Abstract

We show that highly nonlinear chalcogenide glass nanowire waveguides with near-zero anomalous dispersion should be capable of generating correlated photon-pairs by spontaneous four-wave mixing at frequencies detuned by over 17 THz from the pump where Raman noise is absent. In this region we predict a photon pair correlation of >100, a figure of merit >10 and brightness of ~8×108 pairs/s over a bandwidth of >15 THz in nanowires with group velocity dispersion of <5 ps∙km−1nm−1. We present designs for double-clad Ge11.5As24Se64.5 glass nanowires with realistic tolerance to fabrication errors that achieve near-zero anomalous dispersion at a 1420 nm pump wavelength. This structure has a fabrication tolerance of 80–170 nm in the waveguide width and utilizes a SiO2/Al2O3 layer deposited by atomic layer deposition to compensate the fabrication errors in the film thickness.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Yoran and B. Reznik, “Deterministic linear optics quantum computation with single photon qubits,” Phys. Rev. Lett. 91(3), 037903 (2003).
    [CrossRef] [PubMed]
  2. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quamtum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
    [CrossRef]
  3. J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulating multi-photon entanglement in waveguide quantum circuits,” Nat. Photonics 3(6), 346–350 (2009).
    [CrossRef]
  4. X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12(16), 3737–3744 (2004).
    [CrossRef] [PubMed]
  5. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14(25), 12388–12393 (2006).
    [CrossRef] [PubMed]
  6. A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007).
    [CrossRef]
  7. M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008).
    [CrossRef] [PubMed]
  8. F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009).
    [CrossRef] [PubMed]
  9. C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
    [CrossRef]
  10. C. Xiong, L. G. Helt, A. C. Judge, G. D. Marshall, M. J. Steel, J. E. Sipe, and B. J. Eggleton, “Quantum-correlated photon pair generation in chalcogenide As2S3 waveguides,” Opt. Express 18(15), 16206–16216 (2010).
    [CrossRef] [PubMed]
  11. A. S. Y. Hsieh, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, “Combined effect of Raman and parametric gain on single-pump parametric amplifiers,” Opt. Express 15(13), 8104–8114 (2007).
    [CrossRef] [PubMed]
  12. G. P. Agrawal, Nonlinear Fiber Optics, 3rd. ed. (Academic, 2001).
  13. A. Prasad, C.-J. Zha, R.-P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008).
    [CrossRef] [PubMed]
  14. X. Gai, S. Madden, D.-Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W⁻¹m⁻¹ at 1550 nm,” Opt. Express 18(18), 18866–18874 (2010).
    [CrossRef] [PubMed]
  15. X. Gai, T. Han, A. Prasad, S. Madden, D.-Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18(25), 26635–26646 (2010).
    [CrossRef] [PubMed]
  16. S. M. George, “Atomic Layer Deposition: An Overview,” Chem. Rev. 110(1), 111–131 (2010).
    [CrossRef] [PubMed]
  17. X. Gai, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Interplay between Raman scattering and four-wave mixing in As2S3 chalcogenide glass waveguides,” J. Opt. Soc. Am. B 28(11), 2777–2784 (2011).
    [CrossRef]
  18. Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14(11), 4786–4799 (2006).
    [CrossRef] [PubMed]
  19. A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite-difference mode solver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26(11), 1423–1431 (2008).
    [CrossRef]
  20. P. Lüsse, P. Stuwe, J. Schüle, and H. G. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol. 12(3), 487–494 (1994).
    [CrossRef]

2011

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

X. Gai, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Interplay between Raman scattering and four-wave mixing in As2S3 chalcogenide glass waveguides,” J. Opt. Soc. Am. B 28(11), 2777–2784 (2011).
[CrossRef]

2010

2009

2008

2007

2006

2004

2003

N. Yoran and B. Reznik, “Deterministic linear optics quantum computation with single photon qubits,” Phys. Rev. Lett. 91(3), 037903 (2003).
[CrossRef] [PubMed]

2002

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quamtum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[CrossRef]

1994

P. Lüsse, P. Stuwe, J. Schüle, and H. G. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol. 12(3), 487–494 (1994).
[CrossRef]

Agrawal, G. P.

Bristow, A. D.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007).
[CrossRef]

Bulla, D.

Chen, J.

Choi, D.-Y.

X. Gai, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Interplay between Raman scattering and four-wave mixing in As2S3 chalcogenide glass waveguides,” J. Opt. Soc. Am. B 28(11), 2777–2784 (2011).
[CrossRef]

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

X. Gai, T. Han, A. Prasad, S. Madden, D.-Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18(25), 26635–26646 (2010).
[CrossRef] [PubMed]

X. Gai, S. Madden, D.-Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W⁻¹m⁻¹ at 1550 nm,” Opt. Express 18(18), 18866–18874 (2010).
[CrossRef] [PubMed]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009).
[CrossRef] [PubMed]

M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008).
[CrossRef] [PubMed]

Clark, A. S.

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

Coen, S.

Dorenbos, S. N.

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

Eggleton, B. J.

Fallahkhair, A. B.

Fauchet, P. M.

Foster, M. A.

Gaeta, A. L.

Gai, X.

George, S. M.

S. M. George, “Atomic Layer Deposition: An Overview,” Chem. Rev. 110(1), 111–131 (2010).
[CrossRef] [PubMed]

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quamtum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[CrossRef]

Hadfield, R. H.

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

Han, T.

Harvey, J. D.

Helt, L. G.

Hsieh, A. S. Y.

Judge, A. C.

Kumar, P.

Lamont, M. R.

Lamont, M. R. E.

Lee, K. F.

Leonhardt, R.

Li, K. S.

Li, X.

Lin, Q.

Lipson, M.

Lobino, M.

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

Luan, F.

Lüsse, P.

P. Lüsse, P. Stuwe, J. Schüle, and H. G. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol. 12(3), 487–494 (1994).
[CrossRef]

Luther-Davies, B.

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

X. Gai, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Interplay between Raman scattering and four-wave mixing in As2S3 chalcogenide glass waveguides,” J. Opt. Soc. Am. B 28(11), 2777–2784 (2011).
[CrossRef]

X. Gai, S. Madden, D.-Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W⁻¹m⁻¹ at 1550 nm,” Opt. Express 18(18), 18866–18874 (2010).
[CrossRef] [PubMed]

X. Gai, T. Han, A. Prasad, S. Madden, D.-Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18(25), 26635–26646 (2010).
[CrossRef] [PubMed]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009).
[CrossRef] [PubMed]

M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008).
[CrossRef] [PubMed]

A. Prasad, C.-J. Zha, R.-P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008).
[CrossRef] [PubMed]

Madden, S.

Madden, S. J.

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

Marshall, G. D.

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

C. Xiong, L. G. Helt, A. C. Judge, G. D. Marshall, M. J. Steel, J. E. Sipe, and B. J. Eggleton, “Quantum-correlated photon pair generation in chalcogenide As2S3 waveguides,” Opt. Express 18(15), 16206–16216 (2010).
[CrossRef] [PubMed]

Matthews, J. C. F.

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulating multi-photon entanglement in waveguide quantum circuits,” Nat. Photonics 3(6), 346–350 (2009).
[CrossRef]

Murdoch, S. G.

Murphy, T. E.

Natarajan, C. M.

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

O’Brien, J. L.

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulating multi-photon entanglement in waveguide quantum circuits,” Nat. Photonics 3(6), 346–350 (2009).
[CrossRef]

Pelusi, M. D.

Peruzzo, A.

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

Politi, A.

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulating multi-photon entanglement in waveguide quantum circuits,” Nat. Photonics 3(6), 346–350 (2009).
[CrossRef]

Prasad, A.

Rarity, J. G.

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

Reznik, B.

N. Yoran and B. Reznik, “Deterministic linear optics quantum computation with single photon qubits,” Phys. Rev. Lett. 91(3), 037903 (2003).
[CrossRef] [PubMed]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quamtum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[CrossRef]

Rotenberg, N.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007).
[CrossRef]

Schmidt, B. S.

Schüle, J.

P. Lüsse, P. Stuwe, J. Schüle, and H. G. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol. 12(3), 487–494 (1994).
[CrossRef]

Sharping, J.

Sharping, J. E.

Sipe, J. E.

Smith, A.

Steel, M. J.

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

C. Xiong, L. G. Helt, A. C. Judge, G. D. Marshall, M. J. Steel, J. E. Sipe, and B. J. Eggleton, “Quantum-correlated photon pair generation in chalcogenide As2S3 waveguides,” Opt. Express 18(15), 16206–16216 (2010).
[CrossRef] [PubMed]

Stefanov, A.

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulating multi-photon entanglement in waveguide quantum circuits,” Nat. Photonics 3(6), 346–350 (2009).
[CrossRef]

Stuwe, P.

P. Lüsse, P. Stuwe, J. Schüle, and H. G. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol. 12(3), 487–494 (1994).
[CrossRef]

Tanner, M. G.

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

Thompson, M. G.

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quamtum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[CrossRef]

Turner, A. C.

Unger, H. G.

P. Lüsse, P. Stuwe, J. Schüle, and H. G. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol. 12(3), 487–494 (1994).
[CrossRef]

van Driel, H. M.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007).
[CrossRef]

Vanholsbeeck, F.

Voss, P.

Wang, R.

Wang, R.-P.

Wong, G. K. L.

Xiong, C.

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

C. Xiong, L. G. Helt, A. C. Judge, G. D. Marshall, M. J. Steel, J. E. Sipe, and B. J. Eggleton, “Quantum-correlated photon pair generation in chalcogenide As2S3 waveguides,” Opt. Express 18(15), 16206–16216 (2010).
[CrossRef] [PubMed]

Yoran, N.

N. Yoran and B. Reznik, “Deterministic linear optics quantum computation with single photon qubits,” Phys. Rev. Lett. 91(3), 037903 (2003).
[CrossRef] [PubMed]

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quamtum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[CrossRef]

Zha, C.-J.

Zhang, J.

Zijlstra, T.

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

Zwiller, V.

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

Appl. Phys. Lett.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90(19), 191104 (2007).
[CrossRef]

C. Xiong, G. D. Marshall, A. Peruzzo, M. Lobino, A. S. Clark, D.-Y. Choi, S. J. Madden, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. G. Thompson, J. G. Rarity, M. J. Steel, B. Luther-Davies, B. J. Eggleton, and J. L. O’Brien, “Generation of correlated photon pairs in a chalcogenide As2S3 waveguide,” Appl. Phys. Lett. 98(5), 051101 (2011).
[CrossRef]

Chem. Rev.

S. M. George, “Atomic Layer Deposition: An Overview,” Chem. Rev. 110(1), 111–131 (2010).
[CrossRef] [PubMed]

J. Lightwave Technol.

P. Lüsse, P. Stuwe, J. Schüle, and H. G. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol. 12(3), 487–494 (1994).
[CrossRef]

A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite-difference mode solver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26(11), 1423–1431 (2008).
[CrossRef]

J. Opt. Soc. Am. B

Nat. Photonics

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulating multi-photon entanglement in waveguide quantum circuits,” Nat. Photonics 3(6), 346–350 (2009).
[CrossRef]

Opt. Express

M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16(25), 20374–20381 (2008).
[CrossRef] [PubMed]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17(5), 3514–3520 (2009).
[CrossRef] [PubMed]

C. Xiong, L. G. Helt, A. C. Judge, G. D. Marshall, M. J. Steel, J. E. Sipe, and B. J. Eggleton, “Quantum-correlated photon pair generation in chalcogenide As2S3 waveguides,” Opt. Express 18(15), 16206–16216 (2010).
[CrossRef] [PubMed]

X. Gai, S. Madden, D.-Y. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136 W⁻¹m⁻¹ at 1550 nm,” Opt. Express 18(18), 18866–18874 (2010).
[CrossRef] [PubMed]

X. Gai, T. Han, A. Prasad, S. Madden, D.-Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18(25), 26635–26646 (2010).
[CrossRef] [PubMed]

X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12(16), 3737–3744 (2004).
[CrossRef] [PubMed]

Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Ultrabroadband parametric generation and wavelength conversion in silicon waveguides,” Opt. Express 14(11), 4786–4799 (2006).
[CrossRef] [PubMed]

J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14(25), 12388–12393 (2006).
[CrossRef] [PubMed]

A. S. Y. Hsieh, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, “Combined effect of Raman and parametric gain on single-pump parametric amplifiers,” Opt. Express 15(13), 8104–8114 (2007).
[CrossRef] [PubMed]

A. Prasad, C.-J. Zha, R.-P. Wang, A. Smith, S. Madden, and B. Luther-Davies, “Properties of GexAsySe1-x-y glasses for all-optical signal processing,” Opt. Express 16(4), 2804–2815 (2008).
[CrossRef] [PubMed]

Phys. Rev. Lett.

N. Yoran and B. Reznik, “Deterministic linear optics quantum computation with single photon qubits,” Phys. Rev. Lett. 91(3), 037903 (2003).
[CrossRef] [PubMed]

Rev. Mod. Phys.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quamtum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[CrossRef]

Other

G. P. Agrawal, Nonlinear Fiber Optics, 3rd. ed. (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Fourier transform of the Raman response function hR of Ge11.5, As2S3 and SiO2. (a) The imaginary part Im[hR(Ω)]. (b) The real part Re[hR(Ω)].

Fig. 2
Fig. 2

Photon pair generation rate with γPL = 0.1 and GVD of 15, 5 and 1.5 ps∙km−1nm−1Blue curve is for SFWM including Re[hR(Ω)]. Red curve is for pure SFWM. The frequency detuning is for pump-idler detuning ωip = ωps. G/s is for 1 × 109 pairs per second.

Fig. 3
Fig. 3

Criteria for correlated photon pair generation for γPL = 0.07, 0.1 and 0.15. (a) The photon pair generation rate of SFWM and SpRS. (b) Figure of merit F = SSFWM/SSpRS. (c) Photon pair correlation. G/s is for 1 × 109 pairs per second.

Fig. 4
Fig. 4

(a) A standard single clad Ge11.5 waveguide structure. (b) The GVD for a 0.625 µm wide waveguide. Dark blue curve is the contour for GVD of 7 ps∙km−1nm−1; light blue curve is the zero-dispersion contour; the black line shows the pump wavelength at 1.42 µm. (c) the GVD for a 0.58 µm film thickness and 0.61, 0.625 and 0.64 µm waveguide width.

Fig. 5
Fig. 5

(a) GVD at 1.42 µm as a function of film thickness and waveguide width. (b) GVD as a function of film thickness in region I. (c) GVD as a function of waveguide width in region II.

Fig. 6
Fig. 6

(a) Waveguide with an inserted layer of SiO2. (b) GVD as a function of SiO2 layer thickness and waveguide width with 0.64 µm initial film thickness. (c) GVD as a function of waveguide width with 0.64µm initial film thickness. (d) Waveguide with an inserted layer of Al2O3. (e) GVD as a function of Al2O3 layer thickness and waveguide width with 0.61 µm initial film thickness. (f) GVD as a function of waveguide width with 0.61 µm initial film thickness.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

A p z + i 2 β 2 2 A p t 2 + α 2 A p =iγ[ | A p | 2 +(2+ f R (Re[ h ˜ R (Ω) ]1)) | A s | 2 +(2+ f R (Re[ h ˜ R (Ω) ]1)) | A i | 2 ] A p γIm[ h ˜ R (Ω) ] f R | A s | 2 A p γIm[ h ˜ R (Ω) ] f R | A i | 2 A p ,
A s z + i 2 β 2 2 A s t 2 + α 2 A s =iγ[ | A s | 2 +(2+ f R (Re[ h ˜ R (Ω) ]1)) | A p | 2 ] A s +iγ[ 1+ f R (Re[ h ˜ R (Ω) ]1) ] A p 2 A i * γIm[ h ˜ R (Ω) ] f R | A p | 2 A s γIm[ h ˜ R (Ω)] f R A p 2 A i * ,
A i z + i 2 β 2 2 A i t 2 + α 2 A i =iγ[ | A i | 2 +(2+ f R (Re[ h ˜ R (Ω) ]1)) | A p | 2 ] A i +iγ[ 1+ f R (Re[ h ˜ R (Ω) ]1) ] A p 2 A s * γIm[ h ˜ R (Ω) ] f R | A p | 2 A i γIm[ h ˜ R (Ω)] f R A p 2 A s * ,
4γ P 0 4γ P 0 ƒ(Re[ h R (ω)]1)<2 β 2 Δ ω 2 < 0 ,
G i ( υ )= P i (z) P s (z) = | q Kq(iR)/tanh(rRPL) | 2 ,
f SpRS =PL| g R (υ) |( n th +1),
F= S FWM S SpRS .
ρ Raman = [γRe(η)] 2 + | g R ( n th +1/2) | 2 [ | γη | 2 PL+| g R ( n th +1) |][ | γη | 2 PL+| g R | n th ] ,

Metrics