    [CrossRef]
  20. G. Okada, B. Morrell, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, and S. Kasap, “Spatially resolved measurement of high doses in microbeam radiation therapy using samarium doped fluorophosphate glasses,” Appl. Phys. Lett. 99(12), 121105 (2011).
    [CrossRef]
  21. R. Praveena, V. Venkatramu, P. Babu, and C. K. Jayasankar, “Fluorescence spectroscopy of Sm3+ ions in P2O5–PbO– Nb2O5 glasses,” Physica B 403(19-20), 3527–3534 (2008).
    [CrossRef]
  22. A. Kumar, D. K. Rai, and S. B. Rai, “Optical properties of Sm3+ ions doped in tellurite glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 59(5), 917–925 (2003).
    [CrossRef] [PubMed]
  23. L. H. Huang, A. Jha, and S. X. Shen, “Spectroscopic properties of Sm3+-doped oxide and fluoride glasses for efficient visible lasers (560−660 nm),” Opt. Commun. 281(17), 4370–4373 (2008).
    [CrossRef]
  24. J. S. Kumar, K. Pavani, T. Sasikala, A. S. Rao, N. K. Giri, S. B. Rai, and L. R. Moorthy, “Photoluminescence and energy transfer properties of Sm3+ doped CFB glasses,” Solid State Sci. 13(8), 1548–1553 (2011).
    [CrossRef]
  25. Y. Hasegawa, S. Tsuruoka, T. Yoshida, H. Kawai, and T. Kawai, “Enhanced deep-red luminescence of tris(hexafluoroacetylacetonato)samarium(III) complex with phenanthroline in solution by control of ligand coordination,” J. Phys. Chem. A 112(5), 803–807 (2008).
    [CrossRef] [PubMed]
  26. C. Koughia, A. Edgar, C. R. Varoy, G. Okada, H. von Seggern, G. Belev, C. Y. Kim, R. Sammynaiken, and S. Kasap, “Samarium-doped fluorochlorozirconate glass–ceramics as red-emitting X-ray phosphors,” J. Am. Ceram. Soc. 94(2), 543–550 (2011).
    [CrossRef]
  27. H. Liang and F. Xie, “Optical investigation of Sm(III)-β-diketonate complexes with different neutral ligands,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 73(2), 309–312 (2009).
    [CrossRef] [PubMed]
  28. X. Liang, Y. Yang, C. Zhu, S. Yuan, G. Chen, A. Pring, and F. Xia, “Luminescence properties of Tb3+–Sm3+ codoped glasses for white light emitting diodes,” Appl. Phys. Lett. 91(9), 091104 (2007).
    [CrossRef]
  29. H. Kawai, C. Zhao, S. Tsuruoka, T. Yoshida, Y. Hasegawa, and T. Kawai, “Emission properties of Sm (III) complexes having remarkably deep-red emission band,” J. Alloy. Comp. 488(2), 612–614 (2009).
    [CrossRef]
  30. D. L. Yang, E. Y. B. Pun, B. J. Chen, and H. Lin, “Radiative transitions and optical gains in Er3+/Yb3+ codoped acid-resistant ion exchanged germanate glass channel waveguides,” J. Opt. Soc. Am. B 26(2), 357–363 (2009).
    [CrossRef]
  31. K. S. Chiang, Q. Liu, and K. P. Lor, “Refractive-index profiling of buried planar waveguides by an inverse Wentzel– Kramer–Brillouin Method,” J. Lightwave Technol. 26(11), 1367–1373 (2008).
    [CrossRef]
  32. T. T. Fernandez, G. Della Valle, R. Osellame, G. Jose, N. Chiodo, A. Jha, and P. Laporta, “Active waveguides written by femtosecond laser irradiation in an erbium-doped phospho-tellurite glass,” Opt. Express 16(19), 15198–15205 (2008).
    [CrossRef] [PubMed]
  33. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
    [CrossRef]
  34. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
    [CrossRef]
  35. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions,” J. Chem. Phys. 49(10), 4424–4442 (1968).
    [CrossRef]
  36. M. Seshadri, K. V. Rao, J. L. Rao, and Y. C. Ratnakaram, “Spectroscopic and laser properties of Sm3+ doped different phosphate glasses,” J. Alloy. Comp. 476(1-2), 263–270 (2009).
    [CrossRef]
  37. K. Annapurna, R. N. Dwivedi, A. Kumar, A. K. Chaudhuri, and S. Buddhudu, “Temperature dependent luminescence characteristics of Sm3+-doped silicate glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 56(1), 103–109 (2000).
    [CrossRef] [PubMed]
  38. A. Agarwal, I. Pal, S. Sanghi, and M. P. Aggarwal, “Judd–Ofelt parameters and radiative properties of Sm3+ ions doped zinc bismuth borate glasses,” Opt. Mater. 32(2), 339–344 (2009).
    [CrossRef]
  39. M. Jayasimhadri, L. R. Moorthy, S. A. Saleem, and R. V. S. S. N. Ravikumar, “Spectroscopic characteristics of Sm3+-doped alkali fluorophosphates glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 64(4), 939–944 (2006).
    [CrossRef] [PubMed]
  40. R. Reisfeld and C. K. Jorgensen, in Handbook on the Physics and Chemistry of Rare Earths, A. Gschneidner, Jr. and L. Eyring, eds. (Elsevier Science Publishers B. V., Netherlands, 1987), Vol. 9, pp. 44.
  41. R. Balda, J. Fernandez, M. A. Arriandiaga, L. M. Lacha, and J. M. Fernandez-Navarro, “Effect of concentration on the infrared emissions of Tm3+ ions in lead niobium germanate glasses,” Opt. Mater. 28(11), 1253–1257 (2006).
    [CrossRef]
  42. M. Jayasimhadri, E. J. Cho, K. W. Jang, H. S. Lee, and S. I. Kim, “Spectroscopic properties and Judd–Ofelt analysis of Sm3+ doped lead–germanate–tellurite glasses,” J. Phys. D Appl. Phys. 41(17), 175101 (2008).
    [CrossRef]
  43. T. Suhasini, J. S. Kumar, T. Sasikala, K. Jang, H. S. Lee, M. Jayasimhadri, J. H. Jeong, S. S. Yi, and L. R. Moorthy, “Absorption and fluorescence properties of Sm3+ ions in fluoride containing phosphate glasses,” Opt. Mater. 31(8), 1167–1172 (2009).
    [CrossRef]
  44. V. Venkatramu, P. Babu, C. K. Jayasankar, Th. Troster, W. Sievers, and G. Wortmann, “Optical spectroscopy of Sm3+ ions in phosphate and fluorophosphate glasses,” Opt. Mater. 29(11), 1429–1439 (2007).
    [CrossRef]
  45. P. Srivastava, S. B. Rai, and D. K. Rai, “Optical properties of Sm3+ doped calibo glass with addition of lead oxide,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(3), 637–642 (2004).
    [CrossRef] [PubMed]

2011 (7)

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[CrossRef] [PubMed]

K. Maheshvaran, K. Linganna, and K. Marimuthu, “Composition dependent structural and optical properties of Sm3+ doped boro-tellurite glasses,” J. Lumin. 131(12), 2746–2753 (2011).
[CrossRef]

S. Rada, P. Pascuta, M. Rada, and E. Culea, “Effects of samarium (III) oxide content on structural investigations of the samarium–vanadate–tellurate glasses and glass ceramics,” J. Non-Cryst. Solids 357(19-20), 3405–3409 (2011).
[CrossRef]

S. Sakirzanovas, A. Katelnikovas, D. Dutczak, A. Kareiva, and T. Justel, “Synthesis and Sm2+/Sm3+ doping effects on photoluminescence properties of Sr4Al14O25,” J. Lumin. 131(11), 2255–2262 (2011).
[CrossRef]

G. Okada, B. Morrell, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, and S. Kasap, “Spatially resolved measurement of high doses in microbeam radiation therapy using samarium doped fluorophosphate glasses,” Appl. Phys. Lett. 99(12), 121105 (2011).
[CrossRef]

J. S. Kumar, K. Pavani, T. Sasikala, A. S. Rao, N. K. Giri, S. B. Rai, and L. R. Moorthy, “Photoluminescence and energy transfer properties of Sm3+ doped CFB glasses,” Solid State Sci. 13(8), 1548–1553 (2011).
[CrossRef]

C. Koughia, A. Edgar, C. R. Varoy, G. Okada, H. von Seggern, G. Belev, C. Y. Kim, R. Sammynaiken, and S. Kasap, “Samarium-doped fluorochlorozirconate glass–ceramics as red-emitting X-ray phosphors,” J. Am. Ceram. Soc. 94(2), 543–550 (2011).
[CrossRef]

2010 (1)

Z. Mazurak, S. Bodyl, R. Lisiecki, J. Gabrys-Pisarska, and M. Czaja, “Optical properties of Pr3+, Sm3+ and Er3+ doped P2O5–CaO–SrO–BaO phosphate glass,” Opt. Mater. 32(4), 547–553 (2010).
[CrossRef]

2009 (9)

G. Lakshminarayana, R. Yang, J. R. Qiu, M. G. Brik, G. A. Kumar, and I. V. Kityk, “White light emission from Sm3+/Tb3+ codoped oxyfluoride aluminosilicate glasses under UV light excitation,” J. Phys. D Appl. Phys. 42(1), 015414 (2009).
[CrossRef]

B. C. Jamalaiah, J. S. Kumar, A. M. Babu, T. Sunhasini, and L. R. Moorthy, “Photoluminescence properties of Sm3+ in LBTAF glasses,” J. Lumin. 129(4), 363–369 (2009).
[CrossRef]

G. Lakshminarayana and J. Qiu, “Photoluminescence of Pr3+, Sm3+ and Dy3+-doped SiO2–Al2O3–BaF2–GdF3 glasses,” J. Alloy. Comp. 476(1-2), 470–476 (2009).
[CrossRef]

H. Liang and F. Xie, “Optical investigation of Sm(III)-β-diketonate complexes with different neutral ligands,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 73(2), 309–312 (2009).
[CrossRef] [PubMed]

M. Seshadri, K. V. Rao, J. L. Rao, and Y. C. Ratnakaram, “Spectroscopic and laser properties of Sm3+ doped different phosphate glasses,” J. Alloy. Comp. 476(1-2), 263–270 (2009).
[CrossRef]

A. Agarwal, I. Pal, S. Sanghi, and M. P. Aggarwal, “Judd–Ofelt parameters and radiative properties of Sm3+ ions doped zinc bismuth borate glasses,” Opt. Mater. 32(2), 339–344 (2009).
[CrossRef]

H. Kawai, C. Zhao, S. Tsuruoka, T. Yoshida, Y. Hasegawa, and T. Kawai, “Emission properties of Sm (III) complexes having remarkably deep-red emission band,” J. Alloy. Comp. 488(2), 612–614 (2009).
[CrossRef]

D. L. Yang, E. Y. B. Pun, B. J. Chen, and H. Lin, “Radiative transitions and optical gains in Er3+/Yb3+ codoped acid-resistant ion exchanged germanate glass channel waveguides,” J. Opt. Soc. Am. B 26(2), 357–363 (2009).
[CrossRef]

T. Suhasini, J. S. Kumar, T. Sasikala, K. Jang, H. S. Lee, M. Jayasimhadri, J. H. Jeong, S. S. Yi, and L. R. Moorthy, “Absorption and fluorescence properties of Sm3+ ions in fluoride containing phosphate glasses,” Opt. Mater. 31(8), 1167–1172 (2009).
[CrossRef]

2008 (10)

K. S. Chiang, Q. Liu, and K. P. Lor, “Refractive-index profiling of buried planar waveguides by an inverse Wentzel– Kramer–Brillouin Method,” J. Lightwave Technol. 26(11), 1367–1373 (2008).
[CrossRef]

T. T. Fernandez, G. Della Valle, R. Osellame, G. Jose, N. Chiodo, A. Jha, and P. Laporta, “Active waveguides written by femtosecond laser irradiation in an erbium-doped phospho-tellurite glass,” Opt. Express 16(19), 15198–15205 (2008).
[CrossRef] [PubMed]

Y. Hasegawa, S. Tsuruoka, T. Yoshida, H. Kawai, and T. Kawai, “Enhanced deep-red luminescence of tris(hexafluoroacetylacetonato)samarium(III) complex with phenanthroline in solution by control of ligand coordination,” J. Phys. Chem. A 112(5), 803–807 (2008).
[CrossRef] [PubMed]

T. Som and B. Karmakar, “Infrared-to-red upconversion luminescence in samarium-doped antimony glasses,” J. Lumin. 128(12), 1989–1996 (2008).
[CrossRef]

L. H. Huang, A. Jha, and S. X. Shen, “Spectroscopic properties of Sm3+-doped oxide and fluoride glasses for efficient visible lasers (560−660 nm),” Opt. Commun. 281(17), 4370–4373 (2008).
[CrossRef]

M. Jayasimhadri, E. J. Cho, K. W. Jang, H. S. Lee, and S. I. Kim, “Spectroscopic properties and Judd–Ofelt analysis of Sm3+ doped lead–germanate–tellurite glasses,” J. Phys. D Appl. Phys. 41(17), 175101 (2008).
[CrossRef]

K. S. V. Sudhakar, M. S. Reddy, L. S. Rao, and N. Veeraiah, “Influence of modifier oxide on spectroscopic and thermoluminescence characteristics of Sm3+ ion in antimony borate glass system,” J. Lumin. 128(11), 1791–1798 (2008).
[CrossRef]

S. Brown, “Photodynamic therapy: two photons are better than one,” Nat. Photonics 2(7), 394–395 (2008).
[CrossRef]

K. Uk, D. A. Makarov, L. S. Yup, B. S. Jin, and G. V. Papayan, “Illuminator for photodynamic therapy and fluorescence diagnosis with lightguide output of the radiation,” J. Opt. Technol. 75(12), 772–777 (2008).
[CrossRef]

R. Praveena, V. Venkatramu, P. Babu, and C. K. Jayasankar, “Fluorescence spectroscopy of Sm3+ ions in P2O5–PbO– Nb2O5 glasses,” Physica B 403(19-20), 3527–3534 (2008).
[CrossRef]

2007 (2)

X. Liang, Y. Yang, C. Zhu, S. Yuan, G. Chen, A. Pring, and F. Xia, “Luminescence properties of Tb3+–Sm3+ codoped glasses for white light emitting diodes,” Appl. Phys. Lett. 91(9), 091104 (2007).
[CrossRef]

V. Venkatramu, P. Babu, C. K. Jayasankar, Th. Troster, W. Sievers, and G. Wortmann, “Optical spectroscopy of Sm3+ ions in phosphate and fluorophosphate glasses,” Opt. Mater. 29(11), 1429–1439 (2007).
[CrossRef]

2006 (5)

M. Jayasimhadri, L. R. Moorthy, S. A. Saleem, and R. V. S. S. N. Ravikumar, “Spectroscopic characteristics of Sm3+-doped alkali fluorophosphates glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 64(4), 939–944 (2006).
[CrossRef] [PubMed]

R. Balda, J. Fernandez, M. A. Arriandiaga, L. M. Lacha, and J. M. Fernandez-Navarro, “Effect of concentration on the infrared emissions of Tm3+ ions in lead niobium germanate glasses,” Opt. Mater. 28(11), 1253–1257 (2006).
[CrossRef]

G. Kawamura, T. Hayakawa, and M. Nogami, “Effect of counter ions on the reduction process of Sm3+ ions in TiO2–ZrO2–Al2O3–SiO2 glasses,” J. Alloy. Comp. 408–412, 845–847 (2006).
[CrossRef]

G. Manojkumar, B. Shivakiranbhaktha, and D. Narayanarao, “Self-quenching of spontaneous emission in Sm3+ doped lead-borate glass,” Opt. Mater. 28(11), 1266–1270 (2006).
[CrossRef]

Z. Yang, G. Tang, L. Luo, and W. Chen, “Modified local environment and enhanced near-infrared luminescence of Sm3+ in chalcohalide glasses,” Appl. Phys. Lett. 89(13), 131117 (2006).
[CrossRef]

2005 (1)

Y. K. Sharma, S. S. L. Surana, R. P. Dubedi, and V. Joshi, “Spectroscopic and radiative properties of Sm3+ doped zinc fluoride borophosphate glasses,” Mater. Sci. Eng. B 119(2), 131–135 (2005).
[CrossRef]

2004 (2)

S. B. Brown, E. A. Brown, and I. Walker, “The present and future role of photodynamic therapy in cancer treatment,” Lancet Oncol. 5(8), 497–508 (2004).
[CrossRef] [PubMed]

P. Srivastava, S. B. Rai, and D. K. Rai, “Optical properties of Sm3+ doped calibo glass with addition of lead oxide,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(3), 637–642 (2004).
[CrossRef] [PubMed]

2003 (1)

A. Kumar, D. K. Rai, and S. B. Rai, “Optical properties of Sm3+ ions doped in tellurite glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 59(5), 917–925 (2003).
[CrossRef] [PubMed]

2002 (1)

L. Brancaleon and H. Moseley, “Laser and non-laser light sources for photodynamic therapy,” Lasers Med. Sci. 17(3), 173–186 (2002).
[CrossRef] [PubMed]

2001 (1)

2000 (1)

K. Annapurna, R. N. Dwivedi, A. Kumar, A. K. Chaudhuri, and S. Buddhudu, “Temperature dependent luminescence characteristics of Sm3+-doped silicate glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 56(1), 103–109 (2000).
[CrossRef] [PubMed]

1968 (1)

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions,” J. Chem. Phys. 49(10), 4424–4442 (1968).
[CrossRef]

1962 (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[CrossRef]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[CrossRef]

Agarwal, A.

A. Agarwal, I. Pal, S. Sanghi, and M. P. Aggarwal, “Judd–Ofelt parameters and radiative properties of Sm3+ ions doped zinc bismuth borate glasses,” Opt. Mater. 32(2), 339–344 (2009).
[CrossRef]

Aggarwal, M. P.

A. Agarwal, I. Pal, S. Sanghi, and M. P. Aggarwal, “Judd–Ofelt parameters and radiative properties of Sm3+ ions doped zinc bismuth borate glasses,” Opt. Mater. 32(2), 339–344 (2009).
[CrossRef]

Agostinis, P.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[CrossRef] [PubMed]

Annapurna, K.

K. Annapurna, R. N. Dwivedi, A. Kumar, A. K. Chaudhuri, and S. Buddhudu, “Temperature dependent luminescence characteristics of Sm3+-doped silicate glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 56(1), 103–109 (2000).
[CrossRef] [PubMed]

Arriandiaga, M. A.

R. Balda, J. Fernandez, M. A. Arriandiaga, L. M. Lacha, and J. M. Fernandez-Navarro, “Effect of concentration on the infrared emissions of Tm3+ ions in lead niobium germanate glasses,” Opt. Mater. 28(11), 1253–1257 (2006).
[CrossRef]

Babu, A. M.

B. C. Jamalaiah, J. S. Kumar, A. M. Babu, T. Sunhasini, and L. R. Moorthy, “Photoluminescence properties of Sm3+ in LBTAF glasses,” J. Lumin. 129(4), 363–369 (2009).
[CrossRef]

Babu, P.

R. Praveena, V. Venkatramu, P. Babu, and C. K. Jayasankar, “Fluorescence spectroscopy of Sm3+ ions in P2O5–PbO– Nb2O5 glasses,” Physica B 403(19-20), 3527–3534 (2008).
[CrossRef]

V. Venkatramu, P. Babu, C. K. Jayasankar, Th. Troster, W. Sievers, and G. Wortmann, “Optical spectroscopy of Sm3+ ions in phosphate and fluorophosphate glasses,” Opt. Mater. 29(11), 1429–1439 (2007).
[CrossRef]

Balda, R.

R. Balda, J. Fernandez, M. A. Arriandiaga, L. M. Lacha, and J. M. Fernandez-Navarro, “Effect of concentration on the infrared emissions of Tm3+ ions in lead niobium germanate glasses,” Opt. Mater. 28(11), 1253–1257 (2006).
[CrossRef]

Belev, G.

G. Okada, B. Morrell, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, and S. Kasap, “Spatially resolved measurement of high doses in microbeam radiation therapy using samarium doped fluorophosphate glasses,” Appl. Phys. Lett. 99(12), 121105 (2011).
[CrossRef]

C. Koughia, A. Edgar, C. R. Varoy, G. Okada, H. von Seggern, G. Belev, C. Y. Kim, R. Sammynaiken, and S. Kasap, “Samarium-doped fluorochlorozirconate glass–ceramics as red-emitting X-ray phosphors,” J. Am. Ceram. Soc. 94(2), 543–550 (2011).
[CrossRef]

Berg, K.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[CrossRef] [PubMed]

Bodyl, S.

Z. Mazurak, S. Bodyl, R. Lisiecki, J. Gabrys-Pisarska, and M. Czaja, “Optical properties of Pr3+, Sm3+ and Er3+ doped P2O5–CaO–SrO–BaO phosphate glass,” Opt. Mater. 32(4), 547–553 (2010).
[CrossRef]

Brancaleon, L.

L. Brancaleon and H. Moseley, “Laser and non-laser light sources for photodynamic therapy,” Lasers Med. Sci. 17(3), 173–186 (2002).
[CrossRef] [PubMed]

Brik, M. G.

G. Lakshminarayana, R. Yang, J. R. Qiu, M. G. Brik, G. A. Kumar, and I. V. Kityk, “White light emission from Sm3+/Tb3+ codoped oxyfluoride aluminosilicate glasses under UV light excitation,” J. Phys. D Appl. Phys. 42(1), 015414 (2009).
[CrossRef]

Brown, E. A.

S. B. Brown, E. A. Brown, and I. Walker, “The present and future role of photodynamic therapy in cancer treatment,” Lancet Oncol. 5(8), 497–508 (2004).
[CrossRef] [PubMed]

Brown, S.

S. Brown, “Photodynamic therapy: two photons are better than one,” Nat. Photonics 2(7), 394–395 (2008).
[CrossRef]

Brown, S. B.

S. B. Brown, E. A. Brown, and I. Walker, “The present and future role of photodynamic therapy in cancer treatment,” Lancet Oncol. 5(8), 497–508 (2004).
[CrossRef] [PubMed]

Buddhudu, S.

K. Annapurna, R. N. Dwivedi, A. Kumar, A. K. Chaudhuri, and S. Buddhudu, “Temperature dependent luminescence characteristics of Sm3+-doped silicate glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 56(1), 103–109 (2000).
[CrossRef] [PubMed]

Carnall, W. T.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions,” J. Chem. Phys. 49(10), 4424–4442 (1968).
[CrossRef]

Cengel, K. A.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[CrossRef] [PubMed]

Chapman, D.

G. Okada, B. Morrell, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, and S. Kasap, “Spatially resolved measurement of high doses in microbeam radiation therapy using samarium doped fluorophosphate glasses,” Appl. Phys. Lett. 99(12), 121105 (2011).
[CrossRef]

Chaudhuri, A. K.

K. Annapurna, R. N. Dwivedi, A. Kumar, A. K. Chaudhuri, and S. Buddhudu, “Temperature dependent luminescence characteristics of Sm3+-doped silicate glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 56(1), 103–109 (2000).
[CrossRef] [PubMed]

Chen, B. J.

Chen, G.

X. Liang, Y. Yang, C. Zhu, S. Yuan, G. Chen, A. Pring, and F. Xia, “Luminescence properties of Tb3+–Sm3+ codoped glasses for white light emitting diodes,” Appl. Phys. Lett. 91(9), 091104 (2007).
[CrossRef]

Chen, W.

Z. Yang, G. Tang, L. Luo, and W. Chen, “Modified local environment and enhanced near-infrared luminescence of Sm3+ in chalcohalide glasses,” Appl. Phys. Lett. 89(13), 131117 (2006).
[CrossRef]

Chiang, K. S.

Chiodo, N.

Cho, E. J.

M. Jayasimhadri, E. J. Cho, K. W. Jang, H. S. Lee, and S. I. Kim, “Spectroscopic properties and Judd–Ofelt analysis of Sm3+ doped lead–germanate–tellurite glasses,” J. Phys. D Appl. Phys. 41(17), 175101 (2008).
[CrossRef]

Culea, E.

S. Rada, P. Pascuta, M. Rada, and E. Culea, “Effects of samarium (III) oxide content on structural investigations of the samarium–vanadate–tellurate glasses and glass ceramics,” J. Non-Cryst. Solids 357(19-20), 3405–3409 (2011).
[CrossRef]

Czaja, M.

Z. Mazurak, S. Bodyl, R. Lisiecki, J. Gabrys-Pisarska, and M. Czaja, “Optical properties of Pr3+, Sm3+ and Er3+ doped P2O5–CaO–SrO–BaO phosphate glass,” Opt. Mater. 32(4), 547–553 (2010).
[CrossRef]

Della Valle, G.

Dubedi, R. P.

Y. K. Sharma, S. S. L. Surana, R. P. Dubedi, and V. Joshi, “Spectroscopic and radiative properties of Sm3+ doped zinc fluoride borophosphate glasses,” Mater. Sci. Eng. B 119(2), 131–135 (2005).
[CrossRef]

Dutczak, D.

S. Sakirzanovas, A. Katelnikovas, D. Dutczak, A. Kareiva, and T. Justel, “Synthesis and Sm2+/Sm3+ doping effects on photoluminescence properties of Sr4Al14O25,” J. Lumin. 131(11), 2255–2262 (2011).
[CrossRef]

Dwivedi, R. N.

K. Annapurna, R. N. Dwivedi, A. Kumar, A. K. Chaudhuri, and S. Buddhudu, “Temperature dependent luminescence characteristics of Sm3+-doped silicate glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 56(1), 103–109 (2000).
[CrossRef] [PubMed]

Edgar, A.

G. Okada, B. Morrell, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, and S. Kasap, “Spatially resolved measurement of high doses in microbeam radiation therapy using samarium doped fluorophosphate glasses,” Appl. Phys. Lett. 99(12), 121105 (2011).
[CrossRef]

C. Koughia, A. Edgar, C. R. Varoy, G. Okada, H. von Seggern, G. Belev, C. Y. Kim, R. Sammynaiken, and S. Kasap, “Samarium-doped fluorochlorozirconate glass–ceramics as red-emitting X-ray phosphors,” J. Am. Ceram. Soc. 94(2), 543–550 (2011).
[CrossRef]

Fernandez, J.

R. Balda, J. Fernandez, M. A. Arriandiaga, L. M. Lacha, and J. M. Fernandez-Navarro, “Effect of concentration on the infrared emissions of Tm3+ ions in lead niobium germanate glasses,” Opt. Mater. 28(11), 1253–1257 (2006).
[CrossRef]

Fernandez, T. T.

Fernandez-Navarro, J. M.

R. Balda, J. Fernandez, M. A. Arriandiaga, L. M. Lacha, and J. M. Fernandez-Navarro, “Effect of concentration on the infrared emissions of Tm3+ ions in lead niobium germanate glasses,” Opt. Mater. 28(11), 1253–1257 (2006).
[CrossRef]

Fields, P. R.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions,” J. Chem. Phys. 49(10), 4424–4442 (1968).
[CrossRef]

Foster, T. H.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[CrossRef] [PubMed]

Gabrys-Pisarska, J.

Z. Mazurak, S. Bodyl, R. Lisiecki, J. Gabrys-Pisarska, and M. Czaja, “Optical properties of Pr3+, Sm3+ and Er3+ doped P2O5–CaO–SrO–BaO phosphate glass,” Opt. Mater. 32(4), 547–553 (2010).
[CrossRef]

Giri, N. K.

J. S. Kumar, K. Pavani, T. Sasikala, A. S. Rao, N. K. Giri, S. B. Rai, and L. R. Moorthy, “Photoluminescence and energy transfer properties of Sm3+ doped CFB glasses,” Solid State Sci. 13(8), 1548–1553 (2011).
[CrossRef]

Girotti, A. W.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[CrossRef] [PubMed]

Golab, J.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[CrossRef] [PubMed]

Gollnick, S. O.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[CrossRef] [PubMed]

Hahn, S. M.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[CrossRef] [PubMed]

Hamblin, M. R.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[CrossRef] [PubMed]

Hasegawa, Y.

H. Kawai, C. Zhao, S. Tsuruoka, T. Yoshida, Y. Hasegawa, and T. Kawai, “Emission properties of Sm (III) complexes having remarkably deep-red emission band,” J. Alloy. Comp. 488(2), 612–614 (2009).
[CrossRef]

Y. Hasegawa, S. Tsuruoka, T. Yoshida, H. Kawai, and T. Kawai, “Enhanced deep-red luminescence of tris(hexafluoroacetylacetonato)samarium(III) complex with phenanthroline in solution by control of ligand coordination,” J. Phys. Chem. A 112(5), 803–807 (2008).
[CrossRef] [PubMed]

Hayakawa, T.

G. Kawamura, T. Hayakawa, and M. Nogami, “Effect of counter ions on the reduction process of Sm3+ ions in TiO2–ZrO2–Al2O3–SiO2 glasses,” J. Alloy. Comp. 408–412, 845–847 (2006).
[CrossRef]

T. Hayakawa, H. Ooishi, and M. Nogami, “Optical bistability of stimulated-emission lines in Sm(3+)-doped glass microspheres,” Opt. Lett. 26(2), 84–86 (2001).
[CrossRef] [PubMed]

Huang, L. H.

L. H. Huang, A. Jha, and S. X. Shen, “Spectroscopic properties of Sm3+-doped oxide and fluoride glasses for efficient visible lasers (560−660 nm),” Opt. Commun. 281(17), 4370–4373 (2008).
[CrossRef]

Jamalaiah, B. C.

B. C. Jamalaiah, J. S. Kumar, A. M. Babu, T. Sunhasini, and L. R. Moorthy, “Photoluminescence properties of Sm3+ in LBTAF glasses,” J. Lumin. 129(4), 363–369 (2009).
[CrossRef]

Jang, K.

T. Suhasini, J. S. Kumar, T. Sasikala, K. Jang, H. S. Lee, M. Jayasimhadri, J. H. Jeong, S. S. Yi, and L. R. Moorthy, “Absorption and fluorescence properties of Sm3+ ions in fluoride containing phosphate glasses,” Opt. Mater. 31(8), 1167–1172 (2009).
[CrossRef]

Jang, K. W.

M. Jayasimhadri, E. J. Cho, K. W. Jang, H. S. Lee, and S. I. Kim, “Spectroscopic properties and Judd–Ofelt analysis of Sm3+ doped lead–germanate–tellurite glasses,” J. Phys. D Appl. Phys. 41(17), 175101 (2008).
[CrossRef]

Jayasankar, C. K.

R. Praveena, V. Venkatramu, P. Babu, and C. K. Jayasankar, “Fluorescence spectroscopy of Sm3+ ions in P2O5–PbO– Nb2O5 glasses,” Physica B 403(19-20), 3527–3534 (2008).
[CrossRef]

V. Venkatramu, P. Babu, C. K. Jayasankar, Th. Troster, W. Sievers, and G. Wortmann, “Optical spectroscopy of Sm3+ ions in phosphate and fluorophosphate glasses,” Opt. Mater. 29(11), 1429–1439 (2007).
[CrossRef]

Jayasimhadri, M.

T. Suhasini, J. S. Kumar, T. Sasikala, K. Jang, H. S. Lee, M. Jayasimhadri, J. H. Jeong, S. S. Yi, and L. R. Moorthy, “Absorption and fluorescence properties of Sm3+ ions in fluoride containing phosphate glasses,” Opt. Mater. 31(8), 1167–1172 (2009).
[CrossRef]

M. Jayasimhadri, E. J. Cho, K. W. Jang, H. S. Lee, and S. I. Kim, “Spectroscopic properties and Judd–Ofelt analysis of Sm3+ doped lead–germanate–tellurite glasses,” J. Phys. D Appl. Phys. 41(17), 175101 (2008).
[CrossRef]

M. Jayasimhadri, L. R. Moorthy, S. A. Saleem, and R. V. S. S. N. Ravikumar, “Spectroscopic characteristics of Sm3+-doped alkali fluorophosphates glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 64(4), 939–944 (2006).
[CrossRef] [PubMed]

Jeong, J. H.

T. Suhasini, J. S. Kumar, T. Sasikala, K. Jang, H. S. Lee, M. Jayasimhadri, J. H. Jeong, S. S. Yi, and L. R. Moorthy, “Absorption and fluorescence properties of Sm3+ ions in fluoride containing phosphate glasses,” Opt. Mater. 31(8), 1167–1172 (2009).
[CrossRef]

Jha, A.

T. T. Fernandez, G. Della Valle, R. Osellame, G. Jose, N. Chiodo, A. Jha, and P. Laporta, “Active waveguides written by femtosecond laser irradiation in an erbium-doped phospho-tellurite glass,” Opt. Express 16(19), 15198–15205 (2008).
[CrossRef] [PubMed]

L. H. Huang, A. Jha, and S. X. Shen, “Spectroscopic properties of Sm3+-doped oxide and fluoride glasses for efficient visible lasers (560−660 nm),” Opt. Commun. 281(17), 4370–4373 (2008).
[CrossRef]

Jin, B. S.

Jose, G.

Joshi, V.

Y. K. Sharma, S. S. L. Surana, R. P. Dubedi, and V. Joshi, “Spectroscopic and radiative properties of Sm3+ doped zinc fluoride borophosphate glasses,” Mater. Sci. Eng. B 119(2), 131–135 (2005).
[CrossRef]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[CrossRef]

Justel, T.

S. Sakirzanovas, A. Katelnikovas, D. Dutczak, A. Kareiva, and T. Justel, “Synthesis and Sm2+/Sm3+ doping effects on photoluminescence properties of Sr4Al14O25,” J. Lumin. 131(11), 2255–2262 (2011).
[CrossRef]

Juzeniene, A.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[CrossRef] [PubMed]

Kareiva, A.

S. Sakirzanovas, A. Katelnikovas, D. Dutczak, A. Kareiva, and T. Justel, “Synthesis and Sm2+/Sm3+ doping effects on photoluminescence properties of Sr4Al14O25,” J. Lumin. 131(11), 2255–2262 (2011).
[CrossRef]

Karmakar, B.

T. Som and B. Karmakar, “Infrared-to-red upconversion luminescence in samarium-doped antimony glasses,” J. Lumin. 128(12), 1989–1996 (2008).
[CrossRef]

Kasap, S.

G. Okada, B. Morrell, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, and S. Kasap, “Spatially resolved measurement of high doses in microbeam radiation therapy using samarium doped fluorophosphate glasses,” Appl. Phys. Lett. 99(12), 121105 (2011).
[CrossRef]

C. Koughia, A. Edgar, C. R. Varoy, G. Okada, H. von Seggern, G. Belev, C. Y. Kim, R. Sammynaiken, and S. Kasap, “Samarium-doped fluorochlorozirconate glass–ceramics as red-emitting X-ray phosphors,” J. Am. Ceram. Soc. 94(2), 543–550 (2011).
[CrossRef]

Katelnikovas, A.

S. Sakirzanovas, A. Katelnikovas, D. Dutczak, A. Kareiva, and T. Justel, “Synthesis and Sm2+/Sm3+ doping effects on photoluminescence properties of Sr4Al14O25,” J. Lumin. 131(11), 2255–2262 (2011).
[CrossRef]

Kawai, H.

H. Kawai, C. Zhao, S. Tsuruoka, T. Yoshida, Y. Hasegawa, and T. Kawai, “Emission properties of Sm (III) complexes having remarkably deep-red emission band,” J. Alloy. Comp. 488(2), 612–614 (2009).
[CrossRef]

Y. Hasegawa, S. Tsuruoka, T. Yoshida, H. Kawai, and T. Kawai, “Enhanced deep-red luminescence of tris(hexafluoroacetylacetonato)samarium(III) complex with phenanthroline in solution by control of ligand coordination,” J. Phys. Chem. A 112(5), 803–807 (2008).
[CrossRef] [PubMed]

Kawai, T.

H. Kawai, C. Zhao, S. Tsuruoka, T. Yoshida, Y. Hasegawa, and T. Kawai, “Emission properties of Sm (III) complexes having remarkably deep-red emission band,” J. Alloy. Comp. 488(2), 612–614 (2009).
[CrossRef]

Y. Hasegawa, S. Tsuruoka, T. Yoshida, H. Kawai, and T. Kawai, “Enhanced deep-red luminescence of tris(hexafluoroacetylacetonato)samarium(III) complex with phenanthroline in solution by control of ligand coordination,” J. Phys. Chem. A 112(5), 803–807 (2008).
[CrossRef] [PubMed]

Kawamura, G.

G. Kawamura, T. Hayakawa, and M. Nogami, “Effect of counter ions on the reduction process of Sm3+ ions in TiO2–ZrO2–Al2O3–SiO2 glasses,” J. Alloy. Comp. 408–412, 845–847 (2006).
[CrossRef]

Kessel, D.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[CrossRef] [PubMed]

Kim, C. Y.

C. Koughia, A. Edgar, C. R. Varoy, G. Okada, H. von Seggern, G. Belev, C. Y. Kim, R. Sammynaiken, and S. Kasap, “Samarium-doped fluorochlorozirconate glass–ceramics as red-emitting X-ray phosphors,” J. Am. Ceram. Soc. 94(2), 543–550 (2011).
[CrossRef]

Kim, S. I.

M. Jayasimhadri, E. J. Cho, K. W. Jang, H. S. Lee, and S. I. Kim, “Spectroscopic properties and Judd–Ofelt analysis of Sm3+ doped lead–germanate–tellurite glasses,” J. Phys. D Appl. Phys. 41(17), 175101 (2008).
[CrossRef]

Kityk, I. V.

G. Lakshminarayana, R. Yang, J. R. Qiu, M. G. Brik, G. A. Kumar, and I. V. Kityk, “White light emission from Sm3+/Tb3+ codoped oxyfluoride aluminosilicate glasses under UV light excitation,” J. Phys. D Appl. Phys. 42(1), 015414 (2009).
[CrossRef]

Korbelik, M.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[CrossRef] [PubMed]

Koughia, C.

C. Koughia, A. Edgar, C. R. Varoy, G. Okada, H. von Seggern, G. Belev, C. Y. Kim, R. Sammynaiken, and S. Kasap, “Samarium-doped fluorochlorozirconate glass–ceramics as red-emitting X-ray phosphors,” J. Am. Ceram. Soc. 94(2), 543–550 (2011).
[CrossRef]

G. Okada, B. Morrell, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, and S. Kasap, “Spatially resolved measurement of high doses in microbeam radiation therapy using samarium doped fluorophosphate glasses,” Appl. Phys. Lett. 99(12), 121105 (2011).
[CrossRef]

Kumar, A.

A. Kumar, D. K. Rai, and S. B. Rai, “Optical properties of Sm3+ ions doped in tellurite glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 59(5), 917–925 (2003).
[CrossRef] [PubMed]

K. Annapurna, R. N. Dwivedi, A. Kumar, A. K. Chaudhuri, and S. Buddhudu, “Temperature dependent luminescence characteristics of Sm3+-doped silicate glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 56(1), 103–109 (2000).
[CrossRef] [PubMed]

Kumar, G. A.

G. Lakshminarayana, R. Yang, J. R. Qiu, M. G. Brik, G. A. Kumar, and I. V. Kityk, “White light emission from Sm3+/Tb3+ codoped oxyfluoride aluminosilicate glasses under UV light excitation,” J. Phys. D Appl. Phys. 42(1), 015414 (2009).
[CrossRef]

Kumar, J. S.

J. S. Kumar, K. Pavani, T. Sasikala, A. S. Rao, N. K. Giri, S. B. Rai, and L. R. Moorthy, “Photoluminescence and energy transfer properties of Sm3+ doped CFB glasses,” Solid State Sci. 13(8), 1548–1553 (2011).
[CrossRef]

B. C. Jamalaiah, J. S. Kumar, A. M. Babu, T. Sunhasini, and L. R. Moorthy, “Photoluminescence properties of Sm3+ in LBTAF glasses,” J. Lumin. 129(4), 363–369 (2009).
[CrossRef]

T. Suhasini, J. S. Kumar, T. Sasikala, K. Jang, H. S. Lee, M. Jayasimhadri, J. H. Jeong, S. S. Yi, and L. R. Moorthy, “Absorption and fluorescence properties of Sm3+ ions in fluoride containing phosphate glasses,” Opt. Mater. 31(8), 1167–1172 (2009).
[CrossRef]

Lacha, L. M.

R. Balda, J. Fernandez, M. A. Arriandiaga, L. M. Lacha, and J. M. Fernandez-Navarro, “Effect of concentration on the infrared emissions of Tm3+ ions in lead niobium germanate glasses,” Opt. Mater. 28(11), 1253–1257 (2006).
[CrossRef]

Lakshminarayana, G.

G. Lakshminarayana and J. Qiu, “Photoluminescence of Pr3+, Sm3+ and Dy3+-doped SiO2–Al2O3–BaF2–GdF3 glasses,” J. Alloy. Comp. 476(1-2), 470–476 (2009).
[CrossRef]

G. Lakshminarayana, R. Yang, J. R. Qiu, M. G. Brik, G. A. Kumar, and I. V. Kityk, “White light emission from Sm3+/Tb3+ codoped oxyfluoride aluminosilicate glasses under UV light excitation,” J. Phys. D Appl. Phys. 42(1), 015414 (2009).
[CrossRef]

Laporta, P.

Lee, H. S.

T. Suhasini, J. S. Kumar, T. Sasikala, K. Jang, H. S. Lee, M. Jayasimhadri, J. H. Jeong, S. S. Yi, and L. R. Moorthy, “Absorption and fluorescence properties of Sm3+ ions in fluoride containing phosphate glasses,” Opt. Mater. 31(8), 1167–1172 (2009).
[CrossRef]

M. Jayasimhadri, E. J. Cho, K. W. Jang, H. S. Lee, and S. I. Kim, “Spectroscopic properties and Judd–Ofelt analysis of Sm3+ doped lead–germanate–tellurite glasses,” J. Phys. D Appl. Phys. 41(17), 175101 (2008).
[CrossRef]

Liang, H.

H. Liang and F. Xie, “Optical investigation of Sm(III)-β-diketonate complexes with different neutral ligands,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 73(2), 309–312 (2009).
[CrossRef] [PubMed]

Liang, X.

X. Liang, Y. Yang, C. Zhu, S. Yuan, G. Chen, A. Pring, and F. Xia, “Luminescence properties of Tb3+–Sm3+ codoped glasses for white light emitting diodes,” Appl. Phys. Lett. 91(9), 091104 (2007).
[CrossRef]

Lin, H.

Linganna, K.

K. Maheshvaran, K. Linganna, and K. Marimuthu, “Composition dependent structural and optical properties of Sm3+ doped boro-tellurite glasses,” J. Lumin. 131(12), 2746–2753 (2011).
[CrossRef]

Lisiecki, R.

Z. Mazurak, S. Bodyl, R. Lisiecki, J. Gabrys-Pisarska, and M. Czaja, “Optical properties of Pr3+, Sm3+ and Er3+ doped P2O5–CaO–SrO–BaO phosphate glass,” Opt. Mater. 32(4), 547–553 (2010).
[CrossRef]

Liu, Q.

Lor, K. P.

Luo, L.

Z. Yang, G. Tang, L. Luo, and W. Chen, “Modified local environment and enhanced near-infrared luminescence of Sm3+ in chalcohalide glasses,” Appl. Phys. Lett. 89(13), 131117 (2006).
[CrossRef]

Maheshvaran, K.

K. Maheshvaran, K. Linganna, and K. Marimuthu, “Composition dependent structural and optical properties of Sm3+ doped boro-tellurite glasses,” J. Lumin. 131(12), 2746–2753 (2011).
[CrossRef]

Makarov, D. A.

Manojkumar, G.

G. Manojkumar, B. Shivakiranbhaktha, and D. Narayanarao, “Self-quenching of spontaneous emission in Sm3+ doped lead-borate glass,” Opt. Mater. 28(11), 1266–1270 (2006).
[CrossRef]

Marimuthu, K.

K. Maheshvaran, K. Linganna, and K. Marimuthu, “Composition dependent structural and optical properties of Sm3+ doped boro-tellurite glasses,” J. Lumin. 131(12), 2746–2753 (2011).
[CrossRef]

Mazurak, Z.

Z. Mazurak, S. Bodyl, R. Lisiecki, J. Gabrys-Pisarska, and M. Czaja, “Optical properties of Pr3+, Sm3+ and Er3+ doped P2O5–CaO–SrO–BaO phosphate glass,” Opt. Mater. 32(4), 547–553 (2010).
[CrossRef]

Moan, J.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[CrossRef] [PubMed]

Moorthy, L. R.

J. S. Kumar, K. Pavani, T. Sasikala, A. S. Rao, N. K. Giri, S. B. Rai, and L. R. Moorthy, “Photoluminescence and energy transfer properties of Sm3+ doped CFB glasses,” Solid State Sci. 13(8), 1548–1553 (2011).
[CrossRef]

B. C. Jamalaiah, J. S. Kumar, A. M. Babu, T. Sunhasini, and L. R. Moorthy, “Photoluminescence properties of Sm3+ in LBTAF glasses,” J. Lumin. 129(4), 363–369 (2009).
[CrossRef]

T. Suhasini, J. S. Kumar, T. Sasikala, K. Jang, H. S. Lee, M. Jayasimhadri, J. H. Jeong, S. S. Yi, and L. R. Moorthy, “Absorption and fluorescence properties of Sm3+ ions in fluoride containing phosphate glasses,” Opt. Mater. 31(8), 1167–1172 (2009).
[CrossRef]

M. Jayasimhadri, L. R. Moorthy, S. A. Saleem, and R. V. S. S. N. Ravikumar, “Spectroscopic characteristics of Sm3+-doped alkali fluorophosphates glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 64(4), 939–944 (2006).
[CrossRef] [PubMed]

Morrell, B.

G. Okada, B. Morrell, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, and S. Kasap, “Spatially resolved measurement of high doses in microbeam radiation therapy using samarium doped fluorophosphate glasses,” Appl. Phys. Lett. 99(12), 121105 (2011).
[CrossRef]

Moseley, H.

L. Brancaleon and H. Moseley, “Laser and non-laser light sources for photodynamic therapy,” Lasers Med. Sci. 17(3), 173–186 (2002).
[CrossRef] [PubMed]

Mroz, P.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[CrossRef] [PubMed]

Narayanarao, D.

G. Manojkumar, B. Shivakiranbhaktha, and D. Narayanarao, “Self-quenching of spontaneous emission in Sm3+ doped lead-borate glass,” Opt. Mater. 28(11), 1266–1270 (2006).
[CrossRef]

Nogami, M.

G. Kawamura, T. Hayakawa, and M. Nogami, “Effect of counter ions on the reduction process of Sm3+ ions in TiO2–ZrO2–Al2O3–SiO2 glasses,” J. Alloy. Comp. 408–412, 845–847 (2006).
[CrossRef]

T. Hayakawa, H. Ooishi, and M. Nogami, “Optical bistability of stimulated-emission lines in Sm(3+)-doped glass microspheres,” Opt. Lett. 26(2), 84–86 (2001).
[CrossRef] [PubMed]

Nowis, D.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[CrossRef] [PubMed]

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[CrossRef]

Okada, G.

G. Okada, B. Morrell, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, and S. Kasap, “Spatially resolved measurement of high doses in microbeam radiation therapy using samarium doped fluorophosphate glasses,” Appl. Phys. Lett. 99(12), 121105 (2011).
[CrossRef]

C. Koughia, A. Edgar, C. R. Varoy, G. Okada, H. von Seggern, G. Belev, C. Y. Kim, R. Sammynaiken, and S. Kasap, “Samarium-doped fluorochlorozirconate glass–ceramics as red-emitting X-ray phosphors,” J. Am. Ceram. Soc. 94(2), 543–550 (2011).
[CrossRef]

Ooishi, H.

Osellame, R.

Pal, I.

A. Agarwal, I. Pal, S. Sanghi, and M. P. Aggarwal, “Judd–Ofelt parameters and radiative properties of Sm3+ ions doped zinc bismuth borate glasses,” Opt. Mater. 32(2), 339–344 (2009).
[CrossRef]

Papayan, G. V.

Pascuta, P.

S. Rada, P. Pascuta, M. Rada, and E. Culea, “Effects of samarium (III) oxide content on structural investigations of the samarium–vanadate–tellurate glasses and glass ceramics,” J. Non-Cryst. Solids 357(19-20), 3405–3409 (2011).
[CrossRef]

Pavani, K.

J. S. Kumar, K. Pavani, T. Sasikala, A. S. Rao, N. K. Giri, S. B. Rai, and L. R. Moorthy, “Photoluminescence and energy transfer properties of Sm3+ doped CFB glasses,” Solid State Sci. 13(8), 1548–1553 (2011).
[CrossRef]

Piette, J.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[CrossRef] [PubMed]

Praveena, R.

R. Praveena, V. Venkatramu, P. Babu, and C. K. Jayasankar, “Fluorescence spectroscopy of Sm3+ ions in P2O5–PbO– Nb2O5 glasses,” Physica B 403(19-20), 3527–3534 (2008).
[CrossRef]

Pring, A.

X. Liang, Y. Yang, C. Zhu, S. Yuan, G. Chen, A. Pring, and F. Xia, “Luminescence properties of Tb3+–Sm3+ codoped glasses for white light emitting diodes,” Appl. Phys. Lett. 91(9), 091104 (2007).
[CrossRef]

Pun, E. Y. B.

Qiu, J.

G. Lakshminarayana and J. Qiu, “Photoluminescence of Pr3+, Sm3+ and Dy3+-doped SiO2–Al2O3–BaF2–GdF3 glasses,” J. Alloy. Comp. 476(1-2), 470–476 (2009).
[CrossRef]

Qiu, J. R.

G. Lakshminarayana, R. Yang, J. R. Qiu, M. G. Brik, G. A. Kumar, and I. V. Kityk, “White light emission from Sm3+/Tb3+ codoped oxyfluoride aluminosilicate glasses under UV light excitation,” J. Phys. D Appl. Phys. 42(1), 015414 (2009).
[CrossRef]

Rada, M.

S. Rada, P. Pascuta, M. Rada, and E. Culea, “Effects of samarium (III) oxide content on structural investigations of the samarium–vanadate–tellurate glasses and glass ceramics,” J. Non-Cryst. Solids 357(19-20), 3405–3409 (2011).
[CrossRef]

Rada, S.

S. Rada, P. Pascuta, M. Rada, and E. Culea, “Effects of samarium (III) oxide content on structural investigations of the samarium–vanadate–tellurate glasses and glass ceramics,” J. Non-Cryst. Solids 357(19-20), 3405–3409 (2011).
[CrossRef]

Rai, D. K.

P. Srivastava, S. B. Rai, and D. K. Rai, “Optical properties of Sm3+ doped calibo glass with addition of lead oxide,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(3), 637–642 (2004).
[CrossRef] [PubMed]

A. Kumar, D. K. Rai, and S. B. Rai, “Optical properties of Sm3+ ions doped in tellurite glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 59(5), 917–925 (2003).
[CrossRef] [PubMed]

Rai, S. B.

J. S. Kumar, K. Pavani, T. Sasikala, A. S. Rao, N. K. Giri, S. B. Rai, and L. R. Moorthy, “Photoluminescence and energy transfer properties of Sm3+ doped CFB glasses,” Solid State Sci. 13(8), 1548–1553 (2011).
[CrossRef]

P. Srivastava, S. B. Rai, and D. K. Rai, “Optical properties of Sm3+ doped calibo glass with addition of lead oxide,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(3), 637–642 (2004).
[CrossRef] [PubMed]

A. Kumar, D. K. Rai, and S. B. Rai, “Optical properties of Sm3+ ions doped in tellurite glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 59(5), 917–925 (2003).
[CrossRef] [PubMed]

Rajnak, K.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions,” J. Chem. Phys. 49(10), 4424–4442 (1968).
[CrossRef]

Rao, A. S.

J. S. Kumar, K. Pavani, T. Sasikala, A. S. Rao, N. K. Giri, S. B. Rai, and L. R. Moorthy, “Photoluminescence and energy transfer properties of Sm3+ doped CFB glasses,” Solid State Sci. 13(8), 1548–1553 (2011).
[CrossRef]

Rao, J. L.

M. Seshadri, K. V. Rao, J. L. Rao, and Y. C. Ratnakaram, “Spectroscopic and laser properties of Sm3+ doped different phosphate glasses,” J. Alloy. Comp. 476(1-2), 263–270 (2009).
[CrossRef]

Rao, K. V.

M. Seshadri, K. V. Rao, J. L. Rao, and Y. C. Ratnakaram, “Spectroscopic and laser properties of Sm3+ doped different phosphate glasses,” J. Alloy. Comp. 476(1-2), 263–270 (2009).
[CrossRef]

Rao, L. S.

K. S. V. Sudhakar, M. S. Reddy, L. S. Rao, and N. Veeraiah, “Influence of modifier oxide on spectroscopic and thermoluminescence characteristics of Sm3+ ion in antimony borate glass system,” J. Lumin. 128(11), 1791–1798 (2008).
[CrossRef]

Ratnakaram, Y. C.

M. Seshadri, K. V. Rao, J. L. Rao, and Y. C. Ratnakaram, “Spectroscopic and laser properties of Sm3+ doped different phosphate glasses,” J. Alloy. Comp. 476(1-2), 263–270 (2009).
[CrossRef]

Ravikumar, R. V. S. S. N.

M. Jayasimhadri, L. R. Moorthy, S. A. Saleem, and R. V. S. S. N. Ravikumar, “Spectroscopic characteristics of Sm3+-doped alkali fluorophosphates glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 64(4), 939–944 (2006).
[CrossRef] [PubMed]

Reddy, M. S.

K. S. V. Sudhakar, M. S. Reddy, L. S. Rao, and N. Veeraiah, “Influence of modifier oxide on spectroscopic and thermoluminescence characteristics of Sm3+ ion in antimony borate glass system,” J. Lumin. 128(11), 1791–1798 (2008).
[CrossRef]

Sakirzanovas, S.

S. Sakirzanovas, A. Katelnikovas, D. Dutczak, A. Kareiva, and T. Justel, “Synthesis and Sm2+/Sm3+ doping effects on photoluminescence properties of Sr4Al14O25,” J. Lumin. 131(11), 2255–2262 (2011).
[CrossRef]

Saleem, S. A.

M. Jayasimhadri, L. R. Moorthy, S. A. Saleem, and R. V. S. S. N. Ravikumar, “Spectroscopic characteristics of Sm3+-doped alkali fluorophosphates glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 64(4), 939–944 (2006).
[CrossRef] [PubMed]

Sammynaiken, R.

C. Koughia, A. Edgar, C. R. Varoy, G. Okada, H. von Seggern, G. Belev, C. Y. Kim, R. Sammynaiken, and S. Kasap, “Samarium-doped fluorochlorozirconate glass–ceramics as red-emitting X-ray phosphors,” J. Am. Ceram. Soc. 94(2), 543–550 (2011).
[CrossRef]

Sanghi, S.

A. Agarwal, I. Pal, S. Sanghi, and M. P. Aggarwal, “Judd–Ofelt parameters and radiative properties of Sm3+ ions doped zinc bismuth borate glasses,” Opt. Mater. 32(2), 339–344 (2009).
[CrossRef]

Sasikala, T.

J. S. Kumar, K. Pavani, T. Sasikala, A. S. Rao, N. K. Giri, S. B. Rai, and L. R. Moorthy, “Photoluminescence and energy transfer properties of Sm3+ doped CFB glasses,” Solid State Sci. 13(8), 1548–1553 (2011).
[CrossRef]

T. Suhasini, J. S. Kumar, T. Sasikala, K. Jang, H. S. Lee, M. Jayasimhadri, J. H. Jeong, S. S. Yi, and L. R. Moorthy, “Absorption and fluorescence properties of Sm3+ ions in fluoride containing phosphate glasses,” Opt. Mater. 31(8), 1167–1172 (2009).
[CrossRef]

Seshadri, M.

M. Seshadri, K. V. Rao, J. L. Rao, and Y. C. Ratnakaram, “Spectroscopic and laser properties of Sm3+ doped different phosphate glasses,” J. Alloy. Comp. 476(1-2), 263–270 (2009).
[CrossRef]

Sharma, Y. K.

Y. K. Sharma, S. S. L. Surana, R. P. Dubedi, and V. Joshi, “Spectroscopic and radiative properties of Sm3+ doped zinc fluoride borophosphate glasses,” Mater. Sci. Eng. B 119(2), 131–135 (2005).
[CrossRef]

Shen, S. X.

L. H. Huang, A. Jha, and S. X. Shen, “Spectroscopic properties of Sm3+-doped oxide and fluoride glasses for efficient visible lasers (560−660 nm),” Opt. Commun. 281(17), 4370–4373 (2008).
[CrossRef]

Shivakiranbhaktha, B.

G. Manojkumar, B. Shivakiranbhaktha, and D. Narayanarao, “Self-quenching of spontaneous emission in Sm3+ doped lead-borate glass,” Opt. Mater. 28(11), 1266–1270 (2006).
[CrossRef]

Sievers, W.

V. Venkatramu, P. Babu, C. K. Jayasankar, Th. Troster, W. Sievers, and G. Wortmann, “Optical spectroscopy of Sm3+ ions in phosphate and fluorophosphate glasses,” Opt. Mater. 29(11), 1429–1439 (2007).
[CrossRef]

Som, T.

T. Som and B. Karmakar, “Infrared-to-red upconversion luminescence in samarium-doped antimony glasses,” J. Lumin. 128(12), 1989–1996 (2008).
[CrossRef]

Srivastava, P.

P. Srivastava, S. B. Rai, and D. K. Rai, “Optical properties of Sm3+ doped calibo glass with addition of lead oxide,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(3), 637–642 (2004).
[CrossRef] [PubMed]

Sudhakar, K. S. V.

K. S. V. Sudhakar, M. S. Reddy, L. S. Rao, and N. Veeraiah, “Influence of modifier oxide on spectroscopic and thermoluminescence characteristics of Sm3+ ion in antimony borate glass system,” J. Lumin. 128(11), 1791–1798 (2008).
[CrossRef]

Suhasini, T.

T. Suhasini, J. S. Kumar, T. Sasikala, K. Jang, H. S. Lee, M. Jayasimhadri, J. H. Jeong, S. S. Yi, and L. R. Moorthy, “Absorption and fluorescence properties of Sm3+ ions in fluoride containing phosphate glasses,” Opt. Mater. 31(8), 1167–1172 (2009).
[CrossRef]

Sunhasini, T.

B. C. Jamalaiah, J. S. Kumar, A. M. Babu, T. Sunhasini, and L. R. Moorthy, “Photoluminescence properties of Sm3+ in LBTAF glasses,” J. Lumin. 129(4), 363–369 (2009).
[CrossRef]

Surana, S. S. L.

Y. K. Sharma, S. S. L. Surana, R. P. Dubedi, and V. Joshi, “Spectroscopic and radiative properties of Sm3+ doped zinc fluoride borophosphate glasses,” Mater. Sci. Eng. B 119(2), 131–135 (2005).
[CrossRef]

Tang, G.

Z. Yang, G. Tang, L. Luo, and W. Chen, “Modified local environment and enhanced near-infrared luminescence of Sm3+ in chalcohalide glasses,” Appl. Phys. Lett. 89(13), 131117 (2006).
[CrossRef]

Troster, Th.

V. Venkatramu, P. Babu, C. K. Jayasankar, Th. Troster, W. Sievers, and G. Wortmann, “Optical spectroscopy of Sm3+ ions in phosphate and fluorophosphate glasses,” Opt. Mater. 29(11), 1429–1439 (2007).
[CrossRef]

Tsuruoka, S.

H. Kawai, C. Zhao, S. Tsuruoka, T. Yoshida, Y. Hasegawa, and T. Kawai, “Emission properties of Sm (III) complexes having remarkably deep-red emission band,” J. Alloy. Comp. 488(2), 612–614 (2009).
[CrossRef]

Y. Hasegawa, S. Tsuruoka, T. Yoshida, H. Kawai, and T. Kawai, “Enhanced deep-red luminescence of tris(hexafluoroacetylacetonato)samarium(III) complex with phenanthroline in solution by control of ligand coordination,” J. Phys. Chem. A 112(5), 803–807 (2008).
[CrossRef] [PubMed]

Uk, K.

Varoy, C.

G. Okada, B. Morrell, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, and S. Kasap, “Spatially resolved measurement of high doses in microbeam radiation therapy using samarium doped fluorophosphate glasses,” Appl. Phys. Lett. 99(12), 121105 (2011).
[CrossRef]

Varoy, C. R.

C. Koughia, A. Edgar, C. R. Varoy, G. Okada, H. von Seggern, G. Belev, C. Y. Kim, R. Sammynaiken, and S. Kasap, “Samarium-doped fluorochlorozirconate glass–ceramics as red-emitting X-ray phosphors,” J. Am. Ceram. Soc. 94(2), 543–550 (2011).
[CrossRef]

Veeraiah, N.

K. S. V. Sudhakar, M. S. Reddy, L. S. Rao, and N. Veeraiah, “Influence of modifier oxide on spectroscopic and thermoluminescence characteristics of Sm3+ ion in antimony borate glass system,” J. Lumin. 128(11), 1791–1798 (2008).
[CrossRef]

Venkatramu, V.

R. Praveena, V. Venkatramu, P. Babu, and C. K. Jayasankar, “Fluorescence spectroscopy of Sm3+ ions in P2O5–PbO– Nb2O5 glasses,” Physica B 403(19-20), 3527–3534 (2008).
[CrossRef]

V. Venkatramu, P. Babu, C. K. Jayasankar, Th. Troster, W. Sievers, and G. Wortmann, “Optical spectroscopy of Sm3+ ions in phosphate and fluorophosphate glasses,” Opt. Mater. 29(11), 1429–1439 (2007).
[CrossRef]

von Seggern, H.

C. Koughia, A. Edgar, C. R. Varoy, G. Okada, H. von Seggern, G. Belev, C. Y. Kim, R. Sammynaiken, and S. Kasap, “Samarium-doped fluorochlorozirconate glass–ceramics as red-emitting X-ray phosphors,” J. Am. Ceram. Soc. 94(2), 543–550 (2011).
[CrossRef]

Walker, I.

S. B. Brown, E. A. Brown, and I. Walker, “The present and future role of photodynamic therapy in cancer treatment,” Lancet Oncol. 5(8), 497–508 (2004).
[CrossRef] [PubMed]

Wilson, B. C.

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[CrossRef] [PubMed]

Wortmann, G.

V. Venkatramu, P. Babu, C. K. Jayasankar, Th. Troster, W. Sievers, and G. Wortmann, “Optical spectroscopy of Sm3+ ions in phosphate and fluorophosphate glasses,” Opt. Mater. 29(11), 1429–1439 (2007).
[CrossRef]

Wysokinski, T.

G. Okada, B. Morrell, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, and S. Kasap, “Spatially resolved measurement of high doses in microbeam radiation therapy using samarium doped fluorophosphate glasses,” Appl. Phys. Lett. 99(12), 121105 (2011).
[CrossRef]

Xia, F.

X. Liang, Y. Yang, C. Zhu, S. Yuan, G. Chen, A. Pring, and F. Xia, “Luminescence properties of Tb3+–Sm3+ codoped glasses for white light emitting diodes,” Appl. Phys. Lett. 91(9), 091104 (2007).
[CrossRef]

Xie, F.

H. Liang and F. Xie, “Optical investigation of Sm(III)-β-diketonate complexes with different neutral ligands,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 73(2), 309–312 (2009).
[CrossRef] [PubMed]

Yang, D. L.

Yang, R.

G. Lakshminarayana, R. Yang, J. R. Qiu, M. G. Brik, G. A. Kumar, and I. V. Kityk, “White light emission from Sm3+/Tb3+ codoped oxyfluoride aluminosilicate glasses under UV light excitation,” J. Phys. D Appl. Phys. 42(1), 015414 (2009).
[CrossRef]

Yang, Y.

X. Liang, Y. Yang, C. Zhu, S. Yuan, G. Chen, A. Pring, and F. Xia, “Luminescence properties of Tb3+–Sm3+ codoped glasses for white light emitting diodes,” Appl. Phys. Lett. 91(9), 091104 (2007).
[CrossRef]

Yang, Z.

Z. Yang, G. Tang, L. Luo, and W. Chen, “Modified local environment and enhanced near-infrared luminescence of Sm3+ in chalcohalide glasses,” Appl. Phys. Lett. 89(13), 131117 (2006).
[CrossRef]

Yi, S. S.

T. Suhasini, J. S. Kumar, T. Sasikala, K. Jang, H. S. Lee, M. Jayasimhadri, J. H. Jeong, S. S. Yi, and L. R. Moorthy, “Absorption and fluorescence properties of Sm3+ ions in fluoride containing phosphate glasses,” Opt. Mater. 31(8), 1167–1172 (2009).
[CrossRef]

Yoshida, T.

H. Kawai, C. Zhao, S. Tsuruoka, T. Yoshida, Y. Hasegawa, and T. Kawai, “Emission properties of Sm (III) complexes having remarkably deep-red emission band,” J. Alloy. Comp. 488(2), 612–614 (2009).
[CrossRef]

Y. Hasegawa, S. Tsuruoka, T. Yoshida, H. Kawai, and T. Kawai, “Enhanced deep-red luminescence of tris(hexafluoroacetylacetonato)samarium(III) complex with phenanthroline in solution by control of ligand coordination,” J. Phys. Chem. A 112(5), 803–807 (2008).
[CrossRef] [PubMed]

Yuan, S.

X. Liang, Y. Yang, C. Zhu, S. Yuan, G. Chen, A. Pring, and F. Xia, “Luminescence properties of Tb3+–Sm3+ codoped glasses for white light emitting diodes,” Appl. Phys. Lett. 91(9), 091104 (2007).
[CrossRef]

Yup, L. S.

Zhao, C.

H. Kawai, C. Zhao, S. Tsuruoka, T. Yoshida, Y. Hasegawa, and T. Kawai, “Emission properties of Sm (III) complexes having remarkably deep-red emission band,” J. Alloy. Comp. 488(2), 612–614 (2009).
[CrossRef]

Zhu, C.

X. Liang, Y. Yang, C. Zhu, S. Yuan, G. Chen, A. Pring, and F. Xia, “Luminescence properties of Tb3+–Sm3+ codoped glasses for white light emitting diodes,” Appl. Phys. Lett. 91(9), 091104 (2007).
[CrossRef]

Appl. Phys. Lett. (3)

Z. Yang, G. Tang, L. Luo, and W. Chen, “Modified local environment and enhanced near-infrared luminescence of Sm3+ in chalcohalide glasses,” Appl. Phys. Lett. 89(13), 131117 (2006).
[CrossRef]

G. Okada, B. Morrell, C. Koughia, A. Edgar, C. Varoy, G. Belev, T. Wysokinski, D. Chapman, and S. Kasap, “Spatially resolved measurement of high doses in microbeam radiation therapy using samarium doped fluorophosphate glasses,” Appl. Phys. Lett. 99(12), 121105 (2011).
[CrossRef]

X. Liang, Y. Yang, C. Zhu, S. Yuan, G. Chen, A. Pring, and F. Xia, “Luminescence properties of Tb3+–Sm3+ codoped glasses for white light emitting diodes,” Appl. Phys. Lett. 91(9), 091104 (2007).
[CrossRef]

CA Cancer J. Clin. (1)

P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, and J. Golab, “Photodynamic therapy of cancer: an update,” CA Cancer J. Clin. 61(4), 250–281 (2011).
[CrossRef] [PubMed]

J. Alloy. Comp. (4)

G. Lakshminarayana and J. Qiu, “Photoluminescence of Pr3+, Sm3+ and Dy3+-doped SiO2–Al2O3–BaF2–GdF3 glasses,” J. Alloy. Comp. 476(1-2), 470–476 (2009).
[CrossRef]

G. Kawamura, T. Hayakawa, and M. Nogami, “Effect of counter ions on the reduction process of Sm3+ ions in TiO2–ZrO2–Al2O3–SiO2 glasses,” J. Alloy. Comp. 408–412, 845–847 (2006).
[CrossRef]

H. Kawai, C. Zhao, S. Tsuruoka, T. Yoshida, Y. Hasegawa, and T. Kawai, “Emission properties of Sm (III) complexes having remarkably deep-red emission band,” J. Alloy. Comp. 488(2), 612–614 (2009).
[CrossRef]

M. Seshadri, K. V. Rao, J. L. Rao, and Y. C. Ratnakaram, “Spectroscopic and laser properties of Sm3+ doped different phosphate glasses,” J. Alloy. Comp. 476(1-2), 263–270 (2009).
[CrossRef]

J. Am. Ceram. Soc. (1)

C. Koughia, A. Edgar, C. R. Varoy, G. Okada, H. von Seggern, G. Belev, C. Y. Kim, R. Sammynaiken, and S. Kasap, “Samarium-doped fluorochlorozirconate glass–ceramics as red-emitting X-ray phosphors,” J. Am. Ceram. Soc. 94(2), 543–550 (2011).
[CrossRef]

J. Chem. Phys. (2)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions,” J. Chem. Phys. 49(10), 4424–4442 (1968).
[CrossRef]

J. Lightwave Technol. (1)

J. Lumin. (5)

B. C. Jamalaiah, J. S. Kumar, A. M. Babu, T. Sunhasini, and L. R. Moorthy, “Photoluminescence properties of Sm3+ in LBTAF glasses,” J. Lumin. 129(4), 363–369 (2009).
[CrossRef]

S. Sakirzanovas, A. Katelnikovas, D. Dutczak, A. Kareiva, and T. Justel, “Synthesis and Sm2+/Sm3+ doping effects on photoluminescence properties of Sr4Al14O25,” J. Lumin. 131(11), 2255–2262 (2011).
[CrossRef]

T. Som and B. Karmakar, “Infrared-to-red upconversion luminescence in samarium-doped antimony glasses,” J. Lumin. 128(12), 1989–1996 (2008).
[CrossRef]

K. S. V. Sudhakar, M. S. Reddy, L. S. Rao, and N. Veeraiah, “Influence of modifier oxide on spectroscopic and thermoluminescence characteristics of Sm3+ ion in antimony borate glass system,” J. Lumin. 128(11), 1791–1798 (2008).
[CrossRef]

K. Maheshvaran, K. Linganna, and K. Marimuthu, “Composition dependent structural and optical properties of Sm3+ doped boro-tellurite glasses,” J. Lumin. 131(12), 2746–2753 (2011).
[CrossRef]

J. Non-Cryst. Solids (1)

S. Rada, P. Pascuta, M. Rada, and E. Culea, “Effects of samarium (III) oxide content on structural investigations of the samarium–vanadate–tellurate glasses and glass ceramics,” J. Non-Cryst. Solids 357(19-20), 3405–3409 (2011).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Opt. Technol. (1)

J. Phys. Chem. A (1)

Y. Hasegawa, S. Tsuruoka, T. Yoshida, H. Kawai, and T. Kawai, “Enhanced deep-red luminescence of tris(hexafluoroacetylacetonato)samarium(III) complex with phenanthroline in solution by control of ligand coordination,” J. Phys. Chem. A 112(5), 803–807 (2008).
[CrossRef] [PubMed]

J. Phys. D Appl. Phys. (2)

M. Jayasimhadri, E. J. Cho, K. W. Jang, H. S. Lee, and S. I. Kim, “Spectroscopic properties and Judd–Ofelt analysis of Sm3+ doped lead–germanate–tellurite glasses,” J. Phys. D Appl. Phys. 41(17), 175101 (2008).
[CrossRef]

G. Lakshminarayana, R. Yang, J. R. Qiu, M. G. Brik, G. A. Kumar, and I. V. Kityk, “White light emission from Sm3+/Tb3+ codoped oxyfluoride aluminosilicate glasses under UV light excitation,” J. Phys. D Appl. Phys. 42(1), 015414 (2009).
[CrossRef]

Lancet Oncol. (1)

S. B. Brown, E. A. Brown, and I. Walker, “The present and future role of photodynamic therapy in cancer treatment,” Lancet Oncol. 5(8), 497–508 (2004).
[CrossRef] [PubMed]

Lasers Med. Sci. (1)

L. Brancaleon and H. Moseley, “Laser and non-laser light sources for photodynamic therapy,” Lasers Med. Sci. 17(3), 173–186 (2002).
[CrossRef] [PubMed]

Mater. Sci. Eng. B (1)

Y. K. Sharma, S. S. L. Surana, R. P. Dubedi, and V. Joshi, “Spectroscopic and radiative properties of Sm3+ doped zinc fluoride borophosphate glasses,” Mater. Sci. Eng. B 119(2), 131–135 (2005).
[CrossRef]

Nat. Photonics (1)

S. Brown, “Photodynamic therapy: two photons are better than one,” Nat. Photonics 2(7), 394–395 (2008).
[CrossRef]

Opt. Commun. (1)

L. H. Huang, A. Jha, and S. X. Shen, “Spectroscopic properties of Sm3+-doped oxide and fluoride glasses for efficient visible lasers (560−660 nm),” Opt. Commun. 281(17), 4370–4373 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (6)

Z. Mazurak, S. Bodyl, R. Lisiecki, J. Gabrys-Pisarska, and M. Czaja, “Optical properties of Pr3+, Sm3+ and Er3+ doped P2O5–CaO–SrO–BaO phosphate glass,” Opt. Mater. 32(4), 547–553 (2010).
[CrossRef]

G. Manojkumar, B. Shivakiranbhaktha, and D. Narayanarao, “Self-quenching of spontaneous emission in Sm3+ doped lead-borate glass,” Opt. Mater. 28(11), 1266–1270 (2006).
[CrossRef]

T. Suhasini, J. S. Kumar, T. Sasikala, K. Jang, H. S. Lee, M. Jayasimhadri, J. H. Jeong, S. S. Yi, and L. R. Moorthy, “Absorption and fluorescence properties of Sm3+ ions in fluoride containing phosphate glasses,” Opt. Mater. 31(8), 1167–1172 (2009).
[CrossRef]

V. Venkatramu, P. Babu, C. K. Jayasankar, Th. Troster, W. Sievers, and G. Wortmann, “Optical spectroscopy of Sm3+ ions in phosphate and fluorophosphate glasses,” Opt. Mater. 29(11), 1429–1439 (2007).
[CrossRef]

R. Balda, J. Fernandez, M. A. Arriandiaga, L. M. Lacha, and J. M. Fernandez-Navarro, “Effect of concentration on the infrared emissions of Tm3+ ions in lead niobium germanate glasses,” Opt. Mater. 28(11), 1253–1257 (2006).
[CrossRef]

A. Agarwal, I. Pal, S. Sanghi, and M. P. Aggarwal, “Judd–Ofelt parameters and radiative properties of Sm3+ ions doped zinc bismuth borate glasses,” Opt. Mater. 32(2), 339–344 (2009).
[CrossRef]

Phys. Rev. (1)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[CrossRef]

Physica B (1)

R. Praveena, V. Venkatramu, P. Babu, and C. K. Jayasankar, “Fluorescence spectroscopy of Sm3+ ions in P2O5–PbO– Nb2O5 glasses,” Physica B 403(19-20), 3527–3534 (2008).
[CrossRef]

Solid State Sci. (1)

J. S. Kumar, K. Pavani, T. Sasikala, A. S. Rao, N. K. Giri, S. B. Rai, and L. R. Moorthy, “Photoluminescence and energy transfer properties of Sm3+ doped CFB glasses,” Solid State Sci. 13(8), 1548–1553 (2011).
[CrossRef]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (5)

H. Liang and F. Xie, “Optical investigation of Sm(III)-β-diketonate complexes with different neutral ligands,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 73(2), 309–312 (2009).
[CrossRef] [PubMed]

A. Kumar, D. K. Rai, and S. B. Rai, “Optical properties of Sm3+ ions doped in tellurite glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 59(5), 917–925 (2003).
[CrossRef] [PubMed]

K. Annapurna, R. N. Dwivedi, A. Kumar, A. K. Chaudhuri, and S. Buddhudu, “Temperature dependent luminescence characteristics of Sm3+-doped silicate glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 56(1), 103–109 (2000).
[CrossRef] [PubMed]

M. Jayasimhadri, L. R. Moorthy, S. A. Saleem, and R. V. S. S. N. Ravikumar, “Spectroscopic characteristics of Sm3+-doped alkali fluorophosphates glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 64(4), 939–944 (2006).
[CrossRef] [PubMed]

P. Srivastava, S. B. Rai, and D. K. Rai, “Optical properties of Sm3+ doped calibo glass with addition of lead oxide,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(3), 637–642 (2004).
[CrossRef] [PubMed]

Other (1)

R. Reisfeld and C. K. Jorgensen, in Handbook on the Physics and Chemistry of Rare Earths, A. Gschneidner, Jr. and L. Eyring, eds. (Elsevier Science Publishers B. V., Netherlands, 1987), Vol. 9, pp. 44.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Photograph of Sm3+-doped NMAG glasses under nature light. (b) Index profile at 632.8nm for slab waveguide by ion-exchanging at 390°C for 4h. (c) Intensity of reflected light versus index value with 632.8nm laser source. (d) Intensity of reflected light versus index value with 1536nm laser source.

Fig. 2
Fig. 2

(a) AFM image of the channel section. (b) Near-field mode pattern of Sm3+-doped NMAG glass channel waveguide at 1550nm. (c) A 3D representation of the near-field mode pattern of the channel waveguide at 1550nm. (d) ASE fluorescence generation and transmission in Sm3+-doped NMAG glass channel waveguide under the excitation of 488nm wavelength laser pumping.

Fig. 3
Fig. 3

(a) OSA spectrum recorded from the output end facet of K+–Na+ ion-exchanged Sm3+-doped NMAG glass channel waveguide under the excitation of 488nm wavelength laser pumping. (b) Photon distribution of Sm3+-doped NMAG glasses under 488nm excitation. (c) Visible emission spectrum of 1mol% Sm2O3 doped NMAG glasses under 488nm excitation. (d) Excitation spectrum for 598.5nm emission in Sm3+-doped NMAG glasses.

Fig. 4
Fig. 4

Schematic diagram of Sm3+-doped NMAG glass channel waveguide used as PDT irradiation light source for cancer treatment in mini-invasive surgery. Inset: Fluorescence from 1mol% Sm2O3 doped NMAG glasses under 365nm excitation.

Fig. 5
Fig. 5

(a) Absorption spectrum of 1mol% Sm2O3 doped NMAG glasses. Inset of (a): IR transmittance spectrum of Sm3+-doped NMAG glasses (sample thickness is 3.40mm). (b) Energy level diagram of Sm3+ ion in NMAG glasses.

Fig. 6
Fig. 6

(a) Fluorescence decay curves of the 4G5/2 level for 0.1mol% (curve 1) and 1mol% (curve 2) Sm2O3 doped NMAG glasses. (b) Simulated emission cross-section profiles for the emission bands of Sm3+ in visible wavelength region.

Tables (1)

Tables Icon

Table 1 Predicted emission probabilities, branching ratios, and radiative lifetime of Sm3+ in NMAG glasses

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ e = A rad 8πc n 2 × λ 5 I(λ) λI(λ)dλ ,

Metrics