Abstract

Wavelength tunable lasers operating at near infrared (NIR) wavelength are demonstrated through the thermo-optic (TO) refractive index tuning of polymer waveguide Bragg reflectors. The polymer-waveguide device has superior TO efficiency for substantially changing the refractive index, and it enables direct tuning of the Bragg reflection wavelength over a wide range. The waveguide is optimized for NIR wavelengths, and a third-order Bragg reflector is incorporated for facilitating fabrication of the grating. The laser exhibits an output power of 0 dBm, a side-mode suppression ratio of 40 dB, and a tuning range of 21 nm.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Taroni, A. Pifferi, E. Salvagnini, L. Spinelli, A. Torricelli, and R. Cubeddu, “Seven-wavelength time-resolved optical mammography extending beyond 1000 nm for breast collagen quantification,” Opt. Express 17(18), 15932–15946 (2009).
    [CrossRef] [PubMed]
  2. I. L. Maksimova, G. G. Akchurin, B. N. Khlebtsov, G. S. Terentyuk, G. G. Akchurin, I. A. Ermolaev, A. A. Skaptsov, E. P. Soboleva, N. G. Khlebtsov, and V. V. Tuchin, “Near-infrared laser photothermal therapy of cancer by using gold nanoparticles: Computer simulations and experiment,” Med. Laser Appl. 22(3), 199–206 (2007).
    [CrossRef]
  3. G. Gulsen, B. Xiong, O. Birgul, and O. Nalcioglu, “Design and implementation of a multifrequency near-infrared diffuse optical tomography system,” J. Biomed. Opt. 11(1), 014020 (2006).
    [CrossRef] [PubMed]
  4. C. L. Tsai, J.-C. Chen, and W.-J. Wang, “Near-infrared absorption property of biological soft tissue constituents,” Med. Biol. Eng. 21, 7–13 (2001).
  5. K. Sumimura, Y. Genda, T. Ohta, K. Itoh, and N. Nishizawa, “Quasi-supercontinuum generation using 1.06 μm ultrashort-pulse laser system for ultrahigh-resolution optical-coherence tomography,” Opt. Lett. 35(21), 3631–3633 (2010).
    [CrossRef] [PubMed]
  6. M. Izzetoglu, S. C. Bunce, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional brain imaging using near-infrared technology,” IEEE Eng. Med. Biol. Mag. 26(4), 38–46 (2007).
    [CrossRef] [PubMed]
  7. G. D. Cole, E. Behymer, T. C. Bond, and L. L. Goddard, “Short-wavelength MEMS-tunable VCSELs,” Opt. Express 16(20), 16093–16103 (2008).
    [CrossRef] [PubMed]
  8. M. Huang, Y. Zhou, and C. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
    [CrossRef]
  9. M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater. (Deerfield Beach Fla.) 16(2), 130–133 (2004).
    [CrossRef]
  10. H. Lim, J. F. de Boer, B. H. Park, E. C. W. Lee, R. Yelin, and S. H. Yun, “Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range,” Opt. Express 14(13), 5937–5944 (2006).
    [CrossRef] [PubMed]
  11. S.-W. Lee, C.-S. Kim, and B.-M. Kim, “External line-cavity wavelength-swept source at 850 nm for optical coherence tomography,” IEEE Photon. Technol. Lett. 19(3), 176–178 (2007).
    [CrossRef]
  12. H. Okamoto, K. Kasuga, I. Hara, and Y. Kubota, “Visible-NIR tunable Pr3+-doped fiber laser pumped by a GaN laser diode,” Opt. Express 17(22), 20227–20232 (2009).
    [CrossRef] [PubMed]
  13. Y.-O. Noh, H.-J. Lee, J.-J. Ju, M.-S. Kim, S.-H. Oh, and M.-C. Oh, “Continuously tunable compact lasers based on thermo-optic polymer waveguides with Bragg gratings,” Opt. Express 16(22), 18194–18201 (2008).
    [CrossRef] [PubMed]
  14. K.-J. Kim, J.-W. Kim, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, “Flexible polymer waveguide tunable lasers,” Opt. Express 18(8), 8392–8399 (2010).
    [CrossRef] [PubMed]
  15. M.-C. Oh, K.-J. Kim, W.-S. Chu, J.-W. Kim, J.-K. Seo, Y.-O. Noh, and H.-J. Lee, “Integrated photonic devices incorporating low-loss fluorinated polymer materials,” Polymers 3(3), 975–997 (2011).
    [CrossRef]
  16. B. Wenger, N. Tetreault, M. E. Welland, and R. H. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett. 97(19), 193303 (2010).
    [CrossRef]
  17. J. Halldorsson, N. B. Arnfinnsdottir, A. B. Jonsdottir, B. Agnarsson, and K. Leosson, “High index contrast polymer waveguide platform for integrated biophotonics,” Opt. Express 18(15), 16217–16226 (2010).
    [CrossRef] [PubMed]
  18. M.-C. Oh, H. Zhang, C. Zhang, H. Erlig, Y. Chang, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
    [CrossRef]
  19. Y. Hida, H. Onose, and S. Imamura, “Polymer waveguide thermooptic switch with low electric power consumption at 1.3 μm,” IEEE Photon. Technol. Lett. 5(7), 782–784 (1993).
    [CrossRef]

2011 (1)

M.-C. Oh, K.-J. Kim, W.-S. Chu, J.-W. Kim, J.-K. Seo, Y.-O. Noh, and H.-J. Lee, “Integrated photonic devices incorporating low-loss fluorinated polymer materials,” Polymers 3(3), 975–997 (2011).
[CrossRef]

2010 (4)

2009 (2)

2008 (3)

2007 (3)

I. L. Maksimova, G. G. Akchurin, B. N. Khlebtsov, G. S. Terentyuk, G. G. Akchurin, I. A. Ermolaev, A. A. Skaptsov, E. P. Soboleva, N. G. Khlebtsov, and V. V. Tuchin, “Near-infrared laser photothermal therapy of cancer by using gold nanoparticles: Computer simulations and experiment,” Med. Laser Appl. 22(3), 199–206 (2007).
[CrossRef]

M. Izzetoglu, S. C. Bunce, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional brain imaging using near-infrared technology,” IEEE Eng. Med. Biol. Mag. 26(4), 38–46 (2007).
[CrossRef] [PubMed]

S.-W. Lee, C.-S. Kim, and B.-M. Kim, “External line-cavity wavelength-swept source at 850 nm for optical coherence tomography,” IEEE Photon. Technol. Lett. 19(3), 176–178 (2007).
[CrossRef]

2006 (2)

G. Gulsen, B. Xiong, O. Birgul, and O. Nalcioglu, “Design and implementation of a multifrequency near-infrared diffuse optical tomography system,” J. Biomed. Opt. 11(1), 014020 (2006).
[CrossRef] [PubMed]

H. Lim, J. F. de Boer, B. H. Park, E. C. W. Lee, R. Yelin, and S. H. Yun, “Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range,” Opt. Express 14(13), 5937–5944 (2006).
[CrossRef] [PubMed]

2004 (1)

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater. (Deerfield Beach Fla.) 16(2), 130–133 (2004).
[CrossRef]

2001 (2)

C. L. Tsai, J.-C. Chen, and W.-J. Wang, “Near-infrared absorption property of biological soft tissue constituents,” Med. Biol. Eng. 21, 7–13 (2001).

M.-C. Oh, H. Zhang, C. Zhang, H. Erlig, Y. Chang, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
[CrossRef]

1993 (1)

Y. Hida, H. Onose, and S. Imamura, “Polymer waveguide thermooptic switch with low electric power consumption at 1.3 μm,” IEEE Photon. Technol. Lett. 5(7), 782–784 (1993).
[CrossRef]

Agnarsson, B.

Akchurin, G. G.

I. L. Maksimova, G. G. Akchurin, B. N. Khlebtsov, G. S. Terentyuk, G. G. Akchurin, I. A. Ermolaev, A. A. Skaptsov, E. P. Soboleva, N. G. Khlebtsov, and V. V. Tuchin, “Near-infrared laser photothermal therapy of cancer by using gold nanoparticles: Computer simulations and experiment,” Med. Laser Appl. 22(3), 199–206 (2007).
[CrossRef]

I. L. Maksimova, G. G. Akchurin, B. N. Khlebtsov, G. S. Terentyuk, G. G. Akchurin, I. A. Ermolaev, A. A. Skaptsov, E. P. Soboleva, N. G. Khlebtsov, and V. V. Tuchin, “Near-infrared laser photothermal therapy of cancer by using gold nanoparticles: Computer simulations and experiment,” Med. Laser Appl. 22(3), 199–206 (2007).
[CrossRef]

Arnfinnsdottir, N. B.

Behymer, E.

Birgul, O.

G. Gulsen, B. Xiong, O. Birgul, and O. Nalcioglu, “Design and implementation of a multifrequency near-infrared diffuse optical tomography system,” J. Biomed. Opt. 11(1), 014020 (2006).
[CrossRef] [PubMed]

Bond, T. C.

Bunce, S. C.

M. Izzetoglu, S. C. Bunce, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional brain imaging using near-infrared technology,” IEEE Eng. Med. Biol. Mag. 26(4), 38–46 (2007).
[CrossRef] [PubMed]

Chang, D.

M.-C. Oh, H. Zhang, C. Zhang, H. Erlig, Y. Chang, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
[CrossRef]

Chang, Y.

M.-C. Oh, H. Zhang, C. Zhang, H. Erlig, Y. Chang, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
[CrossRef]

Chang-Hasnain, C.

M. Huang, Y. Zhou, and C. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[CrossRef]

Chen, J.-C.

C. L. Tsai, J.-C. Chen, and W.-J. Wang, “Near-infrared absorption property of biological soft tissue constituents,” Med. Biol. Eng. 21, 7–13 (2001).

Chu, W.-S.

M.-C. Oh, K.-J. Kim, W.-S. Chu, J.-W. Kim, J.-K. Seo, Y.-O. Noh, and H.-J. Lee, “Integrated photonic devices incorporating low-loss fluorinated polymer materials,” Polymers 3(3), 975–997 (2011).
[CrossRef]

Cole, G. D.

Cubeddu, R.

Dalton, L. R.

M.-C. Oh, H. Zhang, C. Zhang, H. Erlig, Y. Chang, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
[CrossRef]

de Boer, J. F.

Erlig, H.

M.-C. Oh, H. Zhang, C. Zhang, H. Erlig, Y. Chang, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
[CrossRef]

Ermolaev, I. A.

I. L. Maksimova, G. G. Akchurin, B. N. Khlebtsov, G. S. Terentyuk, G. G. Akchurin, I. A. Ermolaev, A. A. Skaptsov, E. P. Soboleva, N. G. Khlebtsov, and V. V. Tuchin, “Near-infrared laser photothermal therapy of cancer by using gold nanoparticles: Computer simulations and experiment,” Med. Laser Appl. 22(3), 199–206 (2007).
[CrossRef]

Fetterman, H. R.

M.-C. Oh, H. Zhang, C. Zhang, H. Erlig, Y. Chang, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
[CrossRef]

Friend, R. H.

B. Wenger, N. Tetreault, M. E. Welland, and R. H. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett. 97(19), 193303 (2010).
[CrossRef]

Genda, Y.

Goddard, L. L.

Gulsen, G.

G. Gulsen, B. Xiong, O. Birgul, and O. Nalcioglu, “Design and implementation of a multifrequency near-infrared diffuse optical tomography system,” J. Biomed. Opt. 11(1), 014020 (2006).
[CrossRef] [PubMed]

Haase, A.

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater. (Deerfield Beach Fla.) 16(2), 130–133 (2004).
[CrossRef]

Halldorsson, J.

Hara, I.

Hida, Y.

Y. Hida, H. Onose, and S. Imamura, “Polymer waveguide thermooptic switch with low electric power consumption at 1.3 μm,” IEEE Photon. Technol. Lett. 5(7), 782–784 (1993).
[CrossRef]

Huang, M.

M. Huang, Y. Zhou, and C. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[CrossRef]

Imamura, S.

Y. Hida, H. Onose, and S. Imamura, “Polymer waveguide thermooptic switch with low electric power consumption at 1.3 μm,” IEEE Photon. Technol. Lett. 5(7), 782–784 (1993).
[CrossRef]

Itoh, K.

Izzetoglu, K.

M. Izzetoglu, S. C. Bunce, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional brain imaging using near-infrared technology,” IEEE Eng. Med. Biol. Mag. 26(4), 38–46 (2007).
[CrossRef] [PubMed]

Izzetoglu, M.

M. Izzetoglu, S. C. Bunce, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional brain imaging using near-infrared technology,” IEEE Eng. Med. Biol. Mag. 26(4), 38–46 (2007).
[CrossRef] [PubMed]

Jonsdottir, A. B.

Ju, J.-J.

Kasuga, K.

Kern, W.

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater. (Deerfield Beach Fla.) 16(2), 130–133 (2004).
[CrossRef]

Khlebtsov, B. N.

I. L. Maksimova, G. G. Akchurin, B. N. Khlebtsov, G. S. Terentyuk, G. G. Akchurin, I. A. Ermolaev, A. A. Skaptsov, E. P. Soboleva, N. G. Khlebtsov, and V. V. Tuchin, “Near-infrared laser photothermal therapy of cancer by using gold nanoparticles: Computer simulations and experiment,” Med. Laser Appl. 22(3), 199–206 (2007).
[CrossRef]

Khlebtsov, N. G.

I. L. Maksimova, G. G. Akchurin, B. N. Khlebtsov, G. S. Terentyuk, G. G. Akchurin, I. A. Ermolaev, A. A. Skaptsov, E. P. Soboleva, N. G. Khlebtsov, and V. V. Tuchin, “Near-infrared laser photothermal therapy of cancer by using gold nanoparticles: Computer simulations and experiment,” Med. Laser Appl. 22(3), 199–206 (2007).
[CrossRef]

Kim, B.-M.

S.-W. Lee, C.-S. Kim, and B.-M. Kim, “External line-cavity wavelength-swept source at 850 nm for optical coherence tomography,” IEEE Photon. Technol. Lett. 19(3), 176–178 (2007).
[CrossRef]

Kim, C.-S.

S.-W. Lee, C.-S. Kim, and B.-M. Kim, “External line-cavity wavelength-swept source at 850 nm for optical coherence tomography,” IEEE Photon. Technol. Lett. 19(3), 176–178 (2007).
[CrossRef]

Kim, J.-W.

M.-C. Oh, K.-J. Kim, W.-S. Chu, J.-W. Kim, J.-K. Seo, Y.-O. Noh, and H.-J. Lee, “Integrated photonic devices incorporating low-loss fluorinated polymer materials,” Polymers 3(3), 975–997 (2011).
[CrossRef]

K.-J. Kim, J.-W. Kim, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, “Flexible polymer waveguide tunable lasers,” Opt. Express 18(8), 8392–8399 (2010).
[CrossRef] [PubMed]

Kim, K.-J.

M.-C. Oh, K.-J. Kim, W.-S. Chu, J.-W. Kim, J.-K. Seo, Y.-O. Noh, and H.-J. Lee, “Integrated photonic devices incorporating low-loss fluorinated polymer materials,” Polymers 3(3), 975–997 (2011).
[CrossRef]

K.-J. Kim, J.-W. Kim, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, “Flexible polymer waveguide tunable lasers,” Opt. Express 18(8), 8392–8399 (2010).
[CrossRef] [PubMed]

Kim, M.-S.

Kubota, Y.

Langer, G.

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater. (Deerfield Beach Fla.) 16(2), 130–133 (2004).
[CrossRef]

Lee, E. C. W.

Lee, H.-J.

Lee, S.-W.

S.-W. Lee, C.-S. Kim, and B.-M. Kim, “External line-cavity wavelength-swept source at 850 nm for optical coherence tomography,” IEEE Photon. Technol. Lett. 19(3), 176–178 (2007).
[CrossRef]

Leosson, K.

Lim, H.

Maksimova, I. L.

I. L. Maksimova, G. G. Akchurin, B. N. Khlebtsov, G. S. Terentyuk, G. G. Akchurin, I. A. Ermolaev, A. A. Skaptsov, E. P. Soboleva, N. G. Khlebtsov, and V. V. Tuchin, “Near-infrared laser photothermal therapy of cancer by using gold nanoparticles: Computer simulations and experiment,” Med. Laser Appl. 22(3), 199–206 (2007).
[CrossRef]

Nalcioglu, O.

G. Gulsen, B. Xiong, O. Birgul, and O. Nalcioglu, “Design and implementation of a multifrequency near-infrared diffuse optical tomography system,” J. Biomed. Opt. 11(1), 014020 (2006).
[CrossRef] [PubMed]

Nishizawa, N.

Noh, Y.-O.

Oh, M.-C.

M.-C. Oh, K.-J. Kim, W.-S. Chu, J.-W. Kim, J.-K. Seo, Y.-O. Noh, and H.-J. Lee, “Integrated photonic devices incorporating low-loss fluorinated polymer materials,” Polymers 3(3), 975–997 (2011).
[CrossRef]

K.-J. Kim, J.-W. Kim, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, “Flexible polymer waveguide tunable lasers,” Opt. Express 18(8), 8392–8399 (2010).
[CrossRef] [PubMed]

Y.-O. Noh, H.-J. Lee, J.-J. Ju, M.-S. Kim, S.-H. Oh, and M.-C. Oh, “Continuously tunable compact lasers based on thermo-optic polymer waveguides with Bragg gratings,” Opt. Express 16(22), 18194–18201 (2008).
[CrossRef] [PubMed]

M.-C. Oh, H. Zhang, C. Zhang, H. Erlig, Y. Chang, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
[CrossRef]

Oh, S.-H.

Ohta, T.

Okamoto, H.

Onaral, B.

M. Izzetoglu, S. C. Bunce, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional brain imaging using near-infrared technology,” IEEE Eng. Med. Biol. Mag. 26(4), 38–46 (2007).
[CrossRef] [PubMed]

Onose, H.

Y. Hida, H. Onose, and S. Imamura, “Polymer waveguide thermooptic switch with low electric power consumption at 1.3 μm,” IEEE Photon. Technol. Lett. 5(7), 782–784 (1993).
[CrossRef]

Park, B. H.

Pifferi, A.

Pogantsch, A.

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater. (Deerfield Beach Fla.) 16(2), 130–133 (2004).
[CrossRef]

Pourrezaei, K.

M. Izzetoglu, S. C. Bunce, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional brain imaging using near-infrared technology,” IEEE Eng. Med. Biol. Mag. 26(4), 38–46 (2007).
[CrossRef] [PubMed]

Salvagnini, E.

Seo, J.-K.

M.-C. Oh, K.-J. Kim, W.-S. Chu, J.-W. Kim, J.-K. Seo, Y.-O. Noh, and H.-J. Lee, “Integrated photonic devices incorporating low-loss fluorinated polymer materials,” Polymers 3(3), 975–997 (2011).
[CrossRef]

Skaptsov, A. A.

I. L. Maksimova, G. G. Akchurin, B. N. Khlebtsov, G. S. Terentyuk, G. G. Akchurin, I. A. Ermolaev, A. A. Skaptsov, E. P. Soboleva, N. G. Khlebtsov, and V. V. Tuchin, “Near-infrared laser photothermal therapy of cancer by using gold nanoparticles: Computer simulations and experiment,” Med. Laser Appl. 22(3), 199–206 (2007).
[CrossRef]

Soboleva, E. P.

I. L. Maksimova, G. G. Akchurin, B. N. Khlebtsov, G. S. Terentyuk, G. G. Akchurin, I. A. Ermolaev, A. A. Skaptsov, E. P. Soboleva, N. G. Khlebtsov, and V. V. Tuchin, “Near-infrared laser photothermal therapy of cancer by using gold nanoparticles: Computer simulations and experiment,” Med. Laser Appl. 22(3), 199–206 (2007).
[CrossRef]

Spinelli, L.

Steier, W. H.

M.-C. Oh, H. Zhang, C. Zhang, H. Erlig, Y. Chang, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
[CrossRef]

Sumimura, K.

Szep, A.

M.-C. Oh, H. Zhang, C. Zhang, H. Erlig, Y. Chang, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
[CrossRef]

Taroni, P.

Terentyuk, G. S.

I. L. Maksimova, G. G. Akchurin, B. N. Khlebtsov, G. S. Terentyuk, G. G. Akchurin, I. A. Ermolaev, A. A. Skaptsov, E. P. Soboleva, N. G. Khlebtsov, and V. V. Tuchin, “Near-infrared laser photothermal therapy of cancer by using gold nanoparticles: Computer simulations and experiment,” Med. Laser Appl. 22(3), 199–206 (2007).
[CrossRef]

Tetreault, N.

B. Wenger, N. Tetreault, M. E. Welland, and R. H. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett. 97(19), 193303 (2010).
[CrossRef]

Torricelli, A.

Tsai, C. L.

C. L. Tsai, J.-C. Chen, and W.-J. Wang, “Near-infrared absorption property of biological soft tissue constituents,” Med. Biol. Eng. 21, 7–13 (2001).

Tsap, B.

M.-C. Oh, H. Zhang, C. Zhang, H. Erlig, Y. Chang, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
[CrossRef]

Tuchin, V. V.

I. L. Maksimova, G. G. Akchurin, B. N. Khlebtsov, G. S. Terentyuk, G. G. Akchurin, I. A. Ermolaev, A. A. Skaptsov, E. P. Soboleva, N. G. Khlebtsov, and V. V. Tuchin, “Near-infrared laser photothermal therapy of cancer by using gold nanoparticles: Computer simulations and experiment,” Med. Laser Appl. 22(3), 199–206 (2007).
[CrossRef]

Wang, W.-J.

C. L. Tsai, J.-C. Chen, and W.-J. Wang, “Near-infrared absorption property of biological soft tissue constituents,” Med. Biol. Eng. 21, 7–13 (2001).

Weinberger, M. R.

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater. (Deerfield Beach Fla.) 16(2), 130–133 (2004).
[CrossRef]

Welland, M. E.

B. Wenger, N. Tetreault, M. E. Welland, and R. H. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett. 97(19), 193303 (2010).
[CrossRef]

Wenger, B.

B. Wenger, N. Tetreault, M. E. Welland, and R. H. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett. 97(19), 193303 (2010).
[CrossRef]

Xiong, B.

G. Gulsen, B. Xiong, O. Birgul, and O. Nalcioglu, “Design and implementation of a multifrequency near-infrared diffuse optical tomography system,” J. Biomed. Opt. 11(1), 014020 (2006).
[CrossRef] [PubMed]

Yelin, R.

Yun, S. H.

Zhang, C.

M.-C. Oh, H. Zhang, C. Zhang, H. Erlig, Y. Chang, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
[CrossRef]

Zhang, H.

M.-C. Oh, H. Zhang, C. Zhang, H. Erlig, Y. Chang, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
[CrossRef]

Zhou, Y.

M. Huang, Y. Zhou, and C. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[CrossRef]

Zojer, E.

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater. (Deerfield Beach Fla.) 16(2), 130–133 (2004).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, “Continuously color-tunable rubber laser,” Adv. Mater. (Deerfield Beach Fla.) 16(2), 130–133 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

B. Wenger, N. Tetreault, M. E. Welland, and R. H. Friend, “Mechanically tunable conjugated polymer distributed feedback lasers,” Appl. Phys. Lett. 97(19), 193303 (2010).
[CrossRef]

IEEE Eng. Med. Biol. Mag. (1)

M. Izzetoglu, S. C. Bunce, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional brain imaging using near-infrared technology,” IEEE Eng. Med. Biol. Mag. 26(4), 38–46 (2007).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

M.-C. Oh, H. Zhang, C. Zhang, H. Erlig, Y. Chang, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, “Recent advances in electrooptic polymer modulators incorporating highly nonlinear chromophore,” IEEE J. Sel. Top. Quantum Electron. 7(5), 826–835 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Y. Hida, H. Onose, and S. Imamura, “Polymer waveguide thermooptic switch with low electric power consumption at 1.3 μm,” IEEE Photon. Technol. Lett. 5(7), 782–784 (1993).
[CrossRef]

S.-W. Lee, C.-S. Kim, and B.-M. Kim, “External line-cavity wavelength-swept source at 850 nm for optical coherence tomography,” IEEE Photon. Technol. Lett. 19(3), 176–178 (2007).
[CrossRef]

J. Biomed. Opt. (1)

G. Gulsen, B. Xiong, O. Birgul, and O. Nalcioglu, “Design and implementation of a multifrequency near-infrared diffuse optical tomography system,” J. Biomed. Opt. 11(1), 014020 (2006).
[CrossRef] [PubMed]

Med. Biol. Eng. (1)

C. L. Tsai, J.-C. Chen, and W.-J. Wang, “Near-infrared absorption property of biological soft tissue constituents,” Med. Biol. Eng. 21, 7–13 (2001).

Med. Laser Appl. (1)

I. L. Maksimova, G. G. Akchurin, B. N. Khlebtsov, G. S. Terentyuk, G. G. Akchurin, I. A. Ermolaev, A. A. Skaptsov, E. P. Soboleva, N. G. Khlebtsov, and V. V. Tuchin, “Near-infrared laser photothermal therapy of cancer by using gold nanoparticles: Computer simulations and experiment,” Med. Laser Appl. 22(3), 199–206 (2007).
[CrossRef]

Nat. Photonics (1)

M. Huang, Y. Zhou, and C. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2(3), 180–184 (2008).
[CrossRef]

Opt. Express (7)

Opt. Lett. (1)

Polymers (1)

M.-C. Oh, K.-J. Kim, W.-S. Chu, J.-W. Kim, J.-K. Seo, Y.-O. Noh, and H.-J. Lee, “Integrated photonic devices incorporating low-loss fluorinated polymer materials,” Polymers 3(3), 975–997 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of external cavity NIR lasers consisting of a polymer waveguide with a TO tunable Bragg grating and a SOA with a high reflection coating on one end.

Fig. 2
Fig. 2

(a) Transmission and reflection spectra obtained using the transmission matrix method for the third-order grating with a length of 5 mm and an etch depth of 200 nm. (b) Bragg grating reflectivity as a function of the grating etch depth for various lengths and orders.

Fig. 3
Fig. 3

Schematic of the fabrication procedures for the polymeric waveguide with a Bragg grating. The device consists of rib-type waveguide, and the Bragg grating is placed under the core layer.

Fig. 4
Fig. 4

Images of light streaks observed by using a visible CCD during alignment of optical fiber on a polymer waveguide: (a) before optimized alignment and (b) after alignment is optimized to realize the lasing.

Fig. 5
Fig. 5

Output spectrum of external cavity NIR laser: (a) the spectrum shows an output optical power of 1.2dBm, a 20-dB bandwidth of 0.2 nm, and a side-mode suppression ratio of 40 dB; and (b) the polarization dependence of the laser with an initial lasing wavelength of 849.2 nm for TE mode and 848.6 nm for TM mode

Fig. 6
Fig. 6

Lasing behavior of a polymer-waveguide tunable laser represented by the L-I curve with a slope efficiency of 0.069 W/A.

Fig. 7
Fig. 7

Wavelength-tuning characteristics of the polymer-Bragg-grating tunable laser: (a) wide tuning from 848.7 to 827.9 nm by applying electrical power increasing with steps of 50 mW,(b) peak wavelength position as a function of applied electrical power, and (c) continuous tuning for a narrow tuning range with a step-wise change in wavelength by 0.1 nm in each step.

Metrics